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Speech as probabilistic inference

Speech signals are noisy, variable, ambiguous

What is the most likely word sequence, given the speech signal?
I.e., choose Words to maximize P (Words|signal)

Use Bayes’ rule:

P (Words|signal) = αP (signal|Words)P (Words)

I.e., decomposes into acoustic model + language model

Words are the hidden state sequence, signal is the observation
sequence
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Phones

All human speech is composed from 40-50 phones, determined by the
configuration of articulators (lips, teeth, tongue, vocal cords, air flow)

Form an intermediate level of hidden states between words and signal
⇒ acoustic model = pronunciation model + phone model

ARPAbet designed for American English

[iy] beat [b] bet [p] pet
[ih] bit [ch] Chet [r] rat
[ey] bet [d] debt [s] set
[ao] bought [hh] hat [th] thick
[ow] boat [hv] high [dh] that
[er] Bert [l] let [w] wet
[ix] roses [ng] sing [en] button
... ... ... ... ... ...
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Speech sounds

Raw signal is the microphone displacement as a function of time;
processed into overlapping 30ms frames, each described by features

Analog acoustic signal:

Sampled, quantized 
digital signal:

Frames with features:
10  15  38

52  47  82

22  63  24

89  94  11

10  12  73

Frame features are typically formants—peaks in the power spectrum
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Phone models

Frame features in P (features|phone) summarized by
– an integer in [0 . . . 255] (using vector quantization); or
– the parameters of a mixture of Gaussians

Three-state phones: each phone has three phases (Onset, Mid, End)
E.g., [t] has silent Onset, explosive Mid, hissing End
⇒ P (features|phone, phase)

Triphone context: each phone becomes n2 distinct phones, depending
on the phones to its left and right

E.g., [t] in “star” is written [t(s,aa)] (different from “tar”!)

Triphones useful for handling coarticulation effects: the articulators
have inertia and cannot switch instantaneously between positions

E.g., [t] in “eighth” has tongue against front teeth
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Phone model example

Phone HMM for [m]:
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C1: 0.5

C2: 0.2

C3: 0.3

C3: 0.2

C4: 0.7

C5: 0.1

C4: 0.1

C6: 0.5

C7: 0.4

Output probabilities for the phone HMM:

Onset: Mid: End:

FINAL
0.7

Mid EndOnset
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Word pronunciation models

Each word is described as a distribution over phone sequences

Distribution represented as an HMM transition model

0.5

0.5

0.2

0.8

[m]

[ey]

[ow][t]

[aa]

[t]

[ah]

[ow]

1.0

1.0

1.0

1.0

1.0

P ([towmeytow]|“tomato”) = P ([towmaatow]|“tomato”) = 0.1
P ([tahmeytow]|“tomato”) = P ([tahmaatow]|“tomato”) = 0.4

Structure is created manually, transition probabilities learned from
data
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Isolated words

Phone models + word models fix likelihood P (e1:t|word) for isolated
word

P (word|e1:t) = αP (e1:t|word)P (word)

Prior probability P (word) obtained by counting word frequencies

P (e1:t|word) can be computed recursively: define

�1:t=P(Xt, e1:t)

and use the recursive update

�1:t+1 = Forward(�1:t, et+1)

and then P (e1:t|word) = Σxt�1:t(xt)

Isolated-word dictation systems with training reach 95–99% accuracy
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Continuous speech

Not just a sequence of isolated-word recognition problems!
– Adjacent words highly correlated
– Sequence of most likely words �= most likely sequence of words
– Segmentation: there are few gaps in speech
– Cross-word coarticulation—e.g., “next thing”

Continuous speech systems manage 60–80% accuracy on a good day
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Language model

Prior probability of a word sequence is given by chain rule:

P (w1 · · ·wn) =
n∏

i=1
P (wi|w1 · · ·wi−1)

Bigram model:

P (wi|w1 · · ·wi−1) ≈ P (wi|wi−1)

Train by counting all word pairs in a large text corpus

More sophisticated models (trigrams, grammars, etc.) help a little
bit
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Combined HMM

States of the combined language+word+phone model are labelled by
the word we’re in + the phone in that word + the phone state in that
phone

Viterbi algorithm finds the most likely phone state sequence

Does segmentation by considering all possible word sequences and
boundaries

Doesn’t always give the most likely word sequence because
each word sequence is the sum over many state sequences

Jelinek invented A∗ in 1969 a way to find most likely word sequence
where “step cost” is − logP (wi|wi−1)
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Dynamic Bayesian networks

Xt, Et contain arbitrarily many variables in a replicated Bayes net
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0.2f
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DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

X t Xt+1

tY t+1Y

tZ t+1Z

Sparse dependencies ⇒ exponentially fewer parameters;
e.g., 20 state variables, three parents each
DBN has 20× 23=160 parameters, HMM has 220× 220 ≈ 1012
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DBNs for speech recognition

articulators
tongue, lips

P(OBS | 2) = 1end-of-word observation

deterministic, fixed

stochastic, learned

deterministic, fixed

phoneme
index

transition

phoneme

0 1 0

o

P(OBS | not 2) = 0

1 1 1 2 2

n nn

0

o

observation stochastic, learned

a a b bu u r ra u stochastic, learned

Also easy to add variables for, e.g., gender, accent, speed.
Zweig and Russell (1998) show up to 40% error reduction over HMMs
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The ”profile” HMMs (pHMMs)

Define a structure (allowed transitions) over states with cardinality n. Note, O(n2) parameters
can be reduced to linear. . . )

Substitutions: match states (boxes). Note, level 1 implements already a position specific
scoring.

