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1 Introduction

1.1 Scope

This software is a MATLAB toolbox with graphical user interface: a collection of functions
which can be executed in MATLAB environment. This toolbox provides the implementation of
the following algorithms used in ADC testing:

• Four parameter sine wave fitting method described in standard IEEE-1241

• Maximum likelihood (ML) estimation of signal and ADC parameters (with sinusoidal ex-
citation signal)

• Approximate maximum likelihood (AML) estimation signal and ADC parameters (with
sinusoidal excitation signal)

• Histogram test using sinusoidal excitation signal

• FFT test

Furthermore the toolbox contains a simple tool to generate simulated measurement data: this
possibility is useful to test and compare the fitting algorithms.

1.2 What’s new?

Compared to the latest release of ADCTest toolbox (ver. 4.5), version 4.6 contains minor bug
fixes and unified notation regarding approximate maximum likelihood (AML) estimation of quan-
tizer and signal parameters.

Compared to the earlier version of ADCTest toolbox (ver. 4.4) the main new feature of version
4.5 is the approximate maximum likelihood (AML) estimation of quantizer and excitation signal
parameters. This method parameterizes the integral nonlinearity of the quantizer under test
and optimizes the ML cost function with respect to the parameters of the excitation signal and
the parameters of the quantizer nonlinearity as well. This new feature is detailed in subsection 5.4

Compared to the earlier versions of ADCTest toolbox (ver. 4.1, 4.2, 4.3), the most important new
feature is the extended cost function evaluator (EvaluateCFExtended.m) in maximum likelihood
estimation of ADC and signal parameters. This new function calculates the entire gradient (size:
2b+4) and Hessian matrix of the ML cost function (size: (2b+4) · (2b+4)). The Hessian matrix
provides the full Fisher information regarding the estimation of code transition levels and signal
parameters. This way the toolbox calculates the Cramér-Rao Lower Bound for the covariance
of all estimators. The most important values of the CRLB can be displayed in the GUI at the
comparison of the results of ML and LS estimation using the ’Show CRLB’ pushbutton (see
subsection 5.3.3 and figure 13).

Compared to the earlier versions of ADCTest (ver 3.1 3.2 3.3) the most important new feature is
the implementation of maximum likelihood (ML) parameter estimation to sinusoidal excitation
signal [2]. The estimation of the converter’s static transfer characteristic via histogram test is
also a new possibility in this toolbox. This method is based on [3]. The software has been
expanded with FFT test function. The simulated measurement generator tool is a side-effect of
the development process.
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2 Installation

1. Download the latest version of adctest toolbox from the project site ([7]) in a zip file.

2. Extract the zip file to a folder used to store MATLAB toolboxes e. g. C:\Program
Files\MATLAB\toolbox

3. Start MATLAB.

4. Add the directory (where you have installed the toolbox) to MATLAB search path using
the File->Set Path menu or the addpath command.

5. Type adctest to the MATLAB command line to launch the GUI.

3 Getting started

Once the toolbox is launched, the main window appears (figure 1).

Figure 1: Main window of the toolbox

On the right side of the window the following data handling options are available:

• Importing multiple measurement descriptors from wokspace

• Exporting multiple measurement descriptors to workspace

• Loading a single measurement descriptor

• Saving the current measurement descriptor
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• Deleting the current measurement descriptor

• Creating a new measurement descriptor

• Editing an exising measurement descriptor

At the bottom of the window the „Classify and process measurement record” pusbutton appears.
Using this pushbutton user can reach the classification dialog box. This window shows the
classification results with respect to the following test methods:

• Four parameter sine wave fit in LS sense

• Maximum likelihood estimation of signal and ADC parameters

• Approximate maximum likelihood (AML) estimation of signal and ADC parameters

• Histogram test of the ADC using sinusoidal excitation signal

• FFT test of the ADC

The result of classification can be

• Appropriate

• Appropriate with restrictions

• Inappropriate

Classification window appears in figure 2

Figure 2: Classification of measurement record
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If a measurement record is „Appropriate” or „Appropriate with restrictions” to process in a cer-
tain way, the data can be evaluated using the active pushbuttons („Perform ...”)on the right side.
Possible warnings can be displayed using the „Show warnings” pushbutton. If the measurement
record is inappropriate to process, an error message can be read using the „Show errors” push-
button. The evaluation results can be exported to a HTML document using the „Export results
to HTML” pushbutton. A typical HTML report appears in figure 3

Figure 3: Evaluation results exported to a HTML report

The classification window also provides a feature called coherence analysis. The toolbox examines
the measurement record and estimates the frequency via least squares fitting in the frequency
domain (using Blackman-Harris windows). Based on this frequency estimator the algorithm
suggests 3 selections of the measurement record which are coherent with a large probability. In
this case coherence means to fulfill the Crabone-Chiorbloi conditions [5] and the probability of
coherence is calculated using the confidence interval of the frequency estimator and the strict
limits provided by the Carbone-Chiorboli condition. This coherence analysis is based on [6]. The
selections are plotted in a dialog box as well (see figure 4).
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Figure 4: Graphical display of the coherent parts of the measurement record

