Adapted from AIMA slides

Full Bayesian inference (Learning)

Peter Antal antal@mit.bme.hu

Outline

- Learning paradigms
- Learning as inference
- Bayesian learning, full Bayesian inference, Bayesian model averaging
- Model identification, maximum likelihood learning
- Probably Approximately Correct learning

Principles for induction

- Epicurus' (342? B.C. - 270 B.C.) principle of multiple explanations which states that one should keep all hypotheses that are consistent with the data.
- The principle of Occam's razor (1285-1349, sometimes spelt Ockham). Occam's razor states that when inferring causes entities should not be multiplied beyond necessity. This is widely understood to mean: Among all hypotheses consistent with the observations, choose the simplest. In terms of a prior distribution over hypotheses, this is the same as giving simpler hypotheses higher a priori probability, and more complex ones lower probability.

Bayesian inference with multiple models

Assume multiple models $M_{i}=\left(S_{i}, \theta_{i}\right)$ with prior $p\left(M_{i}\right) i=1, \ldots, M$.
The inference $p(Q=q \mid E=e)$ can be performed as follows:

$$
p(q \mid e)=\sum_{i=1, \ldots, M} p\left(q, M_{i} \mid e\right)=\sum_{i=1, \ldots, M} p\left(q \mid M_{i}, e\right) p\left(M_{i} \mid e\right)
$$

Note that $p\left(M_{i} \mid e\right)$ is a posterior over models with evidence e :

$$
p\left(M_{i} \mid e\right)=\frac{p\left(e \mid M_{i}\right) p\left(M_{i}\right)}{p(e)} \propto p\left(e \mid M_{i}\right) p\left(M_{i}\right)
$$

i.e., the evidence e reweight our beliefs in multiple models.

The inference is performed by Bayesian Model Averaging (BMA). Epicurus' (342(?) B.C. - 270 B.C.) principle of multiple explanations which states that one should keep all hypotheses that are consistent with the data.

Bayesian model averaging

Beside models, assume N multiple complete observations D_{N}.
The standard inference $p\left(Q=q \mid E=e, D_{N}\right)$ is defined as:

$$
p\left(q \mid e, D_{N}\right)=\sum_{i=1, \ldots, M} p\left(q, M_{i} \mid e, D_{N}\right)=\sum_{i=1, \ldots, M} p\left(q \mid M_{i}, e, D_{N}\right) p\left(M_{i} \mid e, D_{N}\right)
$$

Because $p\left(q \mid M_{i}, e, D_{N}\right)=p\left(q \mid M_{i}, e\right)$ and $p\left(M_{i} \mid e, D_{N}\right) \approx p\left(M_{i} \mid D_{N}\right)$:

$$
p\left(q \mid e, D_{N}\right) \approx \sum_{i=1, \ldots, M} p\left(q \mid M_{i}, e\right) p\left(M_{i} \mid D_{N}\right)
$$

where again $p\left(M_{i} \mid D_{N}\right)$ is a posterior after observations D_{N} :

$$
p\left(M_{i} \mid D_{N}\right)=\frac{p\left(D_{N} \mid M_{i}\right) p\left(M_{i}\right)}{p(e)} \propto \underbrace{p\left(D_{N} \mid M_{i}\right)}_{\text {likelihood }} \underbrace{p\left(M_{i}\right)}_{\text {prior }} .
$$

i.e., our rational foundation, probability theory, automatically includes and normatively defines learning from observations as standard Bayesian inference!

Full Bayesian learning

View learning as Bayesian updating of a probability distribution over the hypothesis space
H is the hypothesis variable, values h_{1}, h_{2}, \ldots, prior $\mathbf{P}(H) j$ th observation d_{j} gives the outcome of random variable D_{j} training data $\mathrm{d}=d_{1}, \ldots, d_{N}$

Given the data so far, each hypothesis has a posterior probability:

$$
P\left(h_{i} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)
$$

where $P\left(\mathbf{d} \mid h_{i}\right)$ is called the likelihood
Predictions use a likelihood-weighted average over the hypotheses:

$$
\mathbf{P}(X \mid \mathbf{d})=\sum_{i} \mathbf{P}\left(X \mid \mathbf{d}, h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)=\sum_{i} \mathbf{P}\left(X \mid h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)
$$

No need to pick one best-guess hypothesis!

Bayesian model averaging

View learning as Bayesian updating of a probability distribution over the hypothesis space
H is the hypothesis variable, values h_{1}, h_{2}, \ldots, prior $\mathbf{P}(H)$
j th observation d_{j} gives the outcome of random variable D_{j} training data $\mathbf{d}=d_{1}, \ldots, d_{N}$

Given the data so far, each hypothesis has a posterior probability:

$$
P\left(h_{i} \mid \mathbf{d}\right)=\alpha P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)
$$

where $P\left(\mathbf{d} \mid h_{i}\right)$ is called the likelihood
Predictions use a likelihood-weighted average over the hypotheses:

$$
\mathbf{P}(X \mid \mathbf{d})=\sum_{i} \mathbf{P}\left(X \mid \mathbf{d}, h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)=\sum_{i} \mathbf{P}\left(X \mid h_{i}\right) P\left(h_{i} \mid \mathbf{d}\right)
$$

No need to pick one best-guess hypothesis!

