Adapted from AIMA slides

Full Bayesian inference (Learning)

Peter Antal antal@mit.bme.hu

Outline

- Learning paradigms
 - Learning as inference
 - Bayesian learning, full Bayesian inference, Bayesian model averaging
 - Model identification, maximum likelihood learning
- Probably Approximately Correct learning

Principles for induction

- Epicurus' (342? B.C. 270 B.C.) principle of multiple explanations which states that one should keep all hypotheses that are consistent with the data.
- The principle of Occam's razor (1285 1349, sometimes spelt Ockham). Occam's razor states that when inferring causes *entities should not be multiplied beyond necessity*. This is widely understood to mean: Among all hypotheses consistent with the observations, choose the simplest. In terms of a prior distribution over hypotheses, this is the same as giving simpler hypotheses higher a priori probability, and more complex ones lower probability.

Bayesian inference with multiple models

Assume multiple models $M_i = (S_i, \theta_i)$ with prior $p(M_i)$ $i = 1, \ldots, M$.

The inference p(Q = q | E = e) can be performed as follows:

 $p(q|e) = \sum_{i=1,...,M} p(q, M_i|e) = \sum_{i=1,...,M} p(q|M_i, e) p(M_i|e)$

Note that $p(M_i|e)$ is a posterior over models with evidence e:

$$p(M_i|e) = \frac{p(e|M_i)p(M_i)}{p(e)} \propto p(e|M_i)p(M_i)$$

i.e., the evidence e reweight our beliefs in multiple models.

The inference is performed by **Bayesian Model Averaging** (BMA). Epicurus' (342(?) B.C. - 270 B.C.) principle of multiple explanations which states that one should keep all hypotheses that are consistent with the data.

Bayesian model averaging

Beside models, assume N multiple complete observations D_N .

The standard inference $p(Q = q | E = e, D_N)$ is defined as:

 $p(q|e, D_N) = \sum_{i=1,...,M} p(q, M_i|e, D_N) = \sum_{i=1,...,M} p(q|M_i, e, D_N) p(M_i|e, D_N)$

Because $p(q|M_i, e, D_N) = p(q|M_i, e)$ and $p(M_i|e, D_N) \approx p(M_i|D_N)$:

 $p(q|e, D_N) \approx \sum_{i=1,\dots,M} p(q|M_i, e) p(M_i|D_N)$

where again $p(M_i|D_N)$ is a posterior after observations D_N :

$$p(M_i|D_N) = \frac{p(D_N|M_i)p(M_i)}{p(e)} \propto \underbrace{p(D_N|M_i)}_{likelihood} \underbrace{p(M_i)}_{prior}.$$

i.e., our rational foundation, probability theory, automatically includes and normatively defines learning from observations as standard Bayesian inference!

Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space

H is the hypothesis variable, values h_1, h_2, \ldots , prior $\mathbf{P}(H)$ *j*th observation d_j gives the outcome of random variable D_j training data $\mathbf{d} = d_1, \ldots, d_N$

Given the data so far, each hypothesis has a posterior probability:

 $P(h_i|\mathbf{d}) = \alpha P(\mathbf{d}|h_i) P(h_i)$

where $P(\mathbf{d}|h_i)$ is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

 $\mathbf{P}(X|\mathbf{d}) = \sum_{i} \mathbf{P}(X|\mathbf{d}, h_{i}) P(h_{i}|\mathbf{d}) = \sum_{i} \mathbf{P}(X|h_{i}) P(h_{i}|\mathbf{d})$

No need to pick one best-guess hypothesis!

Bayesian model averaging

View learning as Bayesian updating of a probability distribution over the hypothesis space

H is the hypothesis variable, values h_1, h_2, \ldots , prior $\mathbf{P}(H)$

*j*th observation d_j gives the outcome of random variable D_j training data $\mathbf{d} = d_1, \ldots, d_N$

Given the data so far, each hypothesis has a posterior probability:

 $P(h_i|\mathbf{d}) = \alpha P(\mathbf{d}|h_i)P(h_i)$

where $P(\mathbf{d}|h_i)$ is called the likelihood

Predictions use a likelihood-weighted average over the hypotheses:

 $\mathbf{P}(X|\mathbf{d}) = \sum_{i} \mathbf{P}(X|\mathbf{d}, h_{i}) P(h_{i}|\mathbf{d}) = \sum_{i} \mathbf{P}(X|h_{i}) P(h_{i}|\mathbf{d})$

No need to pick one best-guess hypothesis!