4 Description of measurements

The description of measurements is realized using XML files since version 3.3. The proper schema
definition of these XML files is available on the project’s web site ([7]). These descriptors have
mandatory and optional fields. The descriptors must contain

• The name of the measurement: a short but informative title. Usually used to be the
filename of the XML

• The model of the ADC under test

• The serial number of the ADC under test

• The resolution (bit number) of the ADC under test

• The measurement data: the record of the ADC’s output (in digital codes).

The descriptor also may contain the following information:

• Comment: a more detailed description of measurement

• Channel: useful if the ADC under test is a multi-channel device

• Parameters: a feature to support test runs. In case of simulated measurement the original
signal parameters and the ADC’s static transfer characteristic (INL vector) can be saved.
Thus accuracy of parameter estimation can be calculated using the original and the fitted
values.

8



4.1 Loading an existing measurement descriptor

This function is available from main window, using the Load pushbutton. If the XML file is
deficient, the load function returns error messages or warnings: errors, when the missing fielss
are mandatory, and warnings if the missing fields are optional.

4.2 Creating a new measurement descriptor

This function is available from the main window, using the New pushutton. A dialog box appears
(figure 5), where all properties of the measurement descriptor can be set.

Figure 5: Add new descriptor dialog box

In case of real measurement the ADC output data vector can be loaded fromMATLAB workspace.
In case of simulated measurement a simulation tool can be started (see 4.7).

4.3 Editing an existing measurement descriptor

This function is available from main window, using the Edit pushbutton. The dialog box is
similar to the dialog box "Add new descriptor" , but the original properties and values of the
descriptor are displayed in the appropriate fields of the window.

4.4 Batch import of measurement descriptors

This function is available from main window, using the Import pushbutton. A variable from
MATLAB workspace, that contains multiple descriptors can be imported to the toolbox. Note
that no software component checks that your variable is appropriate: if the format of the data
in this variable is not matchingh, strange errors can occur. Used to perform test runs.
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4.5 Batch export of measurement descriptors

This function is available from main window, using the Export pushbutton. All the measurement
descriptors that are currently in the memory, will be copied to the workspace. The variable
specified by the user is a cell array, each cell contains one measurement.

4.6 Saving a measurement descriptor

This function is available from main window, using the Save pushbutton. The filename suggested
by the save dialog box is the name of the descriptor. Keeping this file naming convention is
recommended.

4.7 Creating a new simulated measurement descriptor

This function is available from dialog box "Add new descriptor". If the "Source of the data vec-
tor" is changed from "Real measurement" to "Simulated measurement", a pushbutton "Simulate
Measurement" appears. This button launches the simulation tool (figure 6).

Figure 6: Simulate measurement dialog box

In this dialog box both the excitation signal parameters and the ADC parameters can be set. The
sine wave can be described in two ways: amplitude and initial phase, or cosine and sine coefficient.
The nonlinearity can be imported from workspace (e.g. the nonlinearity of a previously measured
ADC), or can be assembled in this dialog box. The nonlinearity assembler uses two components:
a component that determines the nature of the nonlinearity (e. g. a rasied cosine (Hann)
window), and a component that adds some noise to the INL vector. This way the values of
transition levels will not be so regular: the transfer characteristic will be more lifelike. Not that
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the "Deviation of noise on INL" means the standard deviation of noise in both cases: so in the
case of normally distributed noise, as in the case of uniformly dirstibuted noise.

5 Evaluation of measurements

5.1 Histogram test

Histogram test is the estimation of the static transfer characteristic of the ADC under test. The
test uses the histogram of measured data and calculates the INL estimators described in [4]. A
formula about the accuracy of these estimators is given in [3].

Figure 7: Result window of histogram testing

5.2 Four parameters sine wave fitting test

To perform four parameter sine wave fit according to standard IEEE-1241-2010, some parameters
of optimization must be set. Before starting the optimization, a dialog box appears (figure 8).
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Figure 8: Settings window for 4 parameter LS fit

On the left side, the boundaries of the record can be set. Using "First sample of record" and
"Last sample of record" the useless parts of recording (like initial transients) can be cut. "Upper
boundary" and "Lower boundary" determines the code range, where the samples are taken into
consider. This function is used to throw samples where the ADC is overdriven. Not that the
default lower boundary is the lowest code of ADC + 1, the default upper boundary is the highest
code of ADC - 1.
On the right side the parameters of optimization can be set. The following fitting methods are
available:

• IEEE-1241-2010 Annex B: performs the method described in [1]

• LsqNonlin: calls the built-in nonlinear least squares solver function of MATLAB Opti-
mization toolbox. This method is more time-consuming, but can be more robust in some
cases.