Inserts: insert states (diamonds). Note that length distribution of inserts follows a geometric
distribution with parameter p of probability of stay (mean p/(1− p) and variance p/(1− p)2).

Deletes: transitions ”jumping” over match states. Problem: high number of parameters.
Solution: further parametric restriction over transition probabilities using silent delete states
(circles). Note the possible reduction of O(n2) to O(n) representing a position specific gap
length penalty or even to 1 representing a gap length penalty.

Note that delete states are so called silent/null states without emission. If there are no loops
as in pHMMs → emulate their effect in Viterbi/forward/backward algs treating separately the
probability of transitions without emissions, e.g. accumulating upward fl(i+ 1)+ =

∑
k fk(i+

1)akl through silent states k < l.
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The ”profile” HMMs (pHMMs) II.

The profile HMM.

Usage: 1, exploration/visualization of a sequence family 2, deciding membership (for transferring
annotations about functionality/structure) 3, (the most probable) multiple alignment

Application: see Pfam.
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Gene finding:GENSCAN

Semihidden HMM a state can emit words with arbitrary length distribution LS and symbols
YS,l (not just a symbol or words with length following a geometric distribution). A parse φ is
a sequence of states and corresponding lengths (partition of observation is not trivial in such
case!). HMM algorithms are more complex.

Application: parse of a DNA-segment with Viterbi.

Burge(1997)/EG:GENSCAN, human

Recall: what is a gene? (here we follow a protein-coding interpretation)

The training data: 380 genes, 142 single-exon genes, 1492 exons, coding region of 1619 genes
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Gene finding:GENSCAN

Structural elements( of a protein coding gene): see slides.

1. Upstream region: promoter region: TATA box: present in 70% of genes at 28-34 bases upstream from the
start of transcription.

2. 5’ untranslated region (5’UTR): follows the promoter starting with the cap end region (8 bases) and ending
with translation initiation end (TIE) (18 bases).

3. Exon− [intron− exon]∗: recall intron types and structure

4. 3’ untranslated region (3’UTR) contains one or more Poly-A signal (6 bases).
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Gene finding:GENSCAN II.

The transition probabilities are estimated from the data (to TATA, to SEG and to multi-exon).

Intergenic region: Distance between genes is modeled by a geometric distribution with mean p/1 − p =
|genome|/|genes| and the sequence is generated with a fifth-order MC with parameters 3 · 45 called intergenic
null model (INM).

TATA box is modeled with a 15-base weight matrix (independent multinomials). N1 is from the INM with length
distributed uniformly from 28 to 34. Cap end is modeled with an 8-base weight matrix. N1 is from the INM with
length from a geometric distribution with mean 735 bases. TIE is modeled with a 18-base weight matrix.

Single exon gene (SEG) is modeled with a nonhomogeneous (3-phase) fifth-order MC generating first the start
codon atg and ending with the three stop codons taa, tag, tga. Length follows the empirical distribution.

Multiexon gene is modeled with the SEG model for the exons. The length of the introns are modeled with
empirical distribution independently for initial, internal and terminal introns. The intron sequence generation starts
with splitting a random codon with 1/3 probability to 0/3, 1/2 or 2/1. This prefix starts the intron, then the donor
splice signal is modeled with a decomposed weight matrix with length 6, then the INM generates the intron, finally
the acceptor splice signal is again modeled with a decomposed weight matrix with length 20, which is closed with
postfix part of the splitted codon.

The 3’UTR is modeled with the INM with geometric length of mean 450. The Poly-A is modeled with a 6-base
weight matrix.
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RNA I

RNA is single stranded sequence of bases A, U, C, G, but base pairs arise such as A-U, G-C
(canonical) or non-canonical pairs such as G-U, which are relatively stable as well. ⇒ An RNA
strand has complex structure because of (linearly) distant, but paired bases. RNA is not just a
”messenger”, but effector (autocatalytic RNAs) (⇒ ”RNA world” hypothesis).
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RNA II

Consecutive stacked base pairs called stem form A-form double helix (distorted by non-canonical
pairs). A stem is surrounded by single stranded subsequences called loops (bulge/interior/hairpin
and multibranch loops). These form the secondary structure of the RNA sequence.

