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Visual data analytics in pharmaceutical informatics

Date: 11/01/2017

In cooperation with CERN and MTA-Wigner we will investigate the use of

large-scale, semantic visual data analytics in drug discovery.

Privacy preserving fusion in CELSA

Date: 10/01/2017

Qur new project "HIDUCTION: Privacy presening data sharing, analysis and
decision supportin persenalized medicine” will start this year in cooperation m

with ESAT-STADIUS, K.U.Leuven (2017-2019).

Continued participation in the "UK Biobank"

Date: 09/13/2017

The "UK Biobank project No.1602" is extended till 2020. In cooperation with
the University of Manchester and Semmelwels University, we investigate the
interactions between diet, psychosocial and genetic factors for self-reported
depression and related disorders

We joined the NVIDIA GPU GRANT program of Nvidia Corporation. We will
explore bioinformatic and chemoinformatic applications of the donated GPUs. @

NVIDIA.

New Bayesian OTKA project

Team

Bence Bolgar
Andras Gézsi

Géabor Hulldam
Andras Millinghoffer
Péter Sarkozy

Péter Antal

http://bioinfo.mit.ome.hu/



ComBinelLab.hu: Themes

Knowledge engineering

Clinical Decision

\ Support

Functional Analysis

Text Mining

Study design

Adaptive
Study Design

Genetic measurements
Data engineering

Pathway Analysis Data Engineering

Data analysis

Interpretation

Biornarker Discovery Statistical Analysis

Causal Analysis

Decision support



ComBinelLab.hu: tools

BayesEye: Bayesian, systems-based data analysis

— Bayesian model averaging over Bayesian network structures.

BayesCube: Probabilistic decision support

— Semantically enriched Bayesian and decision network models.
BysCyc/QSF (Bayesian Encyclopedia):
— Large-scale probabilistic inference

QDF: Kernel-based fusion methods for repositioning

— Multi-aspect rankings and multi-aspect metrics in drug discovery

Variant Meta Caller: precision NGS
— Next-generation sequencing pipelines

VB-MK-LMF: drug-target interaction prediction
— Variational Bayesian Multiple Kernel Logistic Matrix Factorization

... see Tools @ http://biocinfo.mit.bme.hu/
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Hallmarks of a new Al era?
ARTICLE

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison!, Arthur Guez!, Laurent Sifre', George van den Driessche!,

Julian Schrittwieser!, loannis .'Jintnlmglﬂu‘_. Veda Panneershelvam', Marc Lanctot!, Sander Dieleman!, Dominik Grewe!,
John Nham?, Nal Kalchbrenner?, Ilya Sutskever?, Timothy Lillicrap', Madeleine Leach!, Koray Kavukcuogha!,

Thore Graepel' & Demis Hassabis!

LETTER

Human-level control through deep reinforcement
learning

Volodymyr Mnih'#*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller', Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen', Charles Beattie’, Amir Sadik', Toannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis' 6

doi:10.1038/ nature 16961

doi:10.1038/naturel4236




Medical decision support
systems
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Extract key attributes
from a patient's case
Pricrifized Treatment Use Watson's analytic
Options algorithms to prioritize
+ treatment options based

Bvidence Profile on best evidence.

Watson for Oncology — assessment and advice cycle
www.avanteoconsulting.com/machine-learning-accelerates-cancer-research-discovery-innovation/



Automated discovery systems

m Langley, P. (1978). Bacon: A general discovery system. Proceedings of the
Second Biennial Conference of the Canadian Society for Computational
Studies of Intelligence (pp. 173-180). Toronto, Ontario.

...

m Chrisman, L., Langley, P., & Bay, S. (2003). Incorporating biological
knowledge into evaluation of causal regulatory hypotheses. Proceedings of
the Pacific Symposium on Biocomputing (pp. 128-139). Lihue, Hawaii.

m (Gene prioritization...)
m R.D.King et al.: The Automation of Science, Science, 2009




~Machine science”

sSwanson, Don R. "Fish oil, Raynaud's syndrome, and undiscovered public
knowledge." Perspectives in biology and medicine 30.1 (1986): 7-18.

sSmalheiser, Neil R., and Don R. Swanson. "Using ARROWSMITH: a computer-
assisted approach to formulating and assessing scientific hypotheses." Computer
methods and programs in biomedicine 57.3 (1998): 149-153.

=D. R. Swanson et al.: An interactive system for finding complementary
literatures: a stimulus to scientific discovery, Artificial Intelligence, 1997

AB ABC
mJames Evans and Andrey Rzhetsky: Machine science, Science, 2013

,S00Nn, computers could generate many useful hypotheses with little help from
humans.”



Factors behind the ,A.l./learning hype”

* New theory?
— Unified theory of Al?
— A new machine learning approach?

* New hardware? (computing power..)
— GPUs?
— Quantum computers?

* New resources?
— Data?
— Knowledge?
— Money?
— Brains/Minds?



Computing power: Moore’s Law

Transidors
Per Die

1"

« Integration and
parallelization wont

14" W 1965 Actwal data

. rtes i S S bring us further. End
10" 7 opection ’
® Memory Pentiuru * 4 of Moore’s law?