In case of LsqNonlin, three other parameters of optimization can be set:

• Maximal number of iterations

• Maximal number of cost function evaluations

• Termination tolerance on cost function

The results of the sine wave fitting appear in the results window (figure 9).
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Figure 9: Results window for 4 parameter LS fit

This dialog box displays the estimated sine wave parameters (amplitude, frequency, initial phase,
DC component), and the ADC parameters: effective number of bits (ENOB), and signal to noise
and distortion ratio (SINAD). ADC parameters calculated from the difference between the fitted
sine wave and the measurement data, the residuals. The residuals are displayed in two ways:

• Mod T plot: the residuals are sorted and displayed according to their location in the
phase space. Phase axis is displayed between 0 and 2π. A reference sine wave is also
plotted: this is a sine wave with the estimated phase of the excitation signal.

• Histogram of residuals: to observe statistical moments of the residuals.

5.3 Maximum likelihood estimation of signal and ADC parameters

To perform maximum likelihood (ML) estimation of signal and ADC parameters, it is necessary
to use the so the results of histogram test, as the results of sine wave fitting in least squares
(LS) sense. The histgram test provides the transition level estimators. Note that the transition
level estimators do not change during the optimization, according to the problems described in
[4]. Only the five signal parameters (four sine wave paramaters, and the standard deviation of
noise on the input) are optimized, keeping the transition levels constant. If the histogram is
rough according to the low number of samples in a record, the transition level estimators can be
inaccurate. The main source of inaccuracy of ML signal parameter estimators is the inaccuracy
of transition levels. Before performing ML optimization make sure that there are enough number
of samples in record using the formula described in [3].
The LS sine wave fitting is used to get initial estimators of the sine wave parameters efficiently.
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5.3.1 Getting initial signal parameter estimators

Although the result of this LS fitting is used only to start the ML optimization the parameters
of this fitting also must be set. This dialog box is very similar to the one shown in 5.2. Both
the input GUI elements and their function are the same. Note that the samples that are thrown
beacuse of the amplitude or time limits will not be considered neither in the LS nor in the ML fit.
The initial estimators appear in the dialog box of ML estimation before the iteration is started
(figure 10).

Figure 10: ML estimation dialog box before the iteration is started

5.3.2 Progress of optimization: iteration cycles

The iteration can be started in the ML estimation dialog box using the "Start" pushbutton. The
changed dialog box is shown on figure 11.
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Figure 11: ML estimation dialog box during the iteration

During the computation, the label and the function of this pushbutton changes to "Pause". The
"Stop iteration" button is used to stop entire the optimization process. The "Reset" button
resets the signal parameters to the initial values, and parameters of optimization can be set to
other values. The advanced settings are the following:

• Maximum number of iterations: used to limit length of optimization.

• Maximum number of cost function evaluations: the length of an iteration cycle
is not deterministic: depending on the behavior of the cost function there may be one
ore more function and derivative evaluation in an iteration cycle. Limiting the number of
function evaluations provides more precise time boundary.

• Termination tolerance on cost function: optimization terminates when the difference
between the cost function in two consecutive iteration cycle is less than the tolerance
specified here.

In the dialog box the the process of optimization can be traced. The actual values of parameter
estimators, and the value of ML cost function is displayed in each iteration cycle. The constant
that determines the size and direction of the Levenberg-Marquardt step ("lambda"), and the
number of iterations and cost function evaluations also appear.
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5.3.3 Results of optimizitaion: comparison of ML and LS estimators

After the optimization is performed both the LS and ML signal parameter estimators are avail-
able. The results can be compared in the results window shown on figure 12.

Figure 12: Comparison of ML and LS estimators

In this dialog box the estimated signal and ADC parameters appear. The amplitude and the
DC component is displayed in ADC code units (LSB), and also in the percentage of the full
scale (FS). The initial phase is displayed in degrees. The frequency of the sine wave is displayed
relative to the sampling frequency. The effective number of bits (ENOB) is calculated using the
difference between the record and the fitted sine wave (the residuals). Note that the ENOB
calculated using the ML estimators cannot be higher than the ENOB calculated us-
ing the LS estimators, because the LS optimization minimizies the root mean square
of the residuals, thus maximizes the ENOB value.
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The residuals are displayed three ways in this window:

• Residuals in linear time: the residuals are displayed according to their position in the
record.

• Mod T plot of residuals: the residuals are displayed according to their position in the
phase space: phase position of each residual is calculated using the estimated frequency of
the signal, and residuals are sorted with respect to this phase value. A reference sine wave
is also diaplayed: the initial phase of this this sine wave is the estimated initial phase of
the excitation signal.

