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» Reminder: inference in the joint distribution

» Reminder: properties of independencies,
independence models

» Independencies in representation & inference
- Example: Naive Bayesian networks
- Example: Hidden Markov models

» Bayesian networks
» A construction/learning method




Inference by enumeration

Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query
variables Y  given specific values e for the evidence variables E

Let the hidden variables be H=X-Y -E

Then the required summation of joint entries is done by summing out the
hidden variables:

PY|E=¢e)=aP(Y,E=¢e) = «Z,P(Y,E=e,H =h)

» The terms in the summation are joint entries because Y, Eand H
together exhaust the set of random variables

» Obvious problems:
1. Worst-case time complexity O(@’) where dis the largest arity
2. Space complexity O(d@”)to store the joint distribution
3. How to find the numbers for O(@") entries?




Properties of independence

a Symmetry: The observational probabilistic conditional independence is
symmetric.

I,(X:Y|Z) iff I,(Y: X|Z)
b Decomposition: Any part of an irrelevant information is irrelevant.
L(X;YUW|Z) = [,(X:;Y|Z) and I,(X; W|Z)
¢ Weak union: Irrelevant information remains irrelevant after learning
(other) irrelevant information.
LX;YUW|Z) = L(X;Y|ZUW)
d Contraction: Irrelevant information remains irrelevant after forgetting
(other) irrelevant information.

L(X;Y|Z) and I, X; W|ZUY) = L(X;Y UW|Z)

e Intersection: Symmetric irrelevance implies joint irrelevance if there are
no dependencies.

L(X;Y|ZUW) and I,(X; W|ZUY) = L(X;Y UW|Z)
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Semi-graphoids, graphoids

Semi-graphoids (SG): Symmetry, Decomposition, Weak Union, Contraction (holds in

all probability distribution). SG is sound, but incomplete inference.

Graphoids: Semi-graphoids+Intersection
(holds only in strictly positive distribution)

Decomposition
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J.Pearl: Probabilistic Reasoning in intelligent systems, 1998
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The independence model of a
distribution

The independence map (model) M of a
distribution P is the set of the valid
independence triplets:

MP:{IP,] (X] ,Y'| |Z'|)!"'! IP,K(XK;YKlzK)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), 1(X;Z|Y)}
Normally/almost always: D(X;2)
Exceptionally: I(X;Z)




Naive Bayesian network

Assumptions:

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.

Variables (nodes)
Flu: present/absent
FeverAbove38C: present/absent

Coughing: present/absent P(Flu=present)=0.001
P(Flu=absent)=1-P(Flu=present)

Model

P(Fever=present|Flu=present)=0.6 P(Coughing=present|Flu=present)=0.3
R(Coughing=absent|Flu=present)=1-0.7
P(Fever=present|Flu=absent)=0« P(Cotghing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02



Naive Bayesian network (NBN)
Decomposition of the joint:
P(Y,X4,..,X}) = P(Y)[liPCX,|Y, Xq,.,Xi1) //by the chain rule
= P(Y)['iP(X,|Y) I/l by the N-BN assumption
2n+1 parameteres!

Diagnostic inference:

P(Y [Xig,--+Xik) = P[P Y) 1 P15+ Xik)

If Y is binary, then the odds

P(Y=1[Xi1,, Xy / P(Y=0]Xiz,...%5) = P(Y=1)/P(Y=0) [T, P(x;,|Y=1) / P(x;;,|Y=0)

p(Flu = present | Fever=absent, Coughing = present)
o« p(Flu = present) p(Fever=absent | Flu = present) p(Coughing = present| Flu = present)




Conditional probabilities, odds, odds ratios

P(=S, —LC) P(S, —LC) P(=LC)
. LC P(=S, LC) P(S, LC) P(LC)
Probability: P(=S) P(S)

P(LC)

Conditional probabilities (e.g., probability of LC given S):
P(LC| —=S)=?7?? P(LC| S)= ??? P(LC)

Odds:

[0,1] —[0,]: Odds(p)=p/(1-p)

O(LC| =S)=??? O(LC| S)

Odds Ratio (OR) Independent of prevalence! | |
OR(LC,S)=0(LC| S)/O(LC| —=S) 0 05 1

O Fr N W b~ O
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Example: Construct a spam filter
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SPAM/true 01 052381 018182 098876
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The independence map of a N-BN

 »

If P(Y,X,Z) Is a naive Bayesian network, then
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)




Learning of N-BNs?

» Bayesian learning?

» ldentification of
> parameters,
o structure?
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Hidden Markov Models (HMMs)

The world changes; we need to track and predict it
Diabetes management vs vehicle diagnosis
Basic idea: copy state and evidence variables for each time step

X; = set of unobservable state variables at time ¢
e.g., BloodSugar;, StomachContents;, etc.