Russel\& Artificial intelligence, ch. 20

Bayesian Model Averaging example

Suppose there are five kinds of bags of candies:
10% are $h_{1}: 100 \%$ cherry candies
20% are $h_{2}: 75 \%$ cherry candies $+25 \%$ lime candies
40% are $h_{3}: 50 \%$ cherry candies $+50 \%$ lime candies
20% are $h_{4}: 25 \%$ cherry candies $+75 \%$ lime candies 10% are $h_{5}: 100 \%$ lime candies

Then we observe candies drawn from some bag:
What kind of bag is it? What flavour will the next candy be?

Learning rate for models

Russel\&Norvig: Artificial intelligence

Learning rate for model predictions

Russel\&Norvig: Artificial intelligence

MAP approximation

Summing over the hypothesis space is often intractable (e.g., $18,446,744,073,709,551,616$ Boolean functions of 6 attributes)

Maximum a posteriori (MAP) learning: choose $h_{\text {MAP }}$ maximizing $P\left(h_{i} \mid \mathbf{d}\right)$
I.e., maximize $P\left(\mathbf{d} \mid h_{i}\right) P\left(h_{i}\right)$ or $\log P\left(\mathbf{d} \mid h_{i}\right)+\log P\left(h_{i}\right)$

Log terms can be viewed as (negative of)
bits to encode data given hypothesis + bits to encode hypothesis
This is the basic idea of minimum description length (MDL) learning
For deterministic hypotheses, $P\left(\mathrm{~d} \mid h_{i}\right)$ is 1 if consistent, 0 otherwise
$\Rightarrow \mathrm{MAP}=$ simplest consistent hypothesis (cf. science)

ML approximation

For large data sets, prior becomes irrelevant
Maximum likelihood (ML) learning: choose $h_{\text {ML }}$ maximizing $P\left(\mathrm{~d} \mid h_{i}\right)$
I.e., simply get the best fit to the data; identical to MAP for uniform prior
(which is reasonable if all hypotheses are of the same complexity)
ML is the "standard" (non-Bayesian) statistical learning method

Maximum likelood model selection

Inductive learning

- Simplest form: learn a function from examples
f is the target function
An example is a pair $(x, f(x))$
Problem: find a hypothesis h such that $h \approx f$ given a training set of examples
(This is a highly simplified model of real learning:
Ignores prior knowledge
Assumes examples are given)

The Probably Approximately Correct PAC-learning

A single estimate of the expected error for a given hypothesis is convergent, but can we estimate the errors for all hypotheses uniformly well??

Example from concept learning
X: i.i.d. samples.
n : sample size
H: hypotheses

Assume that the true hypothesis f is element of the hypothesis space \mathbf{H}.

Define the error of a hypothesis h as its misclassification rate:

$$
\operatorname{error}(h)=p(h(x) \neq f(x))
$$

Hypothesis h is approximately correct if

$$
\operatorname{error}(h)<\varepsilon
$$

(ϵ is the "accuracy")
For $h \in H_{\text {bad }}$

$$
\operatorname{error}(h)>\varepsilon
$$

H can be separated to $\mathrm{H}_{<\epsilon}$ and $\mathrm{H}_{\text {bad }}$ as $\mathrm{H}_{\epsilon<}$

By definition for any $h \in H_{\text {bad }}$, the probability of error is larger than ε
\rightarrow thus the probability of no error is less than $\leq(1-\varepsilon)$

Thus for m samples for $a h_{b} \in H_{b a d}$:

$$
p\left(D_{n}: h_{b}(x)=f(x)\right) \leq(1-\varepsilon)^{n}
$$

For any $\mathrm{h}_{\mathrm{b}} \in H_{\text {bad }}$, this can be bounded as

$$
\begin{gathered}
p\left(D_{n}: \exists h_{b} \in H, h_{b}(x)=f(x)\right) \leq \\
\leq\left|H_{\text {bad }}\right|(1-\varepsilon)^{n} \\
\leq|H|(1-\varepsilon)^{n}
\end{gathered}
$$

To have at least δ "probability" of approximate correctness:

$$
|H|(1-\varepsilon)^{n} \leq \delta
$$

By expressing the sample size as function of ϵ accuracy and δ confidence we get a bound for sample complexity

$$
1 / \varepsilon\left(\ln |H|+\ln \left(\frac{1}{\delta}\right)\right) \leq \mathrm{n}
$$

Hypothesis spaces

How many distinct concepts/decision trees with n Boolean attributes?
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$

- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Summary

- Normative predictive probabilistic inference
- performs Bayesian model averaging
- implements learning through model posteriors
- avoids model identification
- Model identification is hard
- Probably Approximately Correct learning

