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Outline

• Factors behind the A.I./machine learning „hype”

• Probability theory

• Bayesian networks, decision networks

• Value of information, optimal decisions

• Exercise: construction of a decision support system

• next lecture: learning
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ComBineLab.hu: Themes

• Knowledge engineering

• Study design

• Genetic measurements

• Data engineering

• Data analysis

• Interpretation

• Decision support



ComBineLab.hu: tools

• BayesEye: Bayesian, systems-based data analysis
– Bayesian model averaging over Bayesian network structures.

• BayesCube: Probabilistic decision support
– Semantically enriched Bayesian and decision network models.

• BysCyc/QSF (Bayesian Encyclopedia): 
– Large-scale probabilistic inference

• QDF: Kernel-based fusion methods for repositioning
– Multi-aspect rankings and multi-aspect metrics in drug discovery

• Variant Meta Caller: precision NGS
– Next-generation sequencing pipelines

• VB-MK-LMF: drug-target interaction prediction
– Variational Bayesian Multiple Kernel Logistic Matrix Factorization

• ... see Tools @ http://bioinfo.mit.bme.hu/

http://bioinformatics.mit.bme.hu/


Hallmarks of a new AI era?
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Medical decision support 
systems

Watson for Oncology – assessment and advice cycle

www.avanteoconsulting.com/machine-learning-accelerates-cancer-research-discovery-innovation/



Automated discovery systems
 Langley, P. (1978). Bacon: A general discovery system. Proceedings of the 
Second Biennial Conference of the Canadian Society for Computational 
Studies of Intelligence (pp. 173-180). Toronto, Ontario.

…

 Chrisman, L., Langley, P., & Bay, S. (2003). Incorporating biological 
knowledge into evaluation of causal regulatory hypotheses. Proceedings of 
the Pacific Symposium on Biocomputing (pp. 128-139). Lihue, Hawaii. 

 (Gene prioritization…)

 R.D.King et al.: The Automation of Science, Science, 2009



„Machine science”
Swanson, Don R. "Fish oil, Raynaud's syndrome, and undiscovered public 
knowledge." Perspectives in biology and medicine 30.1 (1986): 7-18.

Smalheiser, Neil R., and Don R. Swanson. "Using ARROWSMITH: a computer-
assisted approach to formulating and assessing scientific hypotheses." Computer 
methods and programs in biomedicine 57.3 (1998): 149-153.

D. R. Swanson et al.: An interactive system for finding complementary 
literatures: a stimulus to scientific discovery, Artificial Intelligence, 1997

James Evans and Andrey Rzhetsky: Machine science, Science, 2013

„Soon, computers could generate many useful hypotheses with little help from 

humans.”



Factors behind the „A.I./learning hype”
• New theory? 

– Unified theory of AI?

– A new machine learning approach?

• New hardware? (computing power..)

– GPUs?

– Quantum computers?

• New resources?

– Data?

– Knowledge?

– Money?

– Brains/Minds?



1965, Gordon Moore, founder of Intel:

„The number of transistors that can be

placed inexpensively on an integrated

circuit doubles approximately every two

years ”... "for at least ten years" 
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Computing power: Moore’s Law

Integration and 

parallelization wont 

bring us further. End 

of Moore’s law?
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Definitions of „big data”

M. Cox and D. Ellsworth, “Managing Big Data for Scientific 

Visualization,” Proc. ACM Siggraph, ACM, 1997

The 3xV: volume, variety, and velocity (2001).

The 8xV: Vast, Volumes of Vigorously, Verified, Vexingly 

Variable Verbose yet Valuable Visualized high Velocity Data

(2013)

Not „conventional” data: „Big data is data that exceeds the

processing capacity of conventional database systems. The

data is too big, moves too fast, or doesn’t fit the strictures of

your database architectures. To gain value from this data,

you must choose an alternative way to process it (E.Dumbill:

Making sense of big data, Big Data, vol.1, no.1, 2013)
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Carlson’s Law for Biological Data

Sequencing 

costs per mill. 

base

Publicly 

available 

genetic data

NATURE, Vol 464, April 2010

• x10 every 2-3 years

• Data volumes and 

complexity that IT has 

never faced before…



Data: „Big” data in life sciences



Biomedical omic data/big data

Genome(s), epigenome, microbiome

Phenome (disease, side effect)