• Histogram of residuals: histogram is calculated to observe statistical moments of resid-
uals.

The linear time and the mod T plot of residuals do not appear in the same time: the content of
the higher graph can be switched using a popup menu on the side of ML estimation. This switch
changes the appearance of both sides of the window.

Using the "Show CRLB" pushbutton the most important calculated values of the Cramer-Rao
Lower Bound regarding the estimated signal parameters appear in a dialog box (see figure 13).
The CRLB values are scaled to units of LSB, and relative frequency (f/fs)

Figure 13: Most important values of the calculated CRLB

5.4 Approximate maximum likelihood (AML) estimation of signal and quan-
tizer parameters

This method parameterizes the integral nonlinearity of the quantizer under test and optimizes
the ML cost function with respect to the parameters of the excitation signal and the parameters
of the quantizer nonlinearity as well. In this version of ADCTest toolbox the integral nonlinearity
of the quantizer is approximated using Fourier coefficients (15 real parameters). To perform AML
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estimation the user has to press the "Perform AML fit" pushbutton (see figure 14). The potential
warnings or errors regarding AML fit can be read using the "Show warnings" and "Show errors"
pushuttons. Note that if neither warnings nor errors appear, the corresponding pushbuttons are
disabled.

Figure 14: How to choose AML fit

Choosing this option calls the standard 4-parameter least squares fit to achieve initial estimators
for the excitation signal parameters. After setting the options and parameters of the LS fit
(default values usually provide good performance) we can press the pushbutton entitled "Get
initial estimators for approximate ML (AML) fit". This action starts the optimization process
which can be followed (and interrupted if necessary) by the user via the GUI (see figure 15).
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Figure 15: Optimization of the cost function for AML estimation

The results of the AML estimation are displayed in a dialog box (see figure 16). This dialog
box itemizes the main parameters of the optimization process (number of iterations, number of
cost function evaluations, duration of optimization, reason of termination, initial and final value
of the cost function). The most important quality measures (the effective number of bits and
the maximum integral nonlinearity) of the ADC under test are displayed as well. The estimated
integral nonlinearity and the "Mod T" plot of the residuals (residuals of the sine wave fitting in
the time domain) also appear in this dialog box.
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Figure 16: Results of AML estimation

5.5 FFT test: analysis in the frequency domain

The frequency domain analysis investigates the Discrete Fourier Transform of the measurement
record. DFT is performed using the Fast Fourier Transform (FFT) algorithm. Windowing in
time domain is necessary to suppress spectral leakage in case of incoherent sampling. The user
can specify the type of window: the default is the Blackman window, but also Hann and 3-
term Blackman-Harris windows can be applied. FFT test can be performed without windowing,
choosing the None (rect) option.
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The results provide information about the amplitudes and frequencies of the harmonics of the
signal (up to 5 harmonics) relative to the carrier (base harmonic) and relative to the full scale
of the ADC. The most important quantity calculated this way is the Spurious-free dynamic
range (SFDR), that is provided relative to the carrier (dBc), and relative to the full scale
(dBFS ).

Figure 17: FFT test results window
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6 Calculation of the likelihood (log-likelihood) function and the
first and second order derivatives

6.1 The likelihood and log-likelihood function

For maximum likelihood estimation of ADC testing the following model has been developed. The
converter is described with a set of code transition levels. Transition level T [k] is the value of
the input voltage, that results code k−1 with probability of 50%, and code k with probability of
50% as well. The N-bit quantizer provides codes from 0 up to 2N − 1, and has 2N − 1 transition
levels. The reduced full scale of the converter is the voltage range between T [1] and T [2N − 1].
Voltage values above the highest transition level result code 2N−1 and voltages below the lowest
transition level result code 0. Quantization can be described with a function q(x) where

q(x) =


0, if x < T [1]

m, if T [m] < x < T [m+ 1]

2N − 1, if x > T [2N − 1]

(1)

The sinusoidal excitation signal can be described with four parameters:

x(t) = A cos(2πft) +B sin(2πft) + C (2)

where A is the cosine coefficient, B is the sine coefficient, and C denotes the DC component of
the signal. The frequency of the sine wave is denoted with f . The electronic noise of the devices,
and the imperfections of the measurement environment are modeled with additional noise on the
excitation signal. The most manifest is to assume Gaussian noise with zero mean and σ standard
deviation. Let n(t) denote the realization of the additive noise. In this model the spectrum of
the noise is white, so n(τ1) and n(τ2) are independent, if τ1 6= τ2.led with additional noise on the
excitation signal. The most manifest is to assume Gaussian noise with zero mean and σ standard
deviation. Let n(t) denote the realization of the additive noise. In this model the spectrum of
the noise is white, so n(τ1) and n(τ2) are independent, if τ1 6= τ2.
This noisy sine wave is quantized and sampled (the sequence is interchangeable), thus the output
of the ADC can be described this way:

y(k) = q(x(tk) + n(tk)) (3)

where tk denotes the kth sampling time moment (k = 1..M).
The parameters of the model to be estimated to be estimated are the followings:

