
Hidden Markov Models: learning and extensions

March 22, 2017

PGMs

Topics

I Basics:
I Concepts from information theory
I Relative frequency as maximum likelihood estimates

I Hidden Markov Models
I Basic inference methods
I Learning and inference

I Parameter learning in HMMs
I Approaches for incomplete data

I Data imputation (completion) by most probable values (Viterbi)
I Data imputation (completion) by random values (Gibbs)
I Exact calculations and analytic usage of expectations (E-M)

I The Expectation-Maximization method
I The Baum-Welch method

PGMs

Entropy and mutual information
If pi is a discrete probability distribution, its entropy is

H(p) = −
∑

i

pi log(pi), (1)

Conditional entropy H(Y|X) is defined as
∑

x p(x)
∑

y p(y|x) log(p(y|x)).
Mutual information is defined as I(Y; X) = H(Y)− H(Y|X). The (conditional)
mutual information can be written as

MIp(X; Y|Z) = KL(p(X, Y|Z)|p(X|Z)p(Y|Z)). (2)

The chain rule for (joint distributions) and entropies:
p(X1, . . . , Xn) =

∏
i p(Xi|X1, . . . , Xi−1)

H(X1, . . . , Xn) =
∑

i H(Xi|X1, . . . , Xi−1)
And also

= H(X1, . . . , Xn) (3)

=

n∑
i=1

H(Xi)−
n∑

i=1

I(Xi; X1, . . . , Xi−1). (4)

PGMs

Optimality of relative frequencies
Relative frequency is a maximum likelihood estimator in multinomial
sampling: Assume i = 1, . . . K outcomes assuming multinomial sampling with
parameters θ = {θi} and observed occurrencies n = {ni} (N =

∑
i ni). Then

log
p(n|θML)

p(n|θ) = log
∏

i(θ
ML
i)ni∏

i(θi)ni
=

∑
i

ni log
θML

i

θi
= N

∑
i

θML
i log

θML
i

θi
> 0.(5)

We are ready, because the last quantity is the “KL-divergence”, which is always
positive. Proof: if p̂i, pi are discrete probability distributions, the cross-entropy
H and the Kullback-Leibler (semi)distance KL are as follows
H(p‖p̂) = −

∑
i pi log(p̂i)

KL(p‖p̂) =
∑

i pi log(pi/p̂i)

0 < KL(θML||θ):

−KL(p||q) =
∑

i

pi log(qi/pi) ≤
∑

i

pi((qi/pi)− 1) = 0 (6)

using log(x) ≤ x − 1.
Frequently pseudocounts are used to avoid imprecise estimates (e.g. divison by 0)
and prior counts to incorporate bias/expertise.

PGMs

HMM: definition

Hidden Markov Models (definitions/notations following DEKM)

1. π denotes a state sequence (of a Markov chain), πi is the ith state

2. akl the transition probabilities p(πi = l|πi−1 = k) in the MC (extra state 0
for start/end)

3. ek(b) are the emission probabilities p(xi = b|πi = k)

PGMs

Inferences in HMMs

Note |π| = O(|S|L)

-,L p(x, π) = a0πl

∏L
i=1 eπi(xi)aπiπi+1

?,L ”decoding": π∗ = arg maxπ p(x, π)

?,L sequence probability:p(x) =
∑
π p(x, π) (or p(x|M) ”model likelihood" or

filtering)

?,L smoothing/posterior decoding:p(πi = k|x)
?,OK? parametric inference (training/parameteresation)

?,OK? structural inference (model selection)

PGMs

HMM: Viterbi algorithm
Goal: ”decoding": π∗ = arg maxπ p(x, π)
Note: ”best joint-state-sequence explanation" 6= ”joint sequence of best-state-explanations"
Inductive idea: extend most probable paths with length i to i+1
vk(i) denotes the probability of the most probable path ending in state k with observation i
Then

vl(i + 1) = el(xi+1) max
k

(vk(i)akl) (7)

Algorithm 1 Algorithm: Viterbi
Require: HMM,x
Ensure: π∗ = arg maxπ p(x, π)

1: Ini: (i=0): v0(0) = 1,vk(0) = 0 for 0<k
2: for i = 1 to L do
3: vl(i) = el(xi)maxk(vk(i− 1)akl)
4: ptri(l) = arg maxk(vk(i− 1)akl)
5: End: p(x, π∗) = maxk(vk(L)ak0), π∗L = arg maxk(vk(L)ak0)
6: for i = L to 1 do {Traceback}
7: π∗i−1 = ptri(π

∗
i)

Note, small probabilities may cause positive underflow (length can be up to 103 <)=> log.
Note, π∗ = arg maxπ p(x, π) = arg maxπ p(π|x)