Transcriptome

Proteome

Metabolome

Environment&life style

Drugs

2010<: “Clinical phenotypic assay”/drugome: open clinical trials, adverse drug 

reaction DBs, adaptive licensing, Large/scale cohort studies (~100,000 samples)

Moore’s law Carlson’s law



UK Biobank
2006-2010

16

UK Biobank is a national and international health resource with unparalleled 

research opportunities, open to all bona fide health researchers. UK Biobank 

aims to improve the prevention, diagnosis and treatment of a wide range of 

serious and life-threatening illnesses – including cancer, heart diseases, 

stroke, diabetes, arthritis, osteoporosis, eye disorders, depression and forms 

of dementia. It is following the health and well-being of 500,000 volunteer 

participants and provides health information, which does not identify 

them, to approved researchers in the UK and overseas, from academia and 

industry. Scientists, please ensure you read the background materials before 

registering. To our participants, we say thank you for supporting this 

important resource to improve health. Without you, none of the research 

featured on this website would be possible.

Collins, R. (2012). What makes UK Biobank special?. The Lancet, 

379(9822)

Elliott, P., & Peakman, T. C. (2008). The UK Biobank sample handling and 

storage protocol for the collection, processing and archiving of human blood and 

urine. International Journal of Epidemiology, 37(2), 234-244.

http://www.ukbiobank.co.uk/scientists-3/


Large-scale cohorts in UK
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UK Biobank:

• 1million< adults

• aged 40-69,

• 2006-2036<

• genes x lifestyle x environment 

diseases

• open 2012-



Further national biobanks: FinnGen

• https://www.finngen.fi/en

• 500k participants

• 2017-

• Personalized medicine project

• genome information (WGS) + digital health care data

• The study is funded[!!!] by Business Finland and seven 
international pharmaceutical companies: Abbvie, 
AstraZeneca, Biogen, Celgene, Genentech (a member of the 
Roche Group), Merck & Co., Inc., Kenilworth, NJ, USA and 
Pfizer.
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https://www.finngen.fi/en
https://www.businessfinland.fi/en/do-business-with-finland/home/


Further health data

• FlatIron Health (acquired by Roche):

– 7 major academic research centers

– 280+ community oncology practices

– top 15 therapeutic oncology companies

– 2500 clinicians

– 2.1 million active patient records

• complete, electronic health records

• +patient-reported data

19



M.Swan: THE QUANTIFIED SELF: Fundamental Disruption in Big Data 
Science and Biological Discovery, Big data, Vol 1., No. 2., 2013

20

Big health data streams



On the thresholds of data: health

• Local datasets: 1k10k participiants 

• International datasets: 10k100k

• National biobanks: <1million

• International biobanks: x1million

• Regular health records: 100 million
(Meta-analysis using summary statistics)

Federated learning: separation of data and model
1. Data is standardized (using ontologies)

2. Stays at the institutes/individuals

3. Model updates are communicated

4. Using privacy-preserving techniques
21

Disease 

specific

Cross-sectional

Longitudinal

Patient-reported

Self-quantified

2010<

2010<



Number of biomedical publications

22

Little Science, Big Science, by 

Derek J. de Solla Price, 1963
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Semantic publishing:
papers vs DBs/KBs

M. Gerstein, "E-publishing on the Web: Promises, pitfalls, and payoffs for bioinformatics," Bioinformatics, 1999

M. Gerstein: Blurring the boundaries between scientific 'papers' and biological databases, Nature, 2001

P. Bourne, "Will a biological database be different from a biological journal?," Plos Computational Biology, 2005

M. Gerstein et al: "Structured digital abstract makes text mining easy," Nature, 2007.

M. Seringhaus et al: "Publishing perishing? Towards tomorrow's information architecture," Bmc Bioinformatics, 2007.

M. Seringhaus: "Manually structured digital abstracts: A scaffold for automatic text mining," Febs Letters, 2008.

D. Shotton: "Semantic publishing: the coming revolution in scientific journal publishing," Learned Publishing, 2009
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Biomedical databases by 2000
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Knowledge: Linked open data

25
Linking Open Data cloud diagram 2017, by Andrejs Abele, John P. McCrae, Paul 

Buitelaar, Anja Jentzsch and Richard Cyganiak. http://lod-cloud.net/
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E-science, data-intensive science, the 
fourth paradigm



Factors behind the „hype” II.