: Pentivm * J11
Microprocessor

Pentium ™ 11

T Pentivan *
1965, Gordon Moore, founder of Intel:
,The number of transistors that can be
placed inexpensively on an integrated
circuit doubles approximately every two

years ”... "for at least ten years"

11/16/2018 A.l 11



Definitions of , big data”

M. Cox and D. Ellsworth, “"Managing Big Data for Scientific
Visualization,” Proc. ACM Siggraph, ACM, 1997

The 3xV: volume, variety, and velocity (2001).

The 8xV: Vast, Volumes of Vigorously, Verified, Vexingly
Variable Verbose yet Valuable Visualized high Velocity Data
(2013)

Not ,,conventional” data: ,Big data Is data that exceeds the
processing capacity of conventional database systems. The
data Is too big, moves too fast, or doesn't fit the strictures of
your database architectures. To gain value from this data,
you must choose an alternative way to process it (E.Dumbill:
Making sense of big data, Big.Data, vol.1, no.1, 2013)

12



Carlson’s Law for Biological Data

NATURE, Vol 464, April 2010 : B T ey
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11/16/2018 Al 13




Data: ,Big” data in life sciences

Healthcare Industry is dealing with data overload

Exogenous data
(Behavior, Socio-economic, Environmental, ..

600’0 of determinants of health = s 1 1 OO Terabytes

Volume, Variety, Velocity, Veracity ] - Generated per lifetime

Genomics data

300/0 of determinants of health - 7 6 TB

Per lifetime
Volume

Wearable Unit
Clinical data Shoulder
1 0°/o of determnants o health - oy - T 04 TB @
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Variety s ies - o ‘ECG(Elnthoven’s triangle) AVR |

Thoracic respiration
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Biomedical omic data/big data

2010<: “Clinical phenotypic assay”’/drugome: open clinical trials, adverse drug
reaction DBs, adaptive licensing,

Environmenté&life style

7a0000

Metabolome

. - Proteome

yyyyyyyyyyy

Genome(s), epigenome, microbiome

Drugs

Moore’s lawo: “Carlson’s law




UK Biobank . =
2006-2010 biobank

Improving the health of future generations

UK Biobank is a national and international health resource with unparalleled
research opportunities, open to all bona fide health researchers. UK Biobank
aims to improve the prevention, diagnosis and treatment of a wide range of
serious and life-threatening ilinesses — including cancer, heart diseases,
stroke, diabetes, arthritis, osteoporosis, eye disorders, depression and forms
of dementia. It is following the health and well-being of 500,000 volunteer
participants and provides health information, which does not identify
them, to approved researchers in the UK and overseas, from academia and
industry. Scientists, please ensure you read the background materials before
registering. To our participants, we say thank you for supporting this
iImportant resource to improve health. Without you, none of the research
featured on this website would be possible.

Elliott, P., & Peakman, T. C. (2008). The UK Biobank sample handling and
storage protocol for the collection, processing and archiving of human blood and
urine. International Journal of Epidemiology, 37(2), 234-244.
Collins, R. (2012). What makes UK Biobank special?. The Lancet,
379(9822)

16


http://www.ukbiobank.co.uk/scientists-3/

Large-scale cohorts in UK

1,400,000

UK Biobank:
* Imillion< adults
120,000 Hooneoe * aged 40-69,
110,000 1 800.000 « 2006-2036<
DR - - genes x lifestyle x environment
30:000 1 =»diseases

e open 2012-

1,200,000

70,000 -

60,000 200,000
50,000 -

40,000 - 0 | |
Million Women Study* UK Biobank*

30,000 -
20,000
10,000

17



Further national biobanks: FinnGen

* https://www.finngen.fi/en

e 500k participants Q FINNGEN
. 2017- )

* Personalized medicine project

 genome information (WGS) + digital health care data

* The study is funded[!!!] by Business Finland and seven
international pharmaceutical companies: Abbvie,
AstraZeneca, Biogen, Celgene, Genentech (a member of the
Roche Group), Merck & Co., Inc., Kenilworth, NJ, USA and
Pfizer.



https://www.finngen.fi/en
https://www.businessfinland.fi/en/do-business-with-finland/home/

Further health data

* Flatlron Health (acquired by Roche):
— 7 major academic research centers
— 280+ community oncology practices
— top 15 therapeutic oncology companies
— 2500 clinicians

— 2.1 million active patient records
* complete, electronic health records
e +patient-reported data



Big health data streams

New “Omics” Traditional Quantified Self
Data Streams Data Streams Data Streams
Genome ,
-SNP mutations PersonalandFamily Self-reporteddata:
-Structural variation HealthHistory / heatlth, exercise,
-Epigenetics

food, mood
journals, etc. \/

| Microbiome / Prescription

History /

Transcriptome MobileApplication
Lab Tests: History Deta V4
Metabolome and Current