PGMs

HMM: forward algorithm
Goal: sequence probability:p(x) =

∑
π p(x, π) (or p(x|M) ”model likelihood" or filtering)

Approximation: p(x) =
∑
π p(x, π) ≈ p(x, π∗) = a0π∗

l

∏L
i=1 eπ∗

i
(xi)aπ∗

i
π∗

i+1
(π∗ by Viterbi)

Inductive idea(dynamic programming): extend the probability of generating observations x1:i being in state k at i
to i+1
By introducing fk(i) = p(x1:i, πi = k), we can proceed

fl(i + 1) = el(xi+1)
∑

k

(fk(i)akl) (8)

Algorithm 2 Algorithm: forward
Require: HMM M,x
Ensure: p(x|M)

1: Ini: (i=0): f0(0) = 1,fk(0) = 0 for 0<k
2: for i = 1 to L do
3: fl(i) = el(xi)

∑
k(fk(i− 1)akl)

4: End: p(x|M) =
∑

k(fk(L)ak0)

Note, we have to sum small probabilities! => log transformation is not enough, scaling methods..

PGMs

HMM: backward algorithm
Goal: smoothing/posterior decoding p(πi = k|x)
Idea: p(πi = k|x) =

p(πi=k,x)
p(x) (p(x) can be computed by the forward algorithm)

p(πi = k, x) = p(πi = k, x1:i)p(xi+1:L|πi = k, x1:i) = fk(i) p(xi+1:L|πi = k)︸ ︷︷ ︸
bk(i)

Ensure: bk(i) = p(xi+1:L|πi = k)
1: Ini: (i=L): bk(L) = ak0 for all k
2: for i = L− 1 to 1 do
3: bk(i) =

∑
l aklel(xi+1)bl(i + 1)

4: End: p(x|M) =
∑

l a0lel(x1)bl(1)

Note, conditionally most probable state at i 6= state in most probable explanation at i.

PGMs

HMM parameter learning

Assume n independent/exhangeable sequences x(1), . . . , x(n)

p(x(1), . . . , x(n)|θ) =
n∏

i=1

p(x(i)|θ) (9)

1. structure known, state sequences are known: ML parameter computation
from counts

2. structure known, state sequences are unknown
2.1 manual/heuristic matching: ML parameter computation from counts
2.2 : Viterbi training: iterative ”multiple alignment-ML parameter computation

from counts"
2.3 : Baum-Welch training: iterative computation of mean counts and improved

parameters from mean counts (EM-based)

3. structure unknown, state is unknown

PGMs

Estimation using known state sequences
Recall relative frequency is a maximum likelihood estimator in multinomial
sampling.
Assume i = 1, . . . K outcomes assuming multinomial sampling with
parameters θ = {θi} and observed occurrencies n = {ni} (N =

∑
i ni). Then

log
p(n|θML)

p(n|θ) = log
∏

i(θ
ML
i)ni∏

i(θi)ni
=

∑
i

ni log
θML

i

θi
= N

∑
i

θML
i log

θML
i

θi
> 0(10)

because 0 < KL(θML||θ)

−KL(p||q) =
∑

i

pi log(qi/pi) ≤
∑

i

pi((qi/pi)− 1) = 0 (11)

using log(x) ≤ x − 1.
Thus using the counts of state transitions Akl and emissions Ek(b)

akl =
Akl∑
l′ Akl′

and ek(b) =
Ek(b)∑
b′ Ek(b′)

(12)

So called pseudocounts to avoid imprecise estimates (e.g. divison by 0) and
prior counts to incorporate bias/expertise.
⇒ A′kl = A′kl + rkl E′k(b) = Ek(b) + rk(b)

PGMs

HMM parameter learning: Viterbi
Idea: using the actual parameters compute the most probable paths π∗(x(1)), . . . , π∗(x(n)) for the sequences
and select ML parameters based on these.

Require: HMM structure, x(1), . . . , x(n)

Ensure: ≈ arg maxθ p(x(1), . . . , x(n)|θ, π∗(x(1), θ), . . . , π∗(x(n), θ))
1: Ini: draw random model parameters θ0 (e.g. from Dirichlet)
2: repeat
3: set A and E values to their pseudocount
4: for i = 1 to n do
5: Compute π∗(x(i)) using θt with the Viterbi algorithm
6: Set new ML parameters θt+1 based on current counts A and E from

x(1), . . . , x(n), π∗(x(1)), . . . , π∗(x(n))
7: Compute model likelihood Lt+1 = p(x(1), . . . , x(n)|θt+1)
8: until NoImprovement(Lt+1,Lt,t)

Note, that this finds a θ maximizing p(x(1), . . . , x(n)|θ, π∗(x(1), θ), . . . , π∗(x(n), θ)) and not the original goal
p(x(1), . . . , x(n)|θ).