• New theory: 

– Unified theory of AI: Probabilistic models

– RE-new-ed machine learning approaches:
• „Sequential” learning, „Deep” learning

• New hardware

– GPUs: yes

– Quantum computers: no

• New resources

– Data & Knowledge: Linked Open Data

– Society: open for „smart” solutions



Milestones and phases in AI
• ~1930: Zuse, Neumann, Turing..: „instruction is data”: 

– Laws of nature can be represented, „executed”/simulated with modifications, learnt
– Knowledge analogously: representation, execution, adaptation and learning

• 1943     McCulloch & Pitts: Boolean circuit model of brain
• 1950     Turing's "Computing Machinery and Intelligence"
• 1956     Dartmouth meeting: the term "Artificial Intelligence”
• 1950s    Early AI programs (e.g. Newell & Simon's Logic Theorist) 
• The psysical symbol system hypothesis: search
• 1965      Robinson's complete algorithm for logical reasoning
• 1966—73 AI discovers computational complexity

Neural network research almost disappears
• 1969—79 Early development of knowledge-based systems
• The knowledge system hypothesis: knowledge is power
• 1986-- Neural networks return to popularity
• 1988-- Probabilistic expert systems
• 1995-- Emergence of machine learning
• The „big data” hypothesis: let data speak

• 2005/2015-- Emergence of autonomous adaptive decision systems 
(„robots”, agents)

• The autonomy hypothesis??
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Optimal decision: decision theory
probability theory+utility theory

• Decision situation:
– Actions

– Outcomes

– Probabilities of outcomes

– Utilities/losses of outcomes

– Maximum Expected Utility 
Principle (MEU)

– Best action is the one with 
maximum expected utility

 j ijiji aopaoUaEU )|()|()(

)(maxarg* ii aEUa 
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Types of inference

• (Passive, observational) inference
– P(Query|Observations, Observational data) 

• Interventionist inference
– P(Query|Observations, Interventions)

• Counterfactual inference
– P(Query| Observations, Counterfactual conditionals) 

• Biomedical applications
– Prevention

– Screening

– Diagnosis

– Therapy selection

– Therapy modification

– Evaluation of therapic efficiancy



Probabilistic graphical models: 
Bayesian Networks

• A directed acyclic graph (DAG)

• Nodes are random variables

• Edges represent direct 
dependence (causal 
relationship)

• Local models: P(Xi|Pa(Xi))

• Offers three interpretations

)()|()|( ModelPModelDataPDataModelP 

31

Thomas Bayes 
(c. 1702 – 1761)



International Ovarian Tumor Analysis (IOTA, Dirk Timmerman)

Ovarian tumor diagnostics

Antal, P., Fannes, G., Timmerman, D., Moreau, Y. and De Moor, B., 2004. Using 

literature and data to learn Bayesian networks as clinical models of ovarian tumors. 

Artificial Intelligence in medicine, 30(3), pp.257-281.



Interpretations of probability

• Sources of uncertainty
– inherent uncertainty in the physical process;
– inherent uncertainty at macroscopic level;
– ignorance;
– practical omissions;

• Interpretations of probabilities:
– combinatoric;
– physical propensities;
– frequentist;
– personal/subjectivist;
– instrumentalist;
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Uncertainty

• .A.Einstein: „God does not play dice..”
https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf

• Einstein-Podolski-Rosen paradox / Bell Test

• S. Hawking: „Does god play dice?”
http://www.hawking.org.uk/does-god-play-dice.html

• The BIG Bell Test (Nov30, 2016)
– http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/

34

https://arxiv.org/ftp/arxiv/papers/1301/1301.1656.pdf
http://www.hawking.org.uk/does-god-play-dice.html
http://bist.eu/100000-people-participated-big-bell-test-unique-worldwide-quantum-physics-experiment/


A chronology of uncertain inference

• [1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli

– Subjectivist interpretation of probabilities

• [1718] The Doctrine of Chances, Abraham de Moivre

– the first textbook on probability theory

– Forward predictions

• „given a specified number of white and black balls in an urn, what is the probability of drawing a black 

ball?”

