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Basics

Stable distributions

Definition
The distribution P is said to stable (or faithfull), if there exists a DAG called
perfect map exactly representing its (in)dependencies (i.e.
(X ⊥⊥ Y|Z)G ⇔ (X ⊥⊥ Y|Z)P ∀ X, Y, Z ⊆ V ). The distribution P is stable w.r.t. a
DAG G, if G perfectly represents its (in)dependencies.

However, there can be numerically encoded independencies corresponding to
solutions of equation systems and/or to functional dependencies, but they are
rare and not stable for numerical perturbations.

1. Consider p(X, Y, Z) with binary X, Z and ternary Y. The conditionals
p(Y|X) and p(Z|Y) can be selected such that p(z|x) = p(z|¬x). That is
(X 6⊥⊥ Y) and (Y 6⊥⊥ Z), but (X ⊥⊥ Z), demonstrating that the "naturally”
expected transitivity of dependency can be destroyed numerically.

2. Consider P(X, Y, Z) with binary variables, where p(x) = p(y) = 0.5 and
p(Z|X, Y) = 1(Z = XOR(X, Y)). That is (X ⊥⊥ Z) and (Y ⊥⊥ Z), but
({X, Y} 6⊥⊥ Z), demonstrating that pairwise independence does not imply
total independence.
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Basics

The Causal Markov Condition I.

Definition
A DAG G is called a causal structure over variables V, if each node represents
a variable and edges denote direct influences. A causal model is a causal
structure extended with local models p(Xi|pa(Xi,G)) for each node describing
the dependency of variable Xi on its parents pa(Xi,G). As the conditionals are
frequently from a parametric family, they are parameterized by θi, and θ
denotes the overall parameterezation, so a causal model is pair (G,θ).

Definition
A causal structure G and distribution P satisfies the Causal Markov Condition,
if P obeys the local Markov condition w.r.t. G.

The Causal Markov condition relies on Reichenbach’s ”common cause
principle", i.e.the set of variables V is causally sufficient for P, that is all the
common causes for the pairs X, Y ∈ V are inside V.
(The causal Markov condition implies sufficiency and stability implies
necessity of G).
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Basics

Parameter priors:independence

Definition
For a Bayesian network structure G, the global parameter independence
assumption means that

P(θ|G) =

n∏
i=1

p(θi|G), (1)

where θi denotes the parameters corresponding to the conditional p(Xi|Pa(Xi))
in G. The local parameter independence assumption means that

p(θi|G) =

qi∏
j=1

p(θij|G), (2)

where qi denotes the number of parental configurations (pa(Xi)) for Xi in G
and θij denotes the parameters corresponding to the conditional p(Xi|pa(Xi)j)
in some fixed ordering of the pa(Xi) configurations. The parameter
independence assumption means global and local parameter independence.
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Basics

Conjugate priors, exponential family

Definition
A family F of prior distributions p(θ) is said to be conjugate for a class of
sampling distributions p(x|θ), if the posteriors p(θ|x) also belongs to F .

In general a conjugate prior is updated to posterior using only an appropriate
statistics of the observations to update its parametrization. It shows that the
parameters frequently has an intuitive interpretation based on observations,
that is in the prior specification the parameters corresponds to real or virtual
past observations.
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Basics

The Beta distibution

Assume that x denotes the sum of 1s of n independent and identically
distributed (i.i.d.) Bernoulli trials, that is we assume a binomial sampling
distribution. If the prior is specified using a Beta distribution, the posterior
remains a Beta distribution with updated parameters.

p(x|θ) = Bin(x|n, θ) =

(
n
x

)
θx(1− θ)n−x (3)

p(θ) = Beta(α, β) = cθα−1(1− θ)β−1 where c =
Γ(α+ β)

Γ(α)Γ(β)
(4)

p(θ|x) =
p(θ)p(x|θ)

p(x)
= c′θα−1+x(1− θ)β−1+n−x = Beta(α+ x, β + n− x)
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Basics

Parameter priors: The Dirichlet prior

In case of a fixed structure G (or we shall see for a fixed ordering of the
variables), the usage of Dirichlets with parameter independence can be
attractive on its own right to specify a parameter distribution p(θ|G) as follows

p(θ|G) =
n∏

i=1

qi∏
j=1

Dir(θij|Nij) ∝
n∏

i=1

qi∏
j=1

ri∏
k=1

θNijk−1 (5)
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Basics

Structure priors
The global noninformative deviation prior [?] is derived from an a priori
”reference" network structure G0 by modeling each missing or extra edge eij

independently with a uniform probability κ:

P(G) ∝ κδ,where δ =
∑

1≤i<j≤n

I{(eij∈G)∧(eij /∈G0)∨(eij /∈G)∧(eij∈G0)}.