• The code transition levels of the quantizer: T [1], T [2], ..., T [2N − 1]

• The cosine coefficient of the sine wave: A

• The sine coefficient of the sine wave: B

• The DC component of the sine wave: C

• The frequency of the sine wave: f

• The standard deviation of noise on the excitation signal: σ

As uniform sampling is assumed (effects of incidental nonideal sampling are not considered in this
model), the frequency of the sine wave can be described using the angular frequency normalized
to the sampling frequency:
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θ = ωTs = 2π
f

fs
(4)

where Ts is the sampling time, and fs denotes the sampling frequency. Thus the parameter
vector to be estimated is the following:

pT =
[
A B C θ σ T [1] T [2] . . . T [2N − 2] T [2N − 1]

]
(5)

To express the likelihood of the parameters, it is necessary introduce a vector of discrete random
variables, denoted by Y. Value Y (k) belongs to the kth sample of the measurement record and
can achieve 2N values: it can be any of the output codes of the ADC form 0 to 2N − 1 with a
given probability. These probabilities can be described using the error function:

erf(x) =
2

π

∫ x

0
e−zdz (6)

P(Y (k) = 0) =
1

2

[
erf

(
T [1]− x(tk)
σ
√
(2)

)
+ 1

]
(7)

P(Y (k) = 2N − 1) =
1

2

[
1− erf

(
T [2N − 1]− x(tk)

σ
√
(2)

)]
(8)

P(Y (k) = l) =
1

2

[
erf

(
T [l + 1]− x(tk)

σ
√
(2)

)
− erf

(
T [l]− x(tk)
σ
√

(2)

)]
(9)

where l = 1..2N -2
To avoid using three different cases it is useful to define two „virtual” transition levels of the ADC:
T [0] = −∞ and T [2N ] = +∞. This way the value of Y (k) can be expressed in one equation:

P(Y (k) = l) =
1

2

[
erf

(
T [l + 1]− x(tk)

σ
√
(2)

)
− erf

(
T [l]− x(tk)
σ
√

(2)

)]
(10)

where l = 0..2N -1
The likelihood function for the entire measurement is:

L(p) =

M∏
k=1

P(Y (k) = y(k)) (11)

where y(k) is the kth sample of the digital record. Merging the equations above, one can express
the likelihood function this way:

L(p) =

M∏
k=1

1

2

[
erf

(
T [y(k) + 1]− x(tk)

σ
√
(2)

)
− erf

(
T [y(k)]− x(tk)

σ
√
(2)

)]
(12)

For computations it is feasible to define a cost function, which is the negative log-likelihood
function:

CF(p) = − lnL(p) =M · ln(2)−
M∑
k=1

ln

[
erf

(
T [y(k) + 1]− x(tk)

σ
√
(2)

)
− erf

(
T [y(k)]− x(tk)

σ
√
(2)

)]
(13)
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6.2 First order derivatives

To ease the expression of the formulas, let us use the following notation. Let arg(k) denote
the argument of the natural logarithm function in the kth element of the cost function. This
means that arg(k) is two times larger than the probability of measuring y(k) for the kth sample,
assuming parameters p.

arg(k) = erf
(
T [y(k) + 1]− x(k)√

2σ

)
− erf

(
T [y(k)]− x(k)√

2σ

)
(14)

The first order partial derivatives of the cost function are expressed below:

∂CF
∂A

= −
M∑
k=1

1

arg(k)
2√
π

(
e
−
(
T [y(k)]−x(k)√

2σ

)2

· cos(kθ)√
2σ

− e−
(
T [y(k)+1]−x(k)√

2σ

)2

· cos(kθ)√
2σ

)
(15)

∂CF
∂B

= −
M∑
k=1

1

arg(k)
2√
π

(
e
−
(
T [y(k)]−x(k)√

2σ

)2

· sin(kθ)√
2σ
− e−

(
T [y(k)+1]−x(k)√

2σ

)2

· sin(kθ)√
2σ

)
(16)

∂CF
∂C

= −
M∑
k=1

1

arg(k)
2√
π

(
e
−
(
T [y(k)]−x(k)√

2σ

)2

· 1√
2σ
− e−

(
T [y(k)+1]−x(k)√

2σ

)2

· 1√
2σ

)
(17)

∂CF
∂θ

= −
M∑
k=1

1

arg(k)
· ∂arg(k)