• his own death

• [1764, posthumous] Essay Towards Solving a Problem in the Doctrine of Chances, Thomas Bayes

– Backward questions: „given that one or more balls has been drawn, what can be said about the number of white 

and black balls in the urn”

• [1812], Théorie analytique des probabilités, Pierre-Simon Laplace

– General Bayes rule

• ...

• [1921]: Correlation and causation, S. Wright’s diagrams

• [1933]: A. Kolmogorov: Foundations of the Theory of Probability



– Joint distribution

– Conditional probability

– Bayes’ rule

– Chain rule

– Marginalization

– General inference

– Independence

• Conditional independence

• Contextual independence

November 16, 2018 A.I. 36

Basic concepts of probability theory



Syntax

• Atomic event: A complete specification of the state of the world 
about which the agent is uncertain

•

E.g., if the world consists of only two Boolean variables Cavity and Toothache, 
then there are 4 distinct atomic events:

Cavity = false Toothache = false

Cavity = false  Toothache = true

Cavity = true  Toothache = false

Cavity = true  Toothache = true

• Atomic events are mutually exclusive and exhaustive



Axioms of probability

• For any propositions A, B

•

– 0 ≤ P(A) ≤ 1

– P(true) = 1 and P(false) = 0

– P(A  B) = P(A) + P(B) - P(A  B)

–



Syntax

• Basic element: random variable

• Similar to propositional logic: possible worlds defined by assignment of values to random variables.

• Boolean random variables

• e.g., Cavity (do I have a cavity?)

•

• Discrete random variables

• e.g., Weather is one of <sunny,rainy,cloudy,snow>

• Domain values must be exhaustive and mutually exclusive

• Elementary proposition constructed by assignment of a value to a

• random variable: e.g., Weather = sunny, Cavity = false

• (abbreviated as cavity)

• Complex propositions formed from elementary propositions and standard logical connectives e.g., 

Weather = sunny  Cavity = false



Joint (probability) distribution

• Prior or unconditional probabilities of propositions

• e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief prior to arrival of any 
(new) evidence

•

• Probability distribution gives values for all possible assignments:

• P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

• Joint probability distribution for a set of random variables gives the probability of every 
atomic event on those random variables

• P(Weather,Cavity) = a 4 × 2 matrix of values:

•

Weather = sunny rainy cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08



Conditional probability

• Conditional or posterior probabilities
•

e.g., P(cavity | toothache) = 0.8

i.e., given that toothache is all I know

• (Notation for conditional distributions:
•

P(Cavity | Toothache) = 2-element vector of 2-element vectors)

• If we know more, e.g., cavity is also given, then we have
•

P(cavity | toothache,cavity) = 1

• New evidence may be irrelevant, allowing simplification, e.g.,
•

P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
• This kind of inference, sanctioned by domain knowledge, is crucial
•



Conditional probability

• Definition of conditional probability:

• P(a | b) = P(a  b) / P(b) if  P(b) > 0

•

• Product rule gives an alternative formulation:

• P(a  b) = P(a | b) P(b) = P(b | a) P(a)

•

• A general version holds for whole distributions, e.g.,

• P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

• (View as a set of 4 × 2 equations, not matrix mult.)

•



Bayes’ rule

)()|()|( ModelpModelDatapDataModelp 
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An algebraic triviality

A scientific research paradigm

A practical method for inverting causal knowledge to diagnostic tool.

)()|()|( CausepCauseEffectpEffectCausep 



Chain rule

• Chain rule is derived by successive application of product rule:

• P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)

= …

= π P(Xi | X1, … ,Xi-1)



Marginalization

• ~Summing out/averaging out

• Start with the joint probability distribution:
•

• For any proposition φ, sum the atomic events where it is true: 
P(φ) = Σω:ω╞φ P(ω)

•



Inference by enumeration
• Start with the joint probability distribution:
•

• Can also compute conditional probabilities:
•

P(cavity | toothache) = P(cavity  toothache)
P(toothache)

= 0.016+0.064
0.108 + 0.012 + 0.016 + 0.064

= 0.4



Normalization

• Denominator can be viewed as a normalization constant α
•

P(Cavity | toothache) = α, P(Cavity,toothache) 
= α, [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)]
= α, [<0.108,0.016> + <0.012,0.064>] 
= α, <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing evidence 
variables and summing over hidden variables



Inference by enumeration, contd.