PGMs

HMM parameter learning: Baum-Welch
Idea: compute the expected number of transitions/emissions At,Et based on θt,
then update to θt+1 based on At,Et. . .
The probability of k→ l transition at position i in sequence x is

p(πi = k, πi+1 = l|x) (13)

=
p(

fk(i)︷ ︸︸ ︷
x1, . . . , xi, πi = k,xi+1,

bl(i+1)︷ ︸︸ ︷
πi+1 = l, xi+2, . . . , xL)

p(x) =
fk(i)aklel(xi+1)bl(i+1)

p(x) (14)

The mean of the number of this transition and the mean of the number of
emission b from state k is

Akl =
∑

j

1
p(x(j))

∑
i

f (j)
k (i)aklel(x

(j)
i+1)b

(j)
l (i + 1) (15)

Ek(b) =
∑

j

1
p(x(j))

∑
i|x(j)

i =b

f (j)
k (i)b(j)

k (i), (16)

Apply the same iteration as in Viterbi training (θt → At, Et → θt+1 → . . .)
Why does it converge? Baum-Welch is an Expectation-Maximization algorithm

PGMs

Derivation of Baum-Welch I: Expectation-Maximization (E-M)
Goal: from observed x, missing π: θ∗ = arg maxθ log(p(x|θ))
Idea: improve ”expected data log-likelihood" Q(θ|θt) =

∑
π p(π|x, θt) log(p(x, π|θ))

Using p(x, π|θ) = p(π|x, θ)p(x|θ) we can write that

log(p(x|θ)) = log(p(x, π|θ))− log(p(π|x, θ)) (17)

Multiplying with p(π|x, θt) and summing over π gives

log(p(x|θ)) =
∑
π

p(π|x, θt) log(p(x, π|θ))

︸ ︷︷ ︸
Q(θ|θt)

−
∑
π

p(π|x, θt) log(p(π|x, θ)) (18)

We want to increase the likelihood, i.e. want this difference to be positive

log(p(x|θ))− log(p(x|θt)) = Q(θ|θt)− Q(θt|θt) +
∑
π

p(π|x, θt) log(
p(π|x, θt)

p(π|x, θ)
)

︸ ︷︷ ︸
KL(p(π|x,θt)||p(π|x,θ))

(19)

Because 0 ≥ KL(p||q), so

log(p(x|θ))− log(p(x|θt)) ≥ Q(θ|θt)− Q(θt|θt). (20)

E-M, Expectation-Maximization: using expectations, select the best:

θt+1 = arg max
θ

Q(θ|θt) (21)

Generalised E-M: if we can select a better θ w.r.t. Q(θ|θt) then asymptotically it converges to a local or global
maximum (note that the target θ has to be continuous).

PGMs

Derivation of Baum-Welch II: E-M
The probability of a given path π and observation x is

p(x, π|θ) =
M∏

k=1

∏
b

[ek(b)]
Ek(b,π)

M∏
k=0

M∏
l=1

aAkl(π)
kl (22)

using this we can rewrite Q(θ|θt) =
∑
π p(π|x, θt) log(p(x, π|θ)) as

Q(θ|θt) =
∑
π

p(π|x, θt)

M∑
k=1

∑
b

Ek(b, π) log(ek(b)) +
M∑

k=0

M∑
l=1

Akl(π) log(akl)

(23)
Note that the expected value of Akl and Ek(b)over πs for a given x is

Ek(b) =
∑
π

p(π|x, θt)Ek(b, π) Akl =
∑
π

p(π|x, θt)Akl(π), (24)

Doing the sum first over πs gives (also over multiple sequences in general)

Q(θ|θt) =

M∑
k=1

∑
b

Ek(b) log(ek(b)) +
M∑

k=0

M∑
l=1

Akl log(akl) (25)

PGMs

Derivation of Baum-Welch III: E-M

Recall that Akl and Ek(b) are computable with forward/backward algorithms
using current θt, whereas the akl and bk(l) parameters form the new candidate
θ .
The Q(θ|θt) is maximized by a0

kl =
Aij∑
k Aik

, because the difference for example

for the A term is

M∑
k=0

M∑
l=1

Akl log(
a0

kl
akl
) =

M∑
k=0

(
∑

l′

Akl′)
M∑

l=1

a0
kl log(

a0
kl

akl
) (26)

which is a KL distance, so not negative.

PGMs

Summary

I Expectations by inference methods
I Maximization by maximum likelihood optimization

PGMs