E; = set of observable evidence variables at time ¢
e.g., MeasuredBloodSugar;, PulseRate;, FoodFEaten,

This assumes discrete time; step size depends on problem

Notation: X, = X,,. Xt‘H—l: o X1, X
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Markov chains

Markov assumption: X, depends on bounded subset of X;;
First-order Markov process: P(X;| Xy, 1) = P (X, | X, 1)
Second-order Markov process: P (X, | X)) = P(X;|X;_ 5, X, )

oot o E DT C—~ED—(
— .
Second-order Q'Q"WQ'Q

Sensor Markov assumption: P(E;| Xy Eg; 1) = P(E;|X})

Stationary process: transition model P(X;|X,_ ;) and sensor model

P(E;|X,) fixed for all ¢
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Umbrella;_,

First-order Markov assumption not exactly true in real world!

Possible fixes:
1. Increase order of Markov process
2. Augment state, e.g., add T'emp;, Pressure;

Example: robot motion.
Augment position and velocity with Battery,

A.l.  5/25/2018
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Inference in HMMs

Filtering: P(X}|ei)

belief state—input to the decision process of a rational agent

Prediction: P (X, |ei) for k > 0
evaluation of possible action sequences;
like filtering without the evidence

Smoothing: P(X|lei) for 0 < k < ¢
better estimate of past states, essential for learning

Most likely explanation: arg maxx,, P(x1.¢|e1)
speech recognition, decoding with a noisy channel

A.l.  5/25/2018
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Filtering
Aim: devise a recursive state estimation algorithm:

P(Xr—1|el:t+1) — f(et+1= P(Xt‘el:t))

P(Xt—1|el:t+1) - P(XHl‘el:tf ef—l)
= CEP(E‘HHXHI: el:t)P(XHl‘el:t)
= t‘t‘P(et+1‘XH—I)P(Xt—ﬂeIIJ

|.e., prediction + estimation. Prediction by summing out X;:

P(X¢s1lersr1) = aP (e X)) 2x, P(Xer1[xt, e14) P(x¢|er:)
= I’.TP(Et.|.1‘Xt+1)EXfP(Xt+1‘Xt)P(X”ellf)

f1.:.1 = FORWARD(fi, e, 1) where fi.; =P (X¢|e,)
Time and space constant (independent of )
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Learning HMMs

» Parameter learning

» Structure learning

- HMMs are equivalent with stochastic finite state
automatons
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Bayesian networks

» A 5|mple graphical notation for conditional
independence assertions and hence for compact
speC|f|cat|on of full joint distributions

» Syntax:
a set of nodes, one per variable

(¢]

a directed, acyclic graph (link = "directly influences")
a conditional distribution for each node given its parents:
P (X; | Parents (X))

o o o

» In the simplest case, condltlonal distribution
represented as a con |t|onaI)J3robab|I|ty table (CPT)
giving the distribution over
of parent values

for each combination




Example

» I'm at work, neighbor John calls to say my alarm is ringing, but
neighbor Mary doesn't call. Sometimes it's set off by minor
earthquakes. Is there a burglar?

» Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

» Network topology reflects "causal” knowledge:
A burglar can set the alarm off

An earthquake can set the alarm off

The alarm can cause Mary to call

The alarm can cause John to call

o

(¢]

(¢]

[e]




Example contd.
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Learning Bayesian networks

» 1. Choose an ordering of variables X;, ... ,X,
» 2.For/i=1ton
> add X;to the network

- select parents from X, ... ,X._; such that
P (X: | Parents(X)) =P X,/ X;, ... Xi_;)

This choice of parents guarantees:

PX, .. X) =m_, PX./X,, ..., X.,) //chain rule)
— 17, _,P (X, ] Parents(X)) //(by construction)

Ordered Markov condition (OMC) is satisfied: P obeys the OMC w.r.t. G.




Compactness

» A CPT for Boolean X;with k& Boolean parents has 2% rows for the
combinations of parent values

®
» Each row requires one number pfor X; = true A}
(the number for X; = falseis just 7-p) .x
g

» If each variable has no more than k parents, the complete network
requires O(n - 2%¥) numbers

» l.e., grows linearly with n, vs. O(27) for the full joint distribution

» For burglarynet, 1 + 1+ 4+ 2 + 2 =10 numbers (vs. 2°-1 = 31)




Semantics

The full joint distribution is defined as the product of the local
conditional distributions:

n

o
P, ... ,X)=r1,_,;P(X;/ Parents(X)) A
o

eg., PArmnaan—bns—e

=P(@G/a)P(m/a)P@/-b —e)P(=b)P(-e)




Inference in BNs

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of exact inference O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference: 0<p(AND)? = NP-hard
— equivalent to counting 3SAT models = #P-complete

1. AvBvC
2. CvDv-A
3. BvCv-D
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Learning with an ,acausal” ordering

1. Choose an ordering of variables X, ... , X,

2.Fori=1ton
add X; to the network
select parents from X,, ... ,X_; such that
P (X, | Parents(X)) = P (Xi | X, ... Xi.1)

A.l.  5/25/2018

26



Bayesian networks: interpretations

3. Concise representation of joint

distributions
P(M,0,D,S,T) =

PIM)P(O|M)P(D|O,M)P(S|D)P(T|S,M)

P N

1. Causal model

MP:{IP,l(Xl;Yllz%; ™,

2. Graphical representation of
(in)dependencies




Summary

» Conditional independencies, independence
model

» Naive Bayesian networks

» Hidden Markov Models

» (General) Bayesian networks

» A method for BN structure learning