Any question about observable events in the domain can be answered by the joint 
distribution.

Typically, we are interested in the posterior joint distribution of the query variables Y 
given specific values e for the evidence variables E

Let the hidden variables be H = X - Y – E

Then the required summation of joint entries is done by summing out the hidden variables:
P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

• The terms in the summation are joint entries because Y, E and H together exhaust the 
set of random variables

• Obvious problems:
1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?



Independence,
Conditional independence

IP(X;Y|Z) or (X⫫Y|Z)P denotes that X is independent of Y given Z 
defined as follows

for all x,y and z with P(z)>0:  P(x;y|z)=P(x|z) P(y|z) 

(Almost) alternatively, IP(X;Y|Z) iff

P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: DP(X;Y|Z) =def= ┐IP(X;Y|Z)

Direct dependence: DP(X;Y|V/{X,Y})



Context-specific independence

Mutation

Onset

Bleeding

absent

P(D|a,l,m)

Regularity

weak

Onset=early Onset=late

h.wild

regular irregular

mutated

P(D|a,l,h.w.)

P(D|B=a,O=e)

strong

P(D|Bleeding=strong)

Mutation

P(D|w,i,m)

h.wild mutated

P(D|w,i,h.w.)

P(D|B=w,R=r)

Decision tree: Each internal node represent a (univariate) test, the leafs contains 

the conditional probabilities given the values along the path.

Decision graph: If conditions are equivalent, then subtrees can be merged.

E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

Contextual independence: IP(X;Y|Z=z) for not all z.



The independence model of a 
distribution

The independence map (model) M of a distribution 
P is the set of the valid independence triplets:

MP={IP,1(X1;Y1|Z1),..., IP,K(XK;YK|ZK)}

X Y ZIf P(X,Y,Z) is a Markov chain, then 

MP={D(X;Y), D(Y;Z), I(X;Z|Y)}

Normally/almost always: D(X;Z)

Exceptionally: I(X;Z)



The semi-graphoid axioms

Semi-graphoids (SG): Symmetry, Decomposition, Weak Union, Contraction (holds 

in all probability distribution). SG is sound, but incomplete inference.



• Information theoretic based dependence

– Entropy: H(X)

– Conditional entropy: H(X|Y)

– Kullback-Leibler divergence (KL(p||q))

• Not distance (asymmetric, triangle inequality)

• Always positive

– Mutual information: MI(X;Y), MI(X;Y|Z)

• MI(X;Y)=H(X)-H(X|Y)

• MI(X;Y)=KL(p(X,Y)||p(X)p(Y))

November 16, 2018 A.I. 53

Measures of dependence



Naive Bayesian network

Variables (nodes) 
Flu: present/absent

FeverAbove38C: present/absent

Coughing: present/absent

Flu

Fever Coughing

P(Fever=present|Flu=present)=0.6

P(Fever=absent|Flu=present)=1-0.6

P(Fever=present|Flu=absent)=0.01

P(Fever=absent|Flu=absent)=1-0.01

P(Flu=present)=0.001

P(Flu=absent)=1-P(Flu=present)Model

P(Coughing=present|Flu=present)=0.3

P(Coughing=absent|Flu=present)=1-0.7

P(Coughing=present|Flu=absent)=0.02

P(Coughing=absent|Flu=absent)=1-0.02

Assumptions: 

1, Two types of nodes: a cause and effects.

2, Effects are conditionally independent of each other given their cause.



Naive Bayesian network (NBN)
Decomposition of the joint:

P(Y,X1,..,Xn) = P(Y)∏iP(Xi,|Y, X1,..,Xi-1) //by the chain rule

= P(Y)∏iP(Xi,|Y) // by the N-BN assumption

2n+1 parameteres!