QuantifiedSelf
Proteome Demographic Data Device Data v

| Diseasome \/ \/

tandardi
fnmﬁf J Biosensor Data
Environmentome \/ Response Objective Metrics

Legend: Consumer-available \/

M.Swan: THE QUANTIFIED SELF: Fundamental Disruption in Big Data
Science and Biological Discovery, Big data, Vol 1., No. 2., 2013



On the thresholds of data: health

Local datasets: 1k=>» 10k participiants Disease

. specific
International datasets: 10k=>» 100k 2010< P
National biobanks: <1million 2010< - Jes-sectional

International biobanks: x1million

Regular health records: 100 million | Longitudinal
Patient-reported
Self-quantified

(=»Meta-analysis using summary statistics)

=>» Federated learning: separation of data and model
1. Data is standardized (using ontologies)
2. Stays at the institutes/individuals
3. Model updates are communicated
4. Using privacy-preserving techniques



Number of biomedical publications

1079” 1910 1920 1930 1940 1950 1960
Fig. 2. CUMULATIVE NUMBER OF ABSTRACTS IN VARIOUS
SCIENTIFIC FIELDS, FROM THE BEGINNING OF THE
ABSTRACT SERVICE TO GIVEN DATE
It will be noted that after an initial period of rapid expansion to a stable

growth rate, the number of abstracts increases exponentially, doubling
in approximately 15 years.

Little Science, Big Science, by
Derek J. de Solla Price, 1963

Number of annual papers
1200000

1000000
800000
600000
400000
200000

0
1950 1960 1970 1980 1990 2000 2010
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Semantic publishing:
papers vs DBs/KBs

PUBMED yearly increase

800000

700000 H H

600000 — H b

500000 N H HL

400000 oH] H H H HT

new abstracts

300000 H H H H H H H H I

200000 M HH H1H H H H -t
100000 “ H H H -
R e N !

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

ffffffffffffffffffffffffffffffffffffff

M. Gerstein, "E-publishing on the Web: Promises, pitfalls, and payoffs for bioinformatics," Bioinformatics, 1999

M. Gerstein: Blurring the boundaries between scientific '‘papers' and biological databases, Nature, 2001

P. Bourne, "Will a biological database be different from a biological journal?," Plos Computational Biology, 2005

M. Gerstein et al: "Structured digital abstract makes text mining easy," Nature, 2007.

M. Seringhaus et al: "Publishing perishing? Towards tomorrow's information architecture," Bmc Bioinformatics, 2007.
M. Seringhaus: "Manually structured digital abstracts: A scaffold for automatic text mining," Febs Letters, 2008.

D. Shotton: "Semantic publishing: the coming revolution in scientific journal publishing," Learned Publishing, 2009

23



Biomedical databases by 2000

24



Knowledge: Linked open data

Publications
e

=] coming Links
ms(Outgoing Links

Creator: Anja Jentzsch
Last modified: 2016-07-30

Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul
Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/ 25



E-science, data-intensive science, the
fourth paradigm

All Scientific Data Online

» Many disciplines overlap and
use data from other sciences

« Internet can unify Literature

all literature and data
Derived and

* Go from literature to Recombined Data

computation to data

back to literature
+ Information at your fingertips Raw Data
for everyone-everywhere

+ Increase Scientific Information Velocity

* Huge increase in Science Productivity




Factors behind the , hype” II.

* New theory:
— Unified theory of Al: Probabilistic models
— RE-new-ed machine learning approaches:

e ,Sequential” learning, ,,Deep” learning

* New hardware

— GPUs: yes

— Quantum computers: no
* New resources

— Data & Knowledge: Linked Open Data
— Society: open for ,,smart” solutions



Computer

Computational
complexity

Knowledge
representation

Expert
systems

Thresholds of
knowledge

Statistical

complexity

1&%
cision

Milestones and phases in Al

~1930: Zuse, Neumann, Turing..: ,instruction is data”:

— Laws of nature can be represented, ,executed”/simulated with modifications, learnt

— Knowledge analogously: representation, execution, adaptation and learning
1943 McCulloch & Pitts: Boolean circuit model of brain
1950 Turing's "Computing Machinery and Intelligence"
1956 Dartmouth meeting: the term "Artificial Intelligence”
1950s Early Al programs (e.g. Newell & Simon's Logic Theorist)
The psysical symbol system hypothesis: search
1965 Robinson's complete algorithm for logical reasoning

1966—73 Al discovers computational complexity
Neural network research almost disappears
1969—79 Early development of knowledge-based systems

The knowledge system hypothesis: knowledge is power
1986-- Neural networks return to popularity

1988-- Probabilistic expert systems

1995-- Emergence of machine learning

The ,,big data” hypothesis: let data speak

2005/2015-- Emergence of autonomous adaptive decision systems
(,robots”, agents)

The autonomy hypothesis??



Optimal decision: decision theory
probability theory+utility theory

e Decision situation:

— Actions d,
— QOutcomes O;
— Probabilities of outcomes p(oj |ai)

— Utilities/l f out
i |.|es/ osses of ou cc?r.nes U (Oj | ai)
— Maximum Expected Utility
Principle (MEU) EU(a) = ZJ_U (Oj &) p(oj &)
— Best action is the one with

maximum expected utility a* = arg maXi EU (ai)

Actions g, Outcomes Probabilities  Utilities, costs Expected utilities

Q< P(ojla) U(0)), C(a) } EU(a) = Y P(o/a)U(o)
O . ' : :
0.