The feature priors are defined proportionally by the product of priors for the
individual features (as they were totally independent). By denoting the value
of feature Fi in G with Fi(G) = fi i = 1, . . . K

P(G) = c
K∏

i=1

p(Fi(G)), (6)

The structure modularity holds, if each feature Fi(G) depends only on the
parental set of Xi for i = 1, . . . n, defining the parental prior

P(G) ∝
n∏

i=1

p(pa(Xi,G)). (7)
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DAG space

DAG space I.

The cardinality of the space of DAGs is given by the following recursion [?]

f(n) =
n∑

i=1

(−1)i+12i(n−1)f(n− i) with f(0) = 1. (8)

This is bounded above with the number of the combinations of the edges
between different nodes (2n(n−1) ), because of the exclusions by the
DAG-constraint. But it is still super-exponential even with a bound k on the
maximum number of parents (consider that the number of parental sets for a
given ordering of the variables is in the order of nkn, so 2O(kn log n).
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DAG space

DAG space II.

The number of orderings, DAGs and order-compatible DAGs with parental
constraints. The columns shows respectively the number variables (nodes)
(n), DAGs (|DAG(n)|), DAGs compatible with a given ordering (|G≺|), DAGs
compatible with a given ordering and with maximum parental set size <=4
(|G|π|≤4
≺ |) and <=2 (|G|π|≤2

≺ |), the number of orderings (permutations) (| ≺ |)
and the total number of parental sets in an order-compatible DAG |π≺| and in
an order-compatible DAG with maximum parental set size <=4 (||π≺| ≤ 4|)
and <=2 (||π≺| ≤ 2|).

n |DAG(n)| |G≺| |G|π|≤4
≺ | |G|π|≤2

≺ | | ≺ | |π≺| ||π≺| ≤ 4| ||π≺| ≤ 2|
5 2.9e+004 1e+003 1e+003 6.2e+002 1.2e+002 30 30 24
6 3.8e+006 3.3e+004 3.2e+004 9.9e+003 7.2e+002 62 61 40
7 1.1e+009 2.1e+006 1.8e+006 2.2e+005 5e+003 1.3e+002 1.2e+002 62
8 7.8e+011 2.7e+008 1.8e+008 6.3e+006 4e+004 2.5e+002 2.2e+002 91
9 1.2e+015 6.9e+010 2.9e+010 2.3e+008 3.6e+005 5.1e+002 3.8e+002 1.3e+002

10 4.2e+018 3.5e+013 7.5e+012 1.1e+010 3.6e+006 1e+003 6.4e+002 1.7e+002
15 2.4e+041 4.1e+031 2.1e+027 3.1e+019 1.3e+012 3.3e+004 4.9e+003 5.7e+002
35 2.1e+213 1.3e+179 1.8e+109 8.5e+068 1e+040 3.4e+010 3.8e+005 7.2e+003
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DAG space

The complexity of BN learning

The NP-hardness of finding a Bayesian network for the observations .

Theorem
Let V be a set of variables with joint distribution p(V). Assume that an oracle is
available that reveals in O(1) time whether an independence statement holds in
p. Let 0 < k ≤ |V| and s = 1

2 n(n− 1)− 1
2 k(k− 1). Then, the problem of

deciding whether or not there is a (non-minimal) Bayesian network that
represents p with less or equal to s edges by consulting the oracle is NP-complete.

The NP-hardness of finding a best scoring Bayesian network (i.e. the
NP-hardness of optimization over DAGs).

Theorem
Let V be a set of variables, DN is a complete data set, S(G,DN) is a score function
and a real value c. Then, the problem of deciding whether or not there exist a
Bayesian network structure G0 defined over the variables V, where each node in
G0 has at most 1 < k parents, such that c ≤ S(G0,DN) is NP-complete.
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DAG space

Constraint-based BN learning: IC
The Inductive Causation algorithm (assuming a stable distribution P):

1. Skeleton: Construct an undirected graph (skeleton), such that variables
X, Y ∈ V are connected with an edge iff ∀S(X ⊥⊥ Y|S)P, where
S ⊆ V \ {X, Y} .

2. v-structures: Orient X → Z← Y iff X, Y are nonadjacent, Z is a common
neighbour and ¬∃S that (X ⊥⊥ Y|S)P, where S ⊆ V \ {X, Y} and Z ∈ S.