∂θ
(18)

where

∂arg(k)
∂θ

=
2√
π

(
e
−
(
T [y(k)+1]−x(k)√

2σ

)2

· A sin(kθ)k −B cos(kθ)k√
2σ

− e−
(
T [y(k)]−x(k)√

2σ

)2

· A sin(kθ)k −B cos(kθ)k√
2σ

)
(19)

∂CF
∂σ

= −
M∑
k=1

1

arg(k)
· ∂arg(k)

∂σ
(20)

where

∂arg(k)
∂σ

=
2√
π

(
e
−
(
T [y(k)]−x(k)√

2σ

)2

· T [y(k)]− x(k)√
2σ2

− e−
(
T [y(k)+1]−x(k)√

2σ

)2

· T [y(k) + 1]− x(k)√
2σ2

)
(21)

The partial derivatives with respect to transition levels are the followings:

∂CF
∂T [l]

= −
M∑
k=1

1

arg(k)
· ∂arg(k)
∂T [l]

(22)

where

∂arg(k)
∂T [l]

=


2√√
π
· e−

(
T [l]−x(k)√

2σ

)2

· T [l]−x(k)
σ2 , if y(k) = l - 1

− 2√√
π
· e−

(
T [l]−x(k)√

2σ

)2

· T [l]−x(k)
σ2 , if y(k) = l

0, otherwise

(23)
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6.3 Second order derivatives

The general form of the elements of the Fisher information matrix is the following:

I(p)i,j =

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂pi
· ∂arg(k)

∂pj
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂pi∂pj

(24)

To ease notation let us use the following terms

Qu(k) =
T [y(k) + 1]−A cos(kθ)−B sin(kθ)− C√

2σ
(25)

Ql(k) =
T [y(k)]−A cos(kθ)−B sin(kθ)− C√

2σ
(26)

Since the Fisher information matrix is symmetric, only the diagonal elements and the elements
over the diagonal are itemized. The derivatives including the lth code transition level (T [l])
appear int the l + 5th rows and columns respectively.

6.4 I(1,1)

∂2CF
∂A2

=
M∑
k=1

1

arg2(k)
·
(
∂arg(k)
∂A

)2

−
M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂A2

(27)

where

∂2arg(k)
∂A2

=
−4√
π
e−Q

2
u(k) ·Qu(k) ·

cos2(kθ)

2σ2
− −4√

π
e−Q

2
l (k) ·Ql(k) ·

cos2(kθ)

2σ2
(28)

6.5 I(1,2)

∂2CF
∂A∂B

=

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂B
· ∂arg(k)

∂A
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂A∂B

(29)

where

∂2arg(k)
∂A∂B

=
−4√
π
e−Q

2
u(k) ·Qu(k) ·

cos(kθ) · sin(kθ)
2σ2

− −4√
π
e−Q

2
l (k) ·Ql(k) ·

cos(kθ) · sin(kθ)
2σ2

(30)

6.6 I(1,3)

∂2CF
∂A∂C

=
M∑
k=1

1

arg2(k)
· ∂arg(k)

∂C
· ∂arg(k)

∂A
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂A∂C

(31)

where

∂2arg(k)
∂A∂C

=
−4√
π
e−Q

2
u(k) ·Qu(k) ·

cos(kθ)

2σ2
− −4√

π
e−Q

2
l (k) ·Ql(k) ·

cos(kθ)

2σ2
(32)
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6.7 I(1,4)

∂2CF
∂A∂θ

=
M∑
k=1

1

arg2(k)
· ∂arg(k)

∂θ
· ∂arg(k)

∂A
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂A∂θ

(33)

where

∂2arg(k)
∂A∂θ

=
4√
π
e−Q

2
u(k) ·Qu(k) ·

cos(kθ)(A sin(kθ) · k −B cos(kθ) · k)
2σ2

+
2√
π
·e−Q2

u(k)
sin(kθ) · k√

2σ
−

(34)

− 4√
π
e−Q

2
l (k) ·Ql(k) ·

cos(kθ)(A sin(kθ) · k −B cos(kθ) · k)
2σ2

+
2√
π
· e−Q2

l (k)
sin(kθ) · k√

2σ
(34)

6.8 I(1,5)

∂2CF
∂A∂σ

=

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂σ
· ∂arg(k)

∂A
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂A∂σ

(35)

where

∂2arg(k)
∂A∂σ

=
−4√
π
· e−Q2

u(k) · Q
2
u(k) cos(kθ)√

2σ2
+

2√
π
· e−Q2

u(k) · cos(kθ)√
2σ2

− (36)

− −4√
π
· e−Q2

l (k) ·
Q2
l (k) cos(kθ)√

2σ2
+

2√
π
· e−Q2

l (k) · cos(kθ)√
2σ2

− (36)

6.9 I(2,2)

∂2CF
∂B2

=

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂B
· ∂arg(k)