J



Types of inference

(Passive, observational) inference
— P(Query|Observations, Observational data)

Interventionist inference
— P(Query|Observations, Interventions)

Counterfactual inference
— P(Query| Observations, Counterfactual conditionals)

Biomedical applications

— Prevention

— Screening

— Diagnosis

— Therapy selection

— Therapy modification

— Evaluation of therapic efficiancy



Probabilistic graphical models:
Bayesian Networks

A directed acyclic graph (DAG)
Nodes are random variables

Edges represent direct
dependence (causal
relationship)

Local models: P(X.| Pa(X))
Offers three interpretations

Thomas Bayes
(c. 1702 -1761)

P(Model | Data) « P(Data | Model)P(Model)

>

Quantitative Causal model
distribution

5

Graphical
independence
representation

31



Ovarian tumor diagnostics

International Ovarian Tumor Analysis (IOTA, Dirk Timmerman)

Antal, P., Fannes, G., Timmerman, D., Moreau, Y. and De Moor, B., 2004. Using
literature and data to learn Bayesian networks as clinical models of ovarian tumors.
Artificial Intelligence in medicine, 30(3), pp.257-281.



Interpretations of probability

e Sources of uncertainty
— inherent uncertainty in the physical process;
— inherent uncertainty at macroscopic level;
— ignhorance;
— practical omissions;
* Interpretations of probabilities:
— combinatoric;
— physical propensities;
— frequentist;
— personal/subjectivist;
— instrumentalist;

lim 2 = [im By (A) = p(A)? p(A| &)

N —o0 N N —o00



Uncertainty

A.Einstein: ,,God does not play dice..”

https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf

Einstein-Podolski-Rosen paradox / Bell Test

S. Hawking: ,Does god play dice?”

http://www.hawking.org.uk/does-god-play-dice.html

The BIG Bell Test (Nov30, 2016)

—  http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/

34


https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf
http://www.hawking.org.uk/does-god-play-dice.html
http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/

A chronology of uncertain inference

[1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli
— Subjectivist interpretation of probabilities

[1718] The Doctrine of Chances, Abraham de Moivre
— the first textbook on probability theory
— Forward predictions

»given a specified number of white and black balls in an urn, what is the probability of drawing a black
ball?”

* his own death
[1764, posthumous] Essay Towards Solving a Problem in the Doctrine of Chances, Thomas Bayes

— Backward questions: ,,given that one or more balls has been drawn, what can be said about the number of white

and black balls in the urn”
[1812], Théorie analytique des probabilités, Pierre-Simon Laplace

— General Bayes rule

[1921]: Correlation and causation, S. Wright’s diagrams

[1933]: A. Kolmogorov: Foundations of the Theory of Probability



Basic concepts of probability theory

— Joint distribution

— Conditional probability
— Bayes’ rule

— Chain rule

— Marginalization

— General inference

— Independence
* Conditional independence
* Contextual independence

November 16, 2018 Al 36



Syntax

* Atomic event: A complete specification of the state of the world
about which the agent is uncertain

E.g., if the world consists of only two Boolean variables Cavity and Toothache,
then there are 4 distinct atomic events:

Cavity = false AToothache = false
Cavity = false A Toothache = true
Cavity = true A Toothache = false
Cavity = true A Toothache = true

* Atomic events are mutually exclusive and exhaustive



Axioms of probability

* For any propositions A, B

—0<PA)<1
— P(true) =1 and P(false) =0
_ P(A v B)True

A A B B




Syntax

Basic element: random variable

Similar to propositional logic: possible worlds defined by assignment of values to random variables.

Boolean random variables

e.g., Cavity (do | have a cavity?)

Discrete random variables
e.g., Weather is one of <sunny,rainy,cloudy,snow>

Domain values must be exhaustive and mutually exclusive

Elementary proposition constructed by assignment of a value to a
random variable: e.g., Weather = sunny, Cavity = false

(abbreviated as —cavity)

Complex propositions formed from elementary propositions and standard logical connectives e.g.,
Weather = sunny v Cavity = false



Joint (probability) distribution

Prior or unconditional probabilities of propositions

e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any
(new) evidence

Probability distribution gives values for all possible assignments:
P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

Joint probability distribution for a set of random variables gives the probability of every
atomic event on those random variables

P(Weather,Cavity) = a 4 X 2 matrix of values:

Weather = sunny rainy cloudy snow
Cavity = true 0.144 0.02 0.016 0.02
Cavity = false 0.576 0.08 0.064 0.08



Conditional probability

Conditional or posterior probabilities

e.g., P(cavity | toothache) = 0.8

i.e., given that toothache is all | know

(Notation for conditional distributions:

P(Cavity | Toothache) = 2-element vector of 2-element vectors)

If we know more, e.g., cavity is also given, then we have

P(cavity | toothache,cavity) = 1

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity [ toothache, sunny) = P(cavity | toothache) = 0.8
This kind of inference, sanctioned by domain knowledge, is crucial



Conditional probability

Definition of conditional probability:
P(a | b) =P(a A b)/P(b)if P(b)>0

Product rule gives an alternative formulation:
P(aAab)=P(a| b)P(b)=P(b | a)P(a)

A general version holds for whole distributions, e.g.,

P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

(View as a set of 4 x 2 equations, not matrix mult.)