Russel&Non-Lan-Artificial intelligence, ch.20

Bayesian Model Averaging example

Suppose there are five kinds of bags of candies:

10% are h_1 : 100% cherry candies 20% are h_2 : 75% cherry candies + 25% lime candies 40% are h_3 : 50% cherry candies + 50% lime candies 20% are h_4 : 25% cherry candies + 75% lime candies 10% are h_5 : 100% lime candies

Then we observe candies drawn from some bag: ••••••••••••

What kind of bag is it? What flavour will the next candy be?

Russel&Norvig: Artificial intelligence

Learning rate for models

Number of samples in d

Russel&Norvig: Artificial intelligence

Learning rate for model predictions

Russel&Norvig: Artificial intelligence

MAP approximation

Summing over the hypothesis space is often intractable (e.g., 18,446,744,073,709,551,616 Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose $h_{\rm MAP}$ maximizing $P(h_i | {\bf d})$

I.e., maximize $P(\mathbf{d}|h_i)P(h_i)$ or $\log P(\mathbf{d}|h_i) + \log P(h_i)$

Log terms can be viewed as (negative of)

bits to encode data given hypothesis + bits to encode hypothesis This is the basic idea of minimum description length (MDL) learning

For deterministic hypotheses, $P(\mathbf{d}|h_i)$ is 1 if consistent, 0 otherwise \Rightarrow MAP = simplest consistent hypothesis (cf. science)

ML approximation

For large data sets, prior becomes irrelevant

Maximum likelihood (ML) learning: choose h_{ML} maximizing $P(\mathbf{d}|h_i)$

I.e., simply get the best fit to the data; identical to MAP for uniform prior (which is reasonable if all hypotheses are of the same complexity)

ML is the "standard" (non-Bayesian) statistical learning method

Maximum likelood model selection

Inductive learning

Simplest form: learn a function from examples

f is the target function

An example is a pair (x, f(x))

Problem: find a hypothesis hsuch that $h \approx f$ given a training set of examples

(This is a highly simplified model of real learning:

- Ignores prior knowledge
- Assumes examples are given)

The Probably Approximately Correct PAC-learning

A single estimate of the expected error for a given hypothesis is convergent, but can we estimate the errors for all hypotheses uniformly well??

Example from concept learning

X: i.i.d. samples. n: sample size H: hypotheses

Assume that the true hypothesis *f* is element of the hypothesis space **H**.

Define the error of a hypothesis h as its misclassification rate:

$$error(h) = p(h(x) \neq f(x))$$

Hypothesis h is **approximately correct** if $error(h) < \varepsilon$

(*c* is the "accuracy")

For $h \in H_{bad}$ $error(h) > \varepsilon$ H can be separated to $H_{<\varepsilon}$ and H_{bad} as $H_{\varepsilon<}$

By definition for any $h \in H_{bad}$, the probability of error is larger than ε

 \rightarrow thus the probability of no error is less than $\leq (1 - \varepsilon)$

Thus for m samples for a $h_b \in H_{bad}$:

$$p(D_n:h_b(x) = f(x)) \le (1-\varepsilon)^n$$

For any $h_b \in H_{bad}$, this can be bounded as

```
p(D_n: \exists h_b \in H, h_b(x) = f(x)) \le \\ \le |H_{bad}| (1 - \varepsilon)^n \\ \le |H| (1 - \varepsilon)^n
```

To have at least δ "probability" of approximate correctness:

 $|H| (1 - \varepsilon)^n \le \delta$

By expressing the sample size as function of ϵ accuracy and δ confidence we get a bound for sample complexity

 $1/\varepsilon(\ln|H| + \ln\left(\frac{1}{\overline{\delta}}\right)) \le n$

Hypothesis spaces

How many distinct concepts/decision trees with *n* Boolean <u>attributes?</u>

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}
- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Summary

- Normative predictive probabilistic inference
 - performs Bayesian model averaging
 - implements learning through model posteriors
 - avoids model identification
- Model identification is hard
 - Probably Approximately Correct learning