3. propagation: Orient undirected edges without creating new v-structures
and directed cycle.

Theorem
The following four rules are necessary and sufficient.

R1 if (a 6−c) ∧ (a→ b) ∧ (b− c), then b→ c

R2 if (a→ c→ b) ∧ (a− b), then a→ b

R3 if (a− b) ∧ (a− c→ b) ∧ (a− d→ b) ∧ (c 6−d), then a→ b

R4 if (a− b) ∧ (a− c→ d) ∧ (c→ d→ b) ∧ (c 6−b) ∧ (a− d), then a→ b
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DAG space

Local Causal inference: inferring about hidden confounders

The Causal Markov Condition (i.e. the assumption of no hidden common
causes) guarantees that from the observation of no more than three variables
we can infer causal relation as follows. The direct dependencies between X, Y
and Y, Z without direct dependence between X, Z and without conditional
independence such that (X ⊥⊥ Z|{Y, S}) (i.e. with conditional dependence)
should be expressed with a unique converging orientation X → Y ← Z
according to the global semantics (i.e. DAG-based relation (X ⊥⊥ Y|Z)G from
Def. ??) resulting in a v-structure. If potential confounders are not excluded a
priori, we have to observe at least one more variable to possibly exclude that
direct dependency is caused by a confounder. Continuing the example,
assume furthermore that we observe a forth variable W with the direct
dependence Y,W and conditional independence (W ⊥⊥ {X, Z}|Y) (because of
stability W depends on X and Z). As Y induces independence the global
semantics dictates an Y → W (note the earlier v-structure) and it cannot be
mediated by a confounder ∗ Y → ∗ → W (Y as an effect would not block).
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The ML learning: Optimality of relative frequencies
Relative frequency is a ML estimator in multinomial sampling:
Assume i = 1, . . . K outcomes assuming multinomial sampling with
parameters θ = {θi} and observed occurrencies n = {ni} (N =

∑
i ni). Then

log
p(n|θML)

p(n|θ) = log
∏

i(θ
ML
i )ni∏

i(θi)ni
=
∑

i

ni log
θML

i

θi
= N

∑
i

θML
i log

θML
i

θi
> 0.

where the last quantity is the “KL-distance”, which is always positive: if p̂i, pi

are discrete probability distributions, the Kullback-Leibler (semi)distance KL
are as follows (it is always positive)

KL(p‖p̂) =
∑

i

pi log(pi/p̂i) (9)

0 < KL(θML||θ) (10)

−KL(p||q) =
∑

i

pi log(qi/pi) ≤
∑

i

pi((qi/pi)− 1) = 0 (11)

using log(x) ≤ x − 1.
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The ML learning I.

It can be shown that this is maximized by the selection of θ∗ijk = Nijk/Nij+,
where Nijk are the occurrences of value xk and parental configuration qj for
variable Xi and its parental set Pa(Xi) (Nij+ is the appropriate sum). By
substituting this maximum likelihood parameter selection back, we get

ML(G; DN) = p(DN|G,θ∗) =

N∏
l=1

n∏
i=1

p(x(l)
i |pa(l)

i ) (12)

=
n∏

i=1

qi∏
j=1

ri∏
k=1

Nijk

Nij+

Nijk

(13)

by taking logarithm, rearranging and expanding with N

log(ML(G; DN)) = N
n∑

i=1

qi∑
j=1

Nij+

N

ri∑
k=1

Nijk

Nij+
log(Nijk/Nij+) (14)
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The ML Learning II
Using conditional entropy H(Y|X) =

∑
x p(x)

∑
y p(y|x) log(p(y|x)), the chain

rule H(X, Y) = H(Y|X) + H(X) and the definition of mutual information
I(Y; X) = H(Y)− H(Y|X) , it can be rewritten as

log(ML(G; DN)) = −N
n∑

i=1

H(Xi|Pa(Xi,G)) (15)

= N
n∑

i=1

I(Xi; Pa(Xi,G))− N
n∑

i=1

H(Xi) (16)

(17)

This shows that the maximization of the ML score is equivalent with finding a
BN parameterized with the observed frequencies that has minimum entropy
or that we are finding a BN parameterized with the observed frequencies that
has maximum mutual information between its children and their parents (16,
Note the close connection of this reading to the concept that causal ordering is
related to the (maximal) determination of each variable by the earlier
variables.
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Complexity regularization