Bayes’ rule

An algebraic triviality

p(Y | X)p(X)  p(Y | X)p(X)

X1Y)= =
PRI =00 TS e X0p(x)

A scientific research paradigm

p(Model | Data) «c p(Data| Model) p(Model)

A practical method for inverting causal knowledge to diagnostic tool.

p(Cause| Effect) oc p(Effect| Cause) x p(Cause)



Chain rule

* Chain rule is derived by successive application of product rule:
*  P(Xy, ...X,) =P(Xy,.., X, 1) P(X,, | Xp,e0 X, 1)
= P(Xy,eo X ) POX 1 | Xppee X o) POX | Xgpee X )

=UP(X: | Xy, e Xiy)



Marginalization

~Summing out/averaging out

Start with the joint probability distribution:

toothache -1 toothache

catch | o catch) carch | — carch

cavire | 108 | .012 072 | .008
= caviry | 016 | .064 44 | 576

For any proposition ¢, sum the atomic events where it is true:
P(d)) = zw;w I:(I) P(w)



Inference by enumeration

Start with the joint probability distribution:

toothache

-1 toothache

cavity

ceatch

108

— catch | carch

012 072

— caich

008

- cavity

018

.064 144

576

Can also compute conditional probabilities:

P(—cavity | toothache)

= P(=cavity A toothache)

P(toothache)
0.016+0.064

0.108 + 0.012 + 0.016 + 0.064

=04




Normalization

toothache - toothache

cartch | - carch| carch | - carch
108 | .012 072 | .008
016 .064 44 | 576

cavin

- caviry

* Denominator can be viewed as a normalization constant a

P(Cavity | toothache) = a, P(Cavity,toothache)
= a, [P(Cavity,toothache,catch) + P(Cavity,toothache,— catch)]
= q, [<0.108,0.016> + <0.012,0.064>]
=, <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing evidence
variables and summing over hidden variables



Inference by enumeration, contd.

Any question about observable events in the domain can be answered by the joint
distribution.

Typically, we are interested in the posterior joint distribution of the query variables Y
given specific values e for the evidence variables E

Let the hidden variablesbeH=X-Y—-E

Then the required summation of joint entries is done by summing out the hidden variables:
P(Y| E=e)=aP(Y,E=e)=0aZ,P(Y,E=e,H=h)

 The terms in the summation are joint entries because Y, E and H together exhaust the
set of random variables
* Obvious problems:
1. Worst-case time complexity O(d") where d is the largest arity
2. Space complexity O(d") to store the joint distribution
3. How to find the numbers for O(d") entries?



Independence,
Conditional independence

1,(X;Y|Z) or (XLY|Z), denotes that X is independent of Y given Z
defined as follows

for all x,y and z with P(z)>0: P(x;y|z)=P(x|z) P(y|z)

(Almost) alternatively, 15(X;Y|2) iff
P(X|ZY)= P(X|Z) for all z,y with P(z,y)>0.
Other notations: D,(X;Y|Z) =def=41,(X;Y|Z)
Direct dependence: Dy(X;Y | V/{X,Y})



Context-specific independence

Contextual independence: I5(X;Y|Z=z) for not all z.

T"(D|Bleeding:strong)

irreqular

Onset=eatly Onse

P(D|B=a,0=e) P(D|B=w,R=r)
h.wild / h.wild / mutated
POlathw) | [PORIM | Fonihwy] [ POWim)

Decision tree: Each internal node represent a (univariate) test, the leafs contains
the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreq)



The independence model of a
distribution

The independence map (model) M of a distribution
P is the set of the valid independence triplets:

Mpz{lp’]_(xl;Y]_ | Zl)r"-; IP,K(XK;YK | ZK)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), 1(X;Z|Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)



The semi-graphoid axioms

1. Symmetry: The observational probabilistic conditional independence is symmetric.
IL(X;Y|Z)iff I,(Y; X|Z)
2. Decomposition: Any part of an irrelevant information is irrelevant.
IL(X;YUW|Z)= (XY |Z)and [,( X;W|Z)

3. Weak union: Irrelevant information remains irrelevant after learning (other) irrelevant
information.

I X; Y UW|2)= [L,(X;Y|ZUuW)
4. Contraction: Irrelevant information remains irrelevant after forgetting (other) irrelevant
information.
LX;Y|Z)and [,( X, W|ZLUY)= LL(X; Y UW|Z)

Semi-graphoids (SG): Symmetry, Decomposition, Weak Union, Contraction (holds
in all probability distribution). SG is sound, but incomplete inference.