∂B
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂B2

(37)

where

∂2arg(k)
∂B2

=
−4√
π
· e−Q2

u(k) · Qu(k) · sin
2(kθ))

2σ2
+

4√
π
· e−Q2

l (k) · Ql(k) · sin
2(kθ)

2σ2
(38)

6.10 I(2,3)

∂2CF
∂B∂C

=

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂C
· ∂arg(k)

∂B
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂B∂C

(39)

where

∂2arg(k)
∂B∂C

=
−4√
π
· e−Q2

u(k) · Qu(k) · sin(kθ))
2σ2

+
4√
π
· e−Q2

l (k) · Ql(k) · sin(kθ)
2σ2

(40)
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6.11 I(2,4)

∂2CF
∂B∂θ

=
M∑
k=1

1

arg2(k)
· ∂arg(k)

∂θ
· ∂arg(k)

∂B
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂B∂θ

(41)

where

∂2arg(k)
∂B∂θ

=
4√
π
· e−Q2

u(k) · Qu(k) · (A sin(kθ)k −B cos(kθ)k) · sin(kθ)
2σ2

− 2√
π
· e−Q2

u(k) · cos(kθ)k√
2σ

−

(42)

− 4√
π
· e−Q2

l (k) · Ql(k) · (A sin(kθ)k −B cos(kθ)k) · sin(kθ)
2σ2

+
2√
π
· e−Q2

l (k) · cos(kθ)k√
2σ

(42)

6.12 I(2,5)

∂2CF
∂B∂σ

=

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂σ
· ∂arg(k)

∂B
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂B∂σ

(43)

where

∂2arg(k)
∂B∂σ

=
−4√
π
· e−Q2

u(k) · Q
2
u(k) · sin(kθ)√

2σ2
+

2√
π
· e−Q2

u(k) · sin(kθ)√
2σ2

+ (44)

+
4√
π
· e−Q2

l (k) ·
Q2
l (k) · sin(kθ)√

2σ2
− 2√

π
· e−Q2

l (k) · sin(kθ)√
2σ2

(44)

6.13 I(3,3)

∂2CF
∂C2

=

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂C
· ∂arg(k)

∂C
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂C2

(45)

where

∂2arg(k)
∂C2

=
−4√
π
· e−Q2

u(k) · Qu(k)
2σ2

+
4√
π
· e−Q2

u(k) · Ql(k)
2σ2

(46)

6.14 I(3,4)

∂2CF
∂C∂θ

=
M∑
k=1

1

arg2(k)
· ∂arg(k)

∂θ
· ∂arg(k)

∂C
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂C∂θ

(47)

where

∂2arg(k)
∂C∂θ

=
−4√
π
·e−Q2

u(k)·Qu(k) · (A sin(kθ)k −B cos(kθ)k)

2σ2
+

4√
π
·e−Q2

l (k)·Ql(k) · (A sin(kθ)k −B cos(kθ)k)

2σ2

(48)
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6.15 I(3,5)

∂2CF
∂C∂σ

=
M∑
k=1

1

arg2(k)
· ∂arg(k)

∂σ
· ∂arg(k)

∂C
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂C∂σ

(49)

where

∂2arg(k)
∂C∂σ

=
−4√
π
· e−Q2

u(k) · Q
2
u(k)√
2σ2

+
2√
π
· e−Q2

u(k) · 1√
2σ2

+ (50)

+
4√
π
· e−Q2

l (k) ·
Q2
l (k)√
2σ2
− 2√

π
· e−Q2

l (k) · 1√
2σ2

(50)

6.16 I(4,4)

∂2CF
∂θ2

=
M∑
k=1

1

arg2(k)
· ∂arg(k)

∂θ
· ∂arg(k)

∂θ
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂θ2

(51)

where

∂2arg(k)
∂θ2

=
−4√
π
·e−Q2

u(k)·Qu(k) · (A sin(kθ)k −B cos(kθ)k)2

2σ2
+

2√
π
·e−Q2

u(k)·A cos(kθ)k2 +B sin(kθ)k2√
2σ

+

(52)

+
4√
π
· e−Q2

l (k) · Ql(k) · (A sin(kθ)k −B cos(kθ)k)2

2σ2
− 2√

π
· e−Q2

l (k) · A cos(kθ)k2 +B sin(kθ)k2√
2σ

(52)

6.17 I(4,5)

∂2CF
∂θ∂σ

=

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂σ
· ∂arg(k)

∂θ
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂θ∂σ

(53)

where

∂2arg(k)
∂θ∂σ

=
4√
π
·e−Q2

u(k)·Q
2
u(k) · (A sin(kθ)k −B cos(kθ)k)√

2σ2
− 2√

π
·e−Q2

u(k)·A sin(kθ)k −B cos(kθ)k√
2σ2

−

(54)