Because of the monotonicity of mutual information — if Pa(Xi) ⊂ Pa(Xi)
′, then

I(Xi; Pa(Xi)) ≤ I(Xi; Pa′(Xi)) — so the complete network maximizes the
maximum likelihood score. However score functions such as the MDL-score
derived from the minimum description length (MDL) principle or the Bayesian
information criterion (BIC)-score derived with a non-informative Bayesian
approach contains various complexity penalty terms. We shall use only the
BIC-score defined as follows (for overviews of other score functions and for
the derivation of the BIC-score )

BIC(G; DN) = log(ML(G; DN))− 1/2dim(G) log(N) (18)

where dim(G) denotes the number of free parameters.
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Score equivalence: BIC

Definition
A score function S(G; DN) is called score equivalent, if for each pair of
observationally equivalent Bayesian network structure G1,G2 the scores are
equal S(G1; DN) = S(G2; DN) for all DN.

Theorem
The BIC(G; DN) scoring metric is score equivalent .

The score equivalence of the BIC score is the direct consequence of the result
that the number of free parameters (that is the term dim(G)) are equal in
observationally equivalent Bayesian networks.
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Asymptotic consistency

Theorem
Let V be a set of variables. Let the prior distribution p(G) over Bayesian network
structures be positive. Let p(V) be a positive and stable distribution and G0 is a
corresponding perfect map (i.e. a Bayesian network representing exactly all the
independencies in p(V), see Def. ??). Now, let DN is an i.i.d. data set generated
from p(V). Then, for any network structure G over V that is not a perfect map of
p(V) we have that

lim
N→∞

BDe(G0; DN)− BDe(G; DN) = −∞ and also (19)

lim
N→∞

BICe(G0; DN)− BDe(G; DN) = −∞ (20)

For further results about the asymptotic optimality of the scores for not stable
distributions.

PGMs Department of Measurement and Information Systems



Overview Assmptions Asymptotic learning Score-based learning Bayesian learning

Rate of convergence

Furthermore, a rate of convergence result is also derived and a corresponding
sample complexity N(ε, δ) to select an appropriate sample size for a given
accuracy between the target distribution p0 and the distribution pBN

represented by the learned Bayesian network with a given confidence

p(DN : KL(p0|p̂BN(DN)) > ε) < δ (21)
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The Dirichlet distribution

Assume that the observed sequence Dn = {Xi; i = 1, 2 . . . , n} contains i.i.d.
multinomial samples with L discrete values. The prior is a Dirichlet prior with
hyperparameters α = α1, . . . , αL and α. =

∑
i αi.

p(θ) = Di(α) = c
∏

i

θαi−1 where c =
Γ(α.)∏
i Γ(αi)

(22)
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Dirichlet distribution II.
It is conjugate for multinomial sampling, so the posterior predictive
distributions are the updated Dirichlet with hyperparameters αj at step j and
the posterior prediction for xj (i.e. the marginal posterior probability E[θxj ]) is

p(xj|x1, . . . , xj−1) =

∫
p(xj|θ)p(θ|x1, . . . , xj−1)dθ (23)

=

∫
p(xj|θ)Dir(θ|αj)dθ (24)

= c
∫ L∏

i=1

θ
1(xj=ri)

i

∏
i

θαji−1dθ where c =
Γ(αj,.)∏
i Γ(αj,i)

(25)

= c
∫ ∏

i

θαj+1−1dθ (26)

=
Γ(αj.)

Γ(αj+1,.)

∏
i Γ(αj+1,i)∏

i Γ(αji)
(27)

=
αj,xj

αj,.
(28)

(29)
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Dirichlet distribution III.

The marginal probability of the data set Dn with ni occurrences of value ri

p(x1, . . . , xn|Dir(α1)) =
n∏

i=1

pi(xi|x1, . . . , xi−1) (30)

=

∏L
i=1 α1,i..(α1,i + ni)

α1,. . . . (α1,. + n)
(31)

=
Γ(α1,.)

Γ(α1,. + n)

L∏
i=1

Γ(α1,i + ni)∏L
i=1 Γ(α1,i)

(32)
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Parameter priors:likelihood equivalence

The concept of likelihood equivalence extends observational equivalence of
the structure coherently to the parameters .

Definition
The likelihood equivalence assumption means that for two observationally
equivalent Bayesian network structures G1,G2,

p(θV |G1) = p(θV |G2), (33)

where θV denotes a non-redundant set of the multinomial parameters for the
joint distribution over V.
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Parameter priors: Dirichlet priors

Theorem
The assumption of positive densities, likelihood equivalence and parameter
independence for complete structures Gc implies that p(θU|ξ) is a Dirichlet
distribution with hyperparameters Nx1,...,xn .