Measures of dependence

* Information theoretic based dependence
— Entropy: H(X)
— Conditional entropy: H(X]Y)
— Kullback-Leibler divergence (KL(p| | q))
* Not distance (asymmetric, triangle inequality)
e Always positive
— Mutual information: MI(X;Y), MI(X;Y|Z)
o MI(X;Y)=H(X)-H(X|Y)
* MIOGY)=KL(p(X,Y) | [ p(X)p(Y))
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Naive Bayesian network

Assumptions:
/TN

1, Two types of nodes: a cause and effects. ° o @

2, Effects are conditionally independent of each other given their cause.

Variables (nodes)
Flu: present/absent
FeverAbove38C: present/absent

Coughing: present/absent P(Flu=present)=0.001

Model P(Flu=absent)=1-P(Flu=present)

P(Fever=present|Flu=present)=0.6
P(Fever=absent|Flu=present)=1-0,
P(Fever=present|Flu=absent)=0
P(Fever=absent|Flu=abse =absent|Flu=absent)=1-0.02

P(Coughing=present|Flu=present)=0.3
Coughing=absent|Flu=present)=1-0.7



Naive Bayesian network (NBN)

Decomposition of the joint:
P(Y,X(,...X,)  =PY)PCX,]Y, Xqi,... X 4) /by the chain rule
= P(Y)['iP(X,|Y) I/l by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

PCYXig5--Xik) = PP [Y) 1 P(X,-5Xik)

If Y is binary, then the odds

P(Y=1[Xig,..X3) / P(Y=0[Xig,...x3) = P(Y=1)/P(Y=0) [, P(x;|Y=1) / P(x;,| Y=0)

p(Flu = present | Fever=absent, Coughing = present)
o p(Flu = present) p(Fever=absent | Flu = present) p(Coughing = present| Flu = present)



Bayesian networks: three facets

3. Concise representation of joint

distributions
P(M,0,D,S,T) =

PIM)P(O|M)P(D|O,M)P(S|D)P(T|S,M)

\ J 1. Causal model

_{IP 1(X1’Y1|Zl)
2. Graph|cal representation of
(in)dependencies




Bayesian networks

A simple, graphical notation for conditional independence
assertions and hence for compact specification of full joint
distributions

Syntax:
— a set of nodes, one per variable
— adirected, acyclic graph (link = "directly influences")
— a conditional distribution for each node given its parents:
P (X, | Parents (X))

In the simplest case, conditional distribution represented as a
conditional probability table (CPT) giving the distribution over
X; for each combination of parent values



Example

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary
doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

Network topology reflects "causal" knowledge:
— A burglar can set the alarm off
— An earthquake can set the alarm off
— The alarm can cause Mary to call
— The alarm can cause John to call
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Compactness

A CPT for Boolean X; with k Boolean parents has 2% rows for the combinations of

parent values /@)

Each row requires one number p for X; = true ﬁ
(the number for X; = false is just 1-p) @ @

If each variable has no more than k parents, the complete network requires O(n -
2X) numbers

l.e., grows linearly with n, vs. O(2") for the full joint distribution

For burglary net, 1+ 1+ 4 + 2+ 2 =10 numbers (vs. 2°>-1 = 31)



Noisy-OR

Noisy-OR distributions model multiple noninteracting causes
1) Parents Uy ... U include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone

= P(X|\Uy...Uj;,~Ujsy...Up) =1— [T _,q
Clold Flu Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T (.98 0.02 =0.2 x0.1

T F F 0.4 0.6

T F T .94 0.06 = 0.6 x 0.1

T T F .88 0.12=0.6 x 0.2

T T T ().988 0.012 =0.6 x 0.2 x 0.1

Number of parameters linear in number of parents



Constructing Bayesian networks

* 1. Choose an ordering of variables X, ... ,X,

* 2.Fori=1ton
— add X; to the network

— select parents from X,, ... ,X.; such that
P (X. [ Parents(X)) =P (X. | X,, ... X ;)

This choice of parents guarantees:

P(Xx,..,X) =m,_, P | X,..,X;) //(chain rule)
=m,;_,P (X;| Parents(X;)) //(by construction)



Semantics

The full joint distribution is defined as the product of the local conditional

distributions:
n o

P(X, ..,X.)=1,_, P (X | Parents(X)) }E\L

g ®

e.g., Pjrm~nanan—bnsn—e)

=P(jla)P(m|a)P(a| —b, —e) P (—=b) P (—e)



Inferring independencies from
structure: d-separation

1c(X;Y|Z) denotes that X is d-separated (directed

separated) from Y by Z in directed graph G.
Z

(1)

(2)

3)

O

X

O

-

Z

O

—
\_/
()-
M)
N\

A

o=
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\_/
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e

O O

-0
O

O




Markov blanket (and boundary)

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents

X
/\
A
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The building block of causality:
v-structure (arrow of time)

P(X),p(Z]X),p(Y|2)

O-O-®
P(X),p(Z[X,Y),p(Y)
P(X|2).p(Z]Y).p(Y) “transitive” M # intransitive” M
® O o ®
P(X[2),p(2),p(Y|2)
m ,v-structure”
Mp={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|2)} Mp={D(X;Z), D(Y;2), I(X;Y), D(X;Y|Z) }

Often: present knowledge renders future states conditionally independent.
(confounding)

Ever(?): present knowledge renders past states conditionally independent.
(backward/atemporal confounding)



Observational equivalence of causal
models

Definition 11 Two DAGs G, G5 are observationally equivalent , if they imply the same set of
independence relations (i.e. (X 1L Y|Z),,) < (X 1L Y|Z),,)

The implied equivalence classes may contain n! humber of DAGs (e.g. all the full networks
representing no independencies) or just 1.

