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 Reminder: inference in the joint distribution

 Reminder: properties of independencies, 
independence models

 Independencies in representation & inference
◦ Example: Naive Bayesian networks

◦ Example: Hidden Markov models

 Bayesian networks

 A construction/learning method



Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query 
variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y – E

Then the required summation of joint entries is done by summing out the 
hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

 The terms in the summation are joint entries because Y, E and H
together exhaust the set of random variables

 Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?



5/25/2018A.I. 4



5/25/2018A.I. 5

J.Pearl: Probabilistic Reasoning in intelligent systems, 1998

Graphoids: Semi-graphoids+Intersection

(holds only in strictly positive distribution)

Semi-graphoids (SG): Symmetry, Decomposition, Weak Union, Contraction (holds in 

all probability distribution). SG is sound, but incomplete inference.



The independence map (model) M of a 
distribution P is the set of the valid 
independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)



Variables (nodes) 
Flu: present/absent

FeverAbove38C: present/absent

Coughing: present/absent

Flu

Fever Coughing

P(Fever=present|Flu=present)=0.6

P(Fever=absent|Flu=present)=1-0.6

P(Fever=present|Flu=absent)=0.01

P(Fever=absent|Flu=absent)=1-0.01

P(Flu=present)=0.001

P(Flu=absent)=1-P(Flu=present)Model

P(Coughing=present|Flu=present)=0.3

P(Coughing=absent|Flu=present)=1-0.7

P(Coughing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02

Assumptions: 

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.



Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)

Flu

Fever Coughing
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Smoking

Lung cancer

S S

LC P(S, LC) P(S, LC) P(LC)

LC P(S, LC) P(S, LC) P(LC)

P(S) P(S)Probability:

P(LC)

Conditional probabilities (e.g., probability of LC given S): 

P(LC| S)= ??? P(LC| S)= ??? P(LC)

Odds:

[0,1] →[0,∞]: Odds(p)=p/(1-p)

O(LC| S)= ??? O(LC| S)

Odds Ratio (OR) Independent of prevalence!

OR(LC,S)=O(LC| S)/O(LC| S)
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X

Y

Z

If P(Y,X,Z) is a naive Bayesian network, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)



 Bayesian learning?

 Identification of
◦ parameters,

◦ structure?
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 Parameter learning

 Structure learning
◦ HMMs are equivalent with stochastic finite state 

automatons
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 A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

 Syntax:
◦ a set of nodes, one per variable
◦
◦ a directed, acyclic graph (link ≈ "directly influences")
◦ a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

 In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination 
of parent values



 I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar?

 Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

 Network topology reflects "causal" knowledge:
◦ A burglar can set the alarm off

◦ An earthquake can set the alarm off

◦ The alarm can cause Mary to call

◦ The alarm can cause John to call





 1. Choose an ordering of variables X1, … ,Xn

 2. For i = 1 to n
◦ add Xi to the network

◦ select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) //(chain rule)

= πi =1P (Xi | Parents(Xi)) //(by construction)

n

n

Ordered Markov condition (OMC) is satisfied: P obeys the OMC w.r.t. G.



 A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values

 Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

 If each variable has no more than k parents, the complete network 
requires O(n · 2k) numbers

 I.e., grows linearly with n, vs. O(2n) for the full joint distribution

 For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



The full joint distribution is defined as the product of the local 
conditional distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

e.g., P(j  m  a  b  e)

= P (j | a) P (m | a) P (a | b, e) P (b) P (e)

n
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1. Choose an ordering of variables X1, … ,Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)



MP={IP,1(X1;Y1|Z1),...}
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3. Concise representation of joint 
distributions

2. Graphical representation of 

(in)dependencies

1. Causal model



 Conditional independencies, independence 

model

 Naive Bayesian networks 

 Hidden Markov Models

 (General) Bayesian networks

 A method for BN structure learning