Diagnostic inference:

P(Y|xi1,..,xik) = P(Y)∏jP(xij,|Y) / P(xi1,..,xik)

If Y is binary, then the odds
P(Y=1|xi1,..,xik) / P(Y=0|xi1,..,xik)  = P(Y=1)/P(Y=0) ∏j P(xij,|Y=1) / P(xij,|Y=0)

Flu

Fever Coughing

)|()|()(

),|(

presentFlupresentCoughingppresentFluabsentFeverppresentFlup

presentCoughingabsentFeverpresentFlup


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Bayesian networks: three facets

MP={IP,1(X1;Y1|Z1),...}

),|()|(),|()|()(

),,,,(

MSTPDSPMODPMOPMP

TSDOMP 

3. Concise representation of joint 
distributions

2. Graphical representation of 

(in)dependencies

1. Causal model



Bayesian networks

• A simple, graphical notation for conditional independence 
assertions and hence for compact specification of full joint 
distributions

• Syntax:
– a set of nodes, one per variable
–

– a directed, acyclic graph (link ≈ "directly influences")
– a conditional distribution for each node given its parents:

P (Xi | Parents (Xi))

• In the simplest case, conditional distribution represented as a 
conditional probability table (CPT) giving the distribution over 
Xi for each combination of parent values



Example

• I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary 
doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?

• Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls

• Network topology reflects "causal" knowledge:
– A burglar can set the alarm off

– An earthquake can set the alarm off

– The alarm can cause Mary to call

– The alarm can cause John to call



Example contd.



Compactness

• A CPT for Boolean Xi with k Boolean parents has 2k rows for the combinations of 
parent values

• Each row requires one number p for Xi = true
(the number for  Xi = false is just 1-p)

• If each variable has no more than k parents, the complete network requires O(n ·
2k) numbers

• I.e., grows linearly with n, vs. O(2n) for the full joint distribution

• For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. 25-1 = 31)



Noisy-OR



Constructing Bayesian networks

• 1. Choose an ordering of variables X1, … ,Xn

• 2. For i = 1 to n
– add Xi to the network

– select parents from X1, … ,Xi-1 such that

P (Xi | Parents(Xi)) = P (Xi | X1, ... Xi-1)

This choice of parents guarantees:

P (X1, … ,Xn) = πi =1 P (Xi | X1, … , Xi-1) //(chain rule)

= πi =1P (Xi | Parents(Xi)) //(by construction)

n

n



Semantics

The full joint distribution is defined as the product of the local conditional 
distributions:

P (X1, … ,Xn) = πi = 1 P (Xi | Parents(Xi))

e.g., P(j  m  a  b  e)

= P (j | a) P (m | a) P (a | b, e) P (b) P (e)

n



Inferring independencies from 
structure: d-separation

IG(X;Y|Z) denotes that X is d-separated (directed 
separated) from Y by Z in directed graph G.
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Markov blanket (and boundary)



The building block of causality: 
v-structure (arrow of time)

X Z Y

p(X),p(Z|X),p(Y|Z)

X Z Y

p(X|Z),p(Z|Y),p(Y)

X Z Y

p(X|Z),p(Z),p(Y|Z)

“transitive” M ≠ „intransitive” M
X

Z
Y

p(X),p(Z|X,Y),p(Y)

„v-structure”

MP={D(X;Z), D(Y;Z), I(X;Y), D(X;Y|Z) }MP={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|Z)}

Often: present knowledge renders future states conditionally independent.

(confounding)

Ever(?): present knowledge renders past states conditionally independent.

(backward/atemporal confounding)



Observational equivalence of causal 
models



Compelled edges and PDAG
(“can we interpret edges as causal relations?”compelled edges)



The Causal Markov Condition

• A DAG is called a causal structure over a set of variables, if each node 
represents a variable and edges direct influences. A causal model is a 
causal structure extended with local probabilistic models.

• A causal structure G and distribution P satisfies the Causal Markov 
Condition, if P obeys the local Markov condition w.r.t. G.

• The distribution P is said to stable (or faithful), if there exists a DAG 
called perfect map exactly representing its (in)dependencies (i.e. 
IG(X;Y|Z)⇔ IP(X;Y|Z) ∀ X,Y,Z ⊆ V ).