Theorem 2 Two DAGs 1, G2 are observationally equivalent , iff they have the same skeleton
(i.e. the same edges without directions) and the same set of v-structures (i.e. two converging
arrows without an arrow between their tails).

Definition 12 The essential graph representing observationally equivalent DAGs is a partially
oriented DAG (FPDAG), that represents the identically oriented edges called compelled edges
of the observationally equivalent DAGSs (i.e. in the equivalence class), such a way that in the
common skeleton only the compelled edges are directed (the others are undirected
representing inconclusiveness).



Compelled edges and PDAG

”=»compelled edges)

elations?

al

(“can we interpret edges as caus




The Causal Markov Condition

A DAG is called a causal structure over a set of variables, if each node
represents a variable and edges direct influences. A causal model is a
causal structure extended with local probabilistic models.

A causal structure G and distribution P satisfies the Causal Markov
Condition, if P obeys the local Markov condition w.r.t. G.

The distribution P is said to stable (or faithful), if there exists a DAG
called perfect map exactly representing its (in)dependencies (i.e.
(XY |Z) © LIXY|Z)VXY,ZE V).

CMC: sufficiency of G (there is no extra, acausal edge)

Faithfulness/stability: necessity of G (there are no extra, parametric
independency)



Interventional inference in causal
Bayesian networks

* (Passive, observational) inference
— P(Query|Observations)

* [Interventionist inference
— P(Query|Observations, Interventions)

* Counterfactual inference
— P(Query| Observations, Counterfactual conditionals)



Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X
2. setting X=x
3. performing standard Bayesian network inference.

@ -

-




A deterministic concept of causation

* H.Simon
— X=fi(Xq,..,X;;) fori=1..n

— In the linear case the sytem of equations indicates a natural
causal ordering (flow of time?)

X | X | X | X

The probabilistic conceptualization is its generalization:
P(Xi1|X11"1Xi—1) - Xi:fi(xli"’xi-l)



Ovarian tumor diagnostics

International Ovarian Tumor Analysis (IOTA, Dirk Timmerman)

Antal, P., Fannes, G., Timmerman, D., Moreau, Y. and De Moor, B., 2004. Using
literature and data to learn Bayesian networks as clinical models of ovarian tumors.
Artificial Intelligence in medicine, 30(3), pp.257-281.



Decision networks
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Inference tasks

Simple queries: compute posterior marginal P(.X;|E =e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P (X, \;|E =e) = P(Y]

E=e)P(X;|X;. E=e)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcome|action, evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?
Explanation: why do | need a new starter motor?

Causal inference: what is the effect of an intervention?

Counterfactual inference: what would have been the effect of a hy-
pothetical /imagery past intervention&observation?

AIMA



Inference by enumeration

Let X be all the variables. Typically, we want the posterior joint
distribution of the query variables Y given specific values e for the
evidence variables E.

Let the hidden variables be H = X — Y — E.

Then the required summation of joint entries is done by summing out
the hidden variables:

P(Y|[E=e)=aP(Y,E=e)=a2,P(Y.E=e,H=h)
The terms in the summation are joint entries!

Obvious problems:
1) Worst-case time complexity O(d") where d is the largest arity
2) Space complexity O(d") to store the joint distribution
3) How to find the numbers for O(d") entries???



Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of exact inference O(d"n)

Multiply connected networks:
— can reduce 3SAT to exact inference: 0<<p(AND)? = NP-hard
— equivalent to counting 3SAT models = #P-complete

1. AvBv~C
2. CvDv A
3.3 BvCv ™D




Kovetkeztetés tobbszorosen 6sszekotott haldkban

Osszevonos eljarasok:
atalakitjak a halot egy valoszinliségek szempontjabdl

= s/

megfeleld csomopontokat 6sszevonva.

Sztochasztikus szimulacios eljarasok:
a targytartomany nagyon nagy szamu konkrét modelljét
generaljak le, ami konzisztens a valdszinliseégi halo altal
definialt eloszlassal. Ez alapjan az egzakt eredmények
kozelitését adjak.



Sensitivity of the inference
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Decision theory=
probability theory+utility theory

Decision situation:

— Actions d,
— QOutcomes O;
— Probabilities of outcomes p(oj |ai)

— Utilities/l f out
i IQIZ;{ os‘ses of outcomes U (Oj | ai)
* , micromort
— Maximum Expected Utility EU(ai) — ZJ_U (Oj | ai) p(oj | ai)
Principle (MEU)

* Best action is the one with a* — arg MaX i EU (al )

maximum expected utility

Actions g Outcomes Probabilities  Utilities, costs Expected utilities
(which experiment) (e.g. dataset)

- a ©<
0.