The p(θi|Gi) = JGi p(θV |ξ), where JGi is the Jacobian of the transformation
from θV to θGi . To state the following theorem it is convenient to rewrite the
hyperparameters as N′ =

∑
x1,...,xn

Nx1,...,xn called prior/virtual sample size
and ppriorx1, . . . , xn = E[θx1,...,xn ] = Nx1,...,xn/N

′. Furthermore, we need the
following concept.

Definition
The parameter modularity assumption means that if pa(Xi) are identical in
two Bayesian network structures G1,G2, then

p(θij|G1) = p(θij|G2), (34)

where θij denotes the parameters corresponding to the conditional
p(Xi|pa(Xi)j) in some fixed ordering of the pa(Xi) configurations.
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Parameter priors: Dirichlet priors II.
The assumption of parameter modularity allows to induce parameter
distributions for incomplete models from complete model.

Theorem
If p(θV |ξ) is a Dirichlet distribution with hyperparameters
Nx1,...,xn = N′px1, . . . , xn and the parameter modularity assumption holds and
for all complete network Gc p(Gc) > 0, then for any network structure G the
parameter independence and the likelihood equivalence holds and the
decomposed distribution of the parameters is the product of Dirichlet
distributions

p(θ|G) =

n∏
i=1

qi∏
j=1

ri∏
k=1

θN′pprior(Xi=k,pa(Xi,G)=paij)−1 (35)

where ri denotes the number of values of Xi, qi denotes the number of parental
configurations (pa(Xi,G)) for Xi in G and paij denotes the values of the parents
for the jth parental configuration in some fixed ordering of the pa(Xi)
configurations.

PGMs Department of Measurement and Information Systems



Overview Assmptions Asymptotic learning Score-based learning Bayesian learning

BD score
By assuming N complete observations, i.i.d. multinomial sampling, Bayesian
network model with parameter independence and Dirichlet parameter priors,
the observation of a complete case results in a local standard Bayesian
updating of the hyperparameters of the appropriate Dirichlets and retains the
parameter independence. The maintained parameter independence allows a
standard parental decomposition w.r.t. the Bayesian network G for each
observation, which allows the following rearrangement

p(C1, . . . ,CN|G) =

N∏
l=1

n∏
i=1

pl(x
(l)
i |pa(l)

i ) (36)

=

n∏
i=1

N∏
l=1

pl(x
(l)
i |pa(l)

i ) (37)

=

n∏
i=1

qi∏
j=1

N∏
l=1

pl(x
(l)
i |paij)

1(paij=pa(l)
i ) (38)

where pa(l)
i denotes the value(s) of parental set of Xi in case l.

PGMs Department of Measurement and Information Systems



Overview Assmptions Asymptotic learning Score-based learning Bayesian learning

BD score II

This can be combined with the earlier result of the marginal probability of the
data for a single Dirichlet prior and multinomial sampling.That is for each
variable Xi0 and parental configurations j0 independently

N∏
l=1

pl(x
(l)
i0
|pai0 j0 ,G)

1(pai0 j0
=pa(l)

i0
)

=

∏ri0
k=1 αi0 j0k..(αi0 j0k + nk)

αi0 j0+ . . . (αi0 j0+ + n)
(39)

=
Γ(αi0 j0+)

Γ(αi0 j0+ + ni0 j0+)

ri0∏
k=1

Γ(αi0 j0k+ni0 j0k )

Γ(αi0 j0k)

where ri denotes the cardinality of the discrete values of variable Xi, αijk the
initial Dirichlet hyperparameters and nijk the number of occurrences for the
variable Xi, its parental configuration paij and its value rk. The sign + denotes
the appropriate marginals.
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BD score III.

Putting everything together, if the prior satisfies the structure modularity, then
the posterior of the Bayesian network (structure) has the following product
form

p(G|DN) ∝
n∏

i=1

p(Pa(Xi,G))S(Xi, Pa(Xi,G),DN) where (40)

S(Xi, Pa(Xi,G),DN) =

qi∏
j=1

Γ(αij+)

Γ(αij+ + nij+)

ri∏
k=1

Γ(αijk+nijk )

Γ(αijk)
. (41)
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Score equivalence: BD

Theorem
The BDe(G; DN) scoring metric is likelihood equivalent, that is if G1,G2 are
observational equivalent, then p(DN|G1) = p(DN|G2). Furthermore, if the
hypotheses are the equivalence classes or the prior is equal for such G1,G2, then
the BDe scoring metric is score equivalent.
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Thank you for your attention!

Questions?
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