• CMC: sufficiency of G (there is no extra, acausal edge)

• Faithfulness/stability: necessity of G (there are no extra, parametric 
independency)



Interventional inference in causal 
Bayesian networks

• (Passive, observational) inference
– P(Query|Observations) 

• Interventionist inference
– P(Query|Observations, Interventions)

• Counterfactual inference
– P(Query| Observations, Counterfactual conditionals) 



Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by

1. deleting the incoming edges to X

2. setting X=x

3. performing standard Bayesian network inference.

Mutation

Disease

Subpopulation

Location

?

E

X

Y

*

?



A deterministic concept of causation
• H.Simon

– Xi=fi(X1,..,Xi-1) for i=1..n

– In the linear case the sytem of equations indicates a natural 

causal ordering (flow of time?)

X

X X

X X X

X X X X

....

The probabilistic conceptualization is its generalization: 

P(Xi,|X1,..,Xi-1) ~ Xi=fi(X1,..,Xi-1) 



International Ovarian Tumor Analysis (IOTA, Dirk Timmerman)

Ovarian tumor diagnostics

Antal, P., Fannes, G., Timmerman, D., Moreau, Y. and De Moor, B., 2004. Using 

literature and data to learn Bayesian networks as clinical models of ovarian tumors. 

Artificial Intelligence in medicine, 30(3), pp.257-281.



Decision networks



Inference tasks

AIMA



Inference by enumeration



Complexity of exact inference



Következtetés többszörösen összekötött hálókban

Összevonós eljárások: 

átalakítják a hálót egy valószínűségek szempontjából   

ekvivalens (de más topológiájú) fa gráffá, a nem  

megfelelő csomópontokat összevonva.

Sztochasztikus szimulációs eljárások:

a tárgytartomány nagyon nagy számú konkrét modelljét 

generálják le, ami konzisztens a valószínűségi háló által

definiált eloszlással. Ez alapján az egzakt eredmények 

közelítését adják.



Sensitivity of the inference

1

P(Pathology=malignant|E=e)

Evidence e



Decision theory=
probability theory+utility theory

• Decision situation:
– Actions

– Outcomes

– Probabilities of outcomes

– Utilities/losses of outcomes

• QALY, micromort

– Maximum Expected Utility 
Principle (MEU)

• Best action is the one with 
maximum expected utility

 j ijiji aopaoUaEU )|()|()(

)(maxarg* ii aEUa 

)|( ij aop

)|( ij aoU

jo
ia

oj

Actions ai

(which experiment)

Outcomes

(e.g. dataset)

ai

…
Probabilities

P(oj|ai)

Utilities, costs

U(oj), C(ai)

… …

Expected utilities

EU(ai) = ∑ P(oj|ai)U(oj|ai)
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Preferences
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Rational preferences
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An irrational preference
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Maximizing expected utility
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Utilities



Value of information





Optimal binary decision

a1

a0

o0

o1

o0

o1

reported Ref.:0 Ref.1

0 C0|0 C0|1

1 C1|0 C1|1



Exercise

– Select a domain, select candidate variables (5-10), and sketch the structure of the 
Bayesian network model.

– Consult it.

– Quantify the Bayesian networks.

– Evaluate it with global inference and „information sensitivity of inference” analysis.

– Generate a data set from your model.

– Learn a model from your data.

– Compare the structural and parametric differences between the two models.

– Extend your Bayesian network into a decision network.

– Investigate the value of further information.

• Optional tasks:
– Analyse estimation biases.

– Investigate the effect of model uncertainty and sample size on learning: vary the 
strength of dependency  in the model (increase underconfidence to decrease 
information content) and sample size and see their effect on learning.



Subtask: test a decision network

• Investigate the value of further information as follows:
• select values for some “evidence” variables (E=e),

• using BayesCube calculate the current expected loss/utility EU(D|e),

• select a variable “I” as potential “further” information,

• using BayesCube calculate the conditional probabilities of potential 
further observations (i.e. the conditional probabilities of potential values 
of this “further information” variable, p(I=i|E=e)),

• using BayesCube calculate the expected losses/utilities corresponding to 
these potential further observations EU(D|e,i),

• calculate the (expected) value of (perfect) information corresponding to 
this variable “I”, Σi p(i|e)*EU(D|e,i)- EU(D|e).