J

P(ojla) U(0), C(a) } EU(a) = ¥ P(oJa)U(o|a)



Preferences

An agent chooses among prizes (A, B, etc.) and lotteries, i.e., situ-
ations with uncertain prizes

Lottery L = [p. A; (1 —p), B I—p

Notation:

A>B A preferred to B
A~ B indifference between A and B
AZ B B not preferred to A
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Rational preferences

|dea: preferences of a rational agent must obey constraints.
Rational preferences =

behavior describable as maximization of expected utility

Constraints:

Orderability
(A-B)V(B>=A)V (A~ B)
Transitivity
(A>=B)AN(B>C) = (A>C)
Continuity
A-B>~C = dp [pA; 1 —p,C|~B
Substitutability
A~B = [pA; 1—p,C|~|p,B;1—p,C]|
Monotonicity
A-B = (p>q & |p.A; 1 —p, B Z g, A; 1 —q, B])
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An irrational preference

Violating the constraints leads to self-evident irrationality

For example: an agent with intransitive preferences can be induced
to give away all its money

If B = (', then an agent who has

> A
(" would pay (say) 1 cent to get BB ) .
If A > B, then an agent who has
B would pay (say) 1 cent to get A f (f
§ |

If " > A, then an agent who has N——
A would pay (say) 1 cent to get C e
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Maximizing expected utility
Theorem (Ramsey, 1931; von Neumann and Morgenstern, 1944).

Given preferences satisfying the constraints
there exists a real-valued function U such that

UA)>UB) & AXB
U(lp1, 51 - Py Sn]) = 22 p;U(S;)

MEU principle:

Choose the action that maximizes expected utility

Note: an agent can be entirely rational (consistent with MEU)
without ever representing or manipulating utilities and probabilities

E.g., a lookup table for perfect tictactoe
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Utilities
Utilities map states to real numbers. Which numbers?
Standard approach to assessment of human utilities:
compare a given state A to a standard lottery L, that has
“best possible prize” u+ with probability p

‘worst possible catastrophe” ., with probability (1 — p)
adjust lottery probability p until A ~ L,

continue as before

pay $30 ~ L

0.000001 instant death
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Value of information

Current evidence £, current best action o
Possible action outcomes .5;, potential new evidence £,

L‘.{_‘.(i(\ll;“) = max :, U(S;) P(S;|E,a)

Suppose we knew £; = ¢y, then we would choose o, s.t.

3 v Y‘ —~ / v 5 ~ \
(l’_,;\.ll',.. Ei=ej) = - Inax 2 U(S;) P(Si|\E e, BE;=ex)

£ is a random variable whose value is currently unknown
=> must compute expected gain over all possible values:

VPIg(E;) = (Zx P(Ej=ej|E)EU(ac,|E, E;=e;t)) — EU(a|E)

(VPI = value of perfect information)



Properties of VPI

Nonnegative—in expectation, not post hoc
Vi B VPIg(E;) >0
Nonadditive—consider, e.g., obtaining £; twice
VPIg(E;, Ey) # VPIg(E;) +V PIg(Ey)
Order-independent
VPIg(Ej, Ey) = VPIg(Ej) +V Plg g (k) =V PIg(Ey) + V Plg g (E))

Note: when more than one piece of evidence can be gathered,
maximizing VPI for each to select one is not always optimal
— evidence-gathering becomes a sequential decision problem



Optimal binary decision

reported | Ref.:0 Ref.1
0 Calo Cant
1 Cijo Cinn

If the outcome y and the prediction g are binary, the loss is defined by a binary cost matrix

Cj|y- The minimal loss decision is defined by

arg min Cy o P (Y = 0|z) + Cy1 P(Y = 1]=),
g |

In case of Cyjp = C1}1 = 0, the prediction 7 = 1 is optimal if

Cilo
T:
Cijo + Copn

< P(Y = 1|z)

where 7 € [0, 1] is the optimal decision threshold.




Exercise

Select a domain, select candidate variables (5-10), and sketch the structure of the
Bayesian network model.

Consult it.

Quantify the Bayesian networks.

Evaluate it with global inference and , information sensitivity of inference” analysis.
Generate a data set from your model.

Learn a model from your data.

Compare the structural and parametric differences between the two models.
Extend your Bayesian network into a decision network.

Investigate the value of further information.



Subtask: test a decision network

* Investigate the value of further information as follows:

select values for some “evidence” variables (E=e),
using BayesCube calculate the current expected loss/utility EU(D|e),

IIIH

select a variable “I” as potential “further” information,

using BayesCube calculate the conditional probabilities of potential
further observations (i.e. the conditional probabilities of potential values
of this “further information” variable, p(l=i|E=e)),

using BayesCube calculate the expected losses/utilities corresponding to
these potential further observations EU(D|e,i),

calculate the (expected) value of (perfect) information corresponding to
this variable “1”, Zi p(i|e)*EU(D| e,i)- EU(D|e).