Type of interactions:

1. nested: (i, j), (i′, j′) pairs are nested-pairs if not related (e.g. i < j < i′ < j′) or nested
(e.g. i < i′ < j′ < j),

2. non-nested: base-pairs: copies, meta/reversed-copies ( 1%).
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Grammars

Goal: definition of a given set of words (language L) over a finite alphabet Σ.

Generative/transformational grammars: Members of the language can be derived using
rewrite rules containing terminal and nonterminal symbols (denoted with small and capital
letters). Parsing consists of the reconstruction of a derivation/parse tree ( alignment).

Questions:

1. parsing: find parse T resulting in terminal sequence x

2. membership: x ∈ LG or is there any parse T resulting in terminal sequence x
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Chomsky hierarchy of grammars

Grammar Rule Automaton Parsing Language

regular∗ W → aW FSA linear a reg.expression
context-free W → β push-down polynomial palindromes

context-sensitive** α1Wα2 → α1βα2 linear bounded exponential copies
unrestricted Turing machine

(TM)

semidecidableKB − FOL |= α

- - halting TMs

(*:right/left, with/without ε;**:nondecreasing)
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Stochastic grammars

Rewrite rules in grammar G have application probabilities (θ denotes their vector).

Questions (Tx denotes parse tree with terminal sequence x):

1. parsing: T ∗
x = argmaxTx

p(Tx|θ, G)

2. membership: p(x|θ, G) =
∑

Tx
p(Tx|θ, G)

3. parameter learning: θ∗ = argmaxθ p(x
(1), . . . , x(n)|θ, G)

4. posterior decoding:
p(W → xi:j|x, θ, G) =

∑
Tx
p(Tx|θ, G) 1(xi:j is generated from W in parse tree Tx”)
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SCFG algorithms

Assume: M nonterminals (W = W1, . . . ,WM), Chomsky normal form (Wv → WyWz or (Wv →
a) with transition and emission probabilities tv(y, z) and ev(a)

The inside algorithm computes the probability of sequence x p(x) summing over all possible
derivation (parse tree).

Idea: calculate recursively the probability α(i, j, v) of a parse subtree rooted at nonterminal Wv

for subsequence xi:j for all i, j, v.

Algorithm 1 Algorithm: inside

Require: SCFG,x
Ensure: p(x|SCFG)
Ini: i=1 to L, v=1 to M: α(i, i, v) = ev(xi)
for i=1 to L-1 do {length}
for j=1 to L-i do {starting positions}
for v=1 to M do {states}
α(j, j + i, v) =

∑M
y=1

∑M
z=1

∑j+i
k=j α(j, k, y)α(k + 1, j + i, z)tv(y, z)

End: p(x|SCFG) = α(1, L, 1)

The outside algorithm computes a probability called β(i, j, v) of a complete parse tree for
sequence x, excluding subtrees with Wv nonterminal and xi:j leaves.

The optimal parse tree can be found by the Cocke-Younger-Kasami (CYK) algorithm: same
as inside with maxy,z,k instead of

∑
y,z,k and with pointers for backtracking.

HMMs: applications and extensions 26



HMMs/SFSAs/SRGs versus SCFGs

The same questions for stochastic context free grammars (SCFGs) modeling RNA:
(Xh/Xo hidden/observed variables)

Goal stochastic regular grammars stochastic context-free grammars

Explanation:p(Xh|Xo, θM ,M) alignment: Viterbi parse tree: CYK
Matching:p(Xo|θM ,M) p(sequence): forward alg. p(seq.): inside alg.

Canonical model class:M ∈ M profile HMMs (length) covariance models
Imputation-based parameter learning:θM Viterbi-based CYK-based

EM-based parameter learning:θM forward-backward inside-outside
Time complexity O(LM2) O(L3M3)
Space complexity O(LM) O(L2M)

Note that SCFG models allows a more powerful representation of a distribution of homologous
sequences than HMMs (e.g. allowing palindrome constraints) or phylogenetic tree with i.i.
substitution stochastic process assumption.
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PCFG:Covariance model I

An SCFG model of RNA folding based on four types of recursive extension (paired, left-unpaired,
right-unpaired, bifurcation) (Nussinov)

S → aSu|cSg|gSc|uSa (paired) (1)

S → aS|cS|gS|uS (left− unpaired) (2)

S → Su|Sg|Sc|Sa (right− unpaired) (3)

S → SS (bifurcation) (4)
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PCFG:Covariance model I

A generic stem model with six states (W denotes any states):

P → aWa| . . . (pairwise, 16) (5)

L → aW | . . . (leftwise, 4) (6)

R → Wa| . . . (rightwise, 4) (7)

B → SS (bifurcation) (8)

S → W (start) (9)

E → ε (end) (10)
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Summary

Since the mid-1970s, speech recognition has been formulated as prob-
abilistic inference

Evidence = speech signal, hidden variables = word and phone se-
quences

“Context” effects (coarticulation etc.) are handled by augmenting
state

Variability in human speech (speed, timbre, etc., etc.) and back-
ground noise make continuous speech recognition in real settings an
open problem

The same technology could be applied and now mainly used in biomed-
ical sequence analysis.
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