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 Reminder: inference in the joint distribution

 Reminder: properties of independencies, 
independence models

 Independencies in representation & inference
◦ Example: Naive Bayesian networks

◦ Example: Hidden Markov models

 Bayesian networks

 A construction/learning method



Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query 
variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y – E

Then the required summation of joint entries is done by summing out the 
hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

 The terms in the summation are joint entries because Y, E and H
together exhaust the set of random variables

 Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?
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J.Pearl: Probabilistic Reasoning in intelligent systems, 1998

Graphoids: Semi-graphoids+Intersection

(holds only in strictly positive distribution)

Semi-graphoids (SG): Symmetry, Decomposition, Weak Union, Contraction (holds in 

all probability distribution). SG is sound, but incomplete inference.



The independence map (model) M of a 
distribution P is the set of the valid 
independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)



Variables (nodes) 
Flu: present/absent

FeverAbove38C: present/absent

Coughing: present/absent

Flu

Fever Coughing

P(Fever=present|Flu=present)=0.6

P(Fever=absent|Flu=present)=1-0.6

P(Fever=present|Flu=absent)=0.01

P(Fever=absent|Flu=absent)=1-0.01

P(Flu=present)=0.001

P(Flu=absent)=1-P(Flu=present)Model

P(Coughing=present|Flu=present)=0.3

P(Coughing=absent|Flu=present)=1-0.7

P(Coughing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02

Assumptions: 

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.



Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)

Flu

Fever Coughing
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Smoking

Lung cancer

S S

LC P(S, LC) P(S, LC) P(LC)

LC P(S, LC) P(S, LC) P(LC)

P(S) P(S)Probability:

P(LC)

Conditional probabilities (e.g., probability of LC given S): 

P(LC| S)= ??? P(LC| S)= ??? P(LC)

Odds:

[0,1] →[0,∞]: Odds(p)=p/(1-p)

O(LC| S)= ??? O(LC| S)

Odds Ratio (OR) Independent of prevalence!

OR(LC,S)=O(LC| S)/O(LC| S)
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If P(Y,X,Z) is a naive Bayesian network, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)



 Bayesian learning?

 Identification of
◦ parameters,

◦ structure?
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 Parameter learning

 Structure learning
◦ HMMs are equivalent with stochastic finite state 

automatons
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 A simple, graphical notation for conditional 
independence assertions and hence for compact 
specification of full joint distributions

 Syntax:
◦ a set of nodes, one per variable
◦
◦ a directed, acyclic graph (link ≈ "directly influences")
◦ a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

 In the simplest case, conditional distribution 
represented as a conditional probability table (CPT) 
giving the distribution over Xi for each combination 
of parent values



 I'm at work, neighbor John calls to say my alarm is ringing, but 
neighbor Mary doesn't call. Sometimes it's set off by minor 
earthquakes. Is there a burglar?

 Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

 Network topology reflects "causal" knowledge:
◦ A burglar can set the alarm off

◦ An earthquake can set the alarm off

◦ The alarm can cause Mary to call

◦ The alarm can cause John to call





 1. Choose an ordering of variables X1, … ,Xn

 2. For i = 1 to n
◦ add Xi to the network

◦ select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) //(chain rule)

= πi =1P (Xi | Parents(Xi)) //(by construction)

n

n

Ordered Markov condition (OMC) is satisfied: P obeys the OMC w.r.t. G.



 A CPT for Boolean Xi with k Boolean parents has 2k rows for the 
combinations of parent values

 Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

 If each variable has no more than k parents, the complete network 
requires O(n · 2k) numbers

 I.e., grows linearly with n, vs. O(2n) for the full joint distribution

 For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



The full joint distribution is defined as the product of the local 
conditional distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

e.g., P(j  m  a  b  e)

= P (j | a) P (m | a) P (a | b, e) P (b) P (e)

n
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1. Choose an ordering of variables X1, … ,Xn

2. For i = 1 to n
add Xi to the network
select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)



MP={IP,1(X1;Y1|Z1),...}
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3. Concise representation of joint 
distributions

2. Graphical representation of 

(in)dependencies

1. Causal model



 Conditional independencies, independence 

model

 Naive Bayesian networks 

 Hidden Markov Models

 (General) Bayesian networks

 A method for BN structure learning