− 4√
π
·e−Q2

l (k) ·
Q2
l (k) · (A sin(kθ)k −B cos(kθ)k)√

2σ2
+

2√
π
·e−Q2

l (k) ·A sin(kθ)k −B cos(kθ)k√
2σ2

(54)

6.18 I(5,5)

∂2CF
∂σ2

=

M∑
k=1

1

arg2(k)
· ∂arg(k)

∂σ
· ∂arg(k)

∂σ
−

M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂σ2

(55)

where
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∂2arg(k)
∂σ2

=
−4√
π
· e−Q2

u(k) · Q
3
u(k)

σ2
+

2√
π
· e−Q2

u(k) · 2Qu(k)
σ2

+ (56)

+
4√
π
· e−Q2

l (k) ·
Q3
l (k)

σ2
− 2√

π
· e−Q2

l (k) · 2Ql(k)
σ2

(56)

6.19 I(1,l+5)

∂2CF
∂A∂T [l]

=
M∑
k=1

1

arg2(k)
· ∂arg(k)
∂T [l]

· ∂arg(k)
∂A

−
M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂A∂T [l]

(57)

where

∂2arg(k)
∂A∂T [l]

=


2√
π
· e−Q2

u · cos(kθ)
σ2 · (2Q2

u − 1) if y[k] = l − 1

− 2√
π
· e−Q2

l · cos(kθ)
σ2 · (2Q2

l − 1) if y[k] = l

0 otherwise

(58)

6.20 I(2,l+5)

∂2CF
∂B∂T [l]

=
M∑
k=1

1

arg2(k)
· ∂arg(k)
∂T [l]

· ∂arg(k)
∂B

−
M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂B∂T [l]

(59)

where

∂2arg(k)
∂B∂T [l]

=


2√
π
· e−Q2

u · sin(kθ)
σ2 · (2Q2

u − 1) if y[k] = l − 1

− 2√
π
· e−Q2

l · sin(kθ)
σ2 · (2Q2

l − 1) if y[k] = l

0 otherwise

(60)

6.21 I(3,l+5)

∂2CF
∂C∂T [l]

=

M∑
k=1

1

arg2(k)
· ∂arg(k)
∂T [l]

· ∂arg(k)
∂C

−
M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂C∂T [l]

(61)

where

∂2arg(k)
∂C∂T [l]

=


2√
π
· e−Q2

u · 1
σ2 · (2Q2

u − 1) if y[k] = l − 1

− 2√
π
· e−Q2

l · 1
σ2 · (2Q2

l − 1) if y[k] = l

0 otherwise

(62)

6.22 I(4,l+5)

∂2CF
∂θ∂T [l]

=

M∑
k=1

1

arg2(k)
· ∂arg(k)
∂T [l]

· ∂arg(k)
∂θ

−
M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂θ∂T [l]

(63)

where
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∂2arg(k)
∂θ∂T [l]

=


2√
π
· e−Q2

u · A sin(kθ)k−B cos(kθ)k
σ2 · (2Q2

u − 1) if y[k] = l − 1

− 2√
π
· e−Q2

l · A sin(kθ)k−B cos(kθ)k
σ2 · (2Q2

l − 1) if y[k] = l

0 otherwise

(64)

6.23 I(5,l+5)

∂2CF
∂σ∂T [l]

=

M∑
k=1

1

arg2(k)
· ∂arg(k)
∂T [l]

· ∂arg(k)
∂σ

−
M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂σ∂T [l]

(65)

where

∂2arg(k)
∂σ∂T [l]

=


4
√
2√
π
· e−Q2

u · Qu
σ2 · (1−Qu) if y[k] = l − 1

−4
√
2√
π
· e−Q2

l · Ql
σ2 · (1−Ql) if y[k] = l

0 otherwise

(66)

6.24 I(m+5,l+5)

∂2CF
∂T [m]∂T [l]

=

M∑
k=1

1

arg2(k)
· ∂arg(k)
∂T [l]

· ∂arg(k)
∂T [m]

−
M∑
k=1

1

arg(k)
· ∂2arg(k)
∂T [m]∂T [l]

(67)

where

∂2arg(k)
∂T [m]∂T [l]

=

{
∂2arg(k)
∂T [l]2

if m = l

0 otherwise
(68)

6.25 I(l+5,l+5)

∂2CF
∂T [l]2

=
M∑
k=1

1

arg2(k)
· ∂arg(k)
∂T [l]

· ∂arg(k)
∂T [l]

−
M∑
k=1

1

arg(k)
· ∂

2arg(k)
∂T [l]2

(69)

where

∂2arg(k)
∂T [l]2

= ...


2√
π
e−Q

2
u · 1

σ2 · (2Q2
u − 1) if y[k] = l − 1

− 2√
π
e−Q

2
l · 1

σ2 · (2Q2
l − 1) if y[k] = l

0 otherwise

(70)
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