Adapted from AIMA slides

Extended Bayesian networks

Peter Antal
antal@mit.bme.hu

Outline

- Reminder
- Bayesian network extensions
- Canonical local models
- Decision tree/graph local models
- Dynamic Bayesian networks

Independence, Conditional independence

$I_{p}(X ; Y \mid Z)$ or $(X \Perp Y \mid Z)_{p}$ denotes that X is independent of Y given Z defined as follows
for all x, y and z with $P(z)>0: ~ P(x ; y \mid z)=P(x \mid z) P(y \mid z)$
(Almost) alternatively, $\mathrm{I}_{\mathrm{P}}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})$ iff $P(X \mid Z, Y)=P(X \mid Z)$ for all z, y with $P(z, y)>0$. Other notations: $D_{P}(X ; Y \mid Z)=\operatorname{def}=\neg I_{P}(X ; Y \mid Z)$ Direct dependence: $\mathrm{D}_{\mathrm{P}}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{V} /\{\mathrm{X}, \mathrm{Y}\})$

The independence model of a distribution

The independence map (model) M of a distribution P is the set of the valid independence triplets:

$$
M_{P}=\left\{I_{P, 1}\left(X_{1} ; Y_{1} \mid Z_{1}\right), \ldots, I_{P, K}\left(X_{K} ; Y_{K} \mid Z_{K}\right)\right\}
$$

If $P(X, Y, Z)$ is a Markov chain, then

$\mathrm{M}_{\mathrm{P}}=\{\mathrm{D}(\mathrm{X} ; \mathrm{Y}), \mathrm{D}(\mathrm{Y} ; \mathrm{Z}), \mathrm{I}(\mathrm{X} ; \mathrm{Z} \mid \mathrm{Y})\}$
Normally/almost always: $\mathrm{D}(\mathrm{X} ; \mathrm{Z})$
Exceptionally: I(X;Z)

Bayesian networks: three facets

3. Concise representation of joint distributions

$$
\begin{aligned}
& P(M, O, D, S, T)= \\
& P(M) P(O \mid M) P(D \mid O, M) P(S \mid D) P(T \mid S, M)
\end{aligned}
$$

1. Causal model
$M_{P}=\left\{I_{P, 1}\left(X_{1} ; Y_{1} \mid Z_{1}\right), \ldots\right\}$
2. Graphicall representation of
(in)dependencies

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
- a set of nodes, one per variable
- a directed, acyclic graph (link \approx "directly influences")
- a conditional distribution for each node given its parents:

$$
\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \text { Parents }\left(\mathrm{X}_{\mathrm{i}}\right)\right)
$$

- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_{i} for each combination of parent values

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
- A burglar can set the alarm off
- An earthquake can set the alarm off
- The alarm can cause Mary to call
- The alarm can cause John to call

Example contd.

Compactness

- A CPT for Boolean X_{i} with k Boolean parents has 2^{k} rows for the combinations of parent values
- Each row requires one number p for $X_{i}=$ true (the number for $X_{i}=f a / s e$ is just $l-p$)

- If each variable has no more than k parents, the complete network requires $O\left(n \cdot 2^{\mathrm{k}}\right)$ numbers
- I.e., grows linearly with n, vs. $O\left(2^{n}\right)$ for the full joint distribution
- For burglary net, $1+1+4+2+2=10$ numbers (vs. $2^{5}-1=31$)

A multinomiális általános eset I.

Tfh:
5 szülö csomópont bináris értékű
2 szülő csomópont 3-as értékű
1 szülő csomópont 4-es értékű és
az eredmény csomópont 5 -ös értékű ?????

A multinomiális általános eset II.

Sz1 Sz2 Sz3 Sz4 Sz5 Sz6 Sz7 Sz8 Kimeneti változó

$2^{5} \times 3^{2} \times 4$ szülői feltétel van (FVT sor) és 4 (független érték)
(FVT oszlop) $=$ összesen: $(32 \times 9 \times 4) \times 4=4608$
eswüttes eloszláshoz kell: $2^{5} \times 3^{2} \times 4 \times 5-1=5759$

Constructing Bayesian networks

- 1. Choose an ordering of variables X_{l}, \ldots, X_{n}
- 2. For $i=1$ to n
- add X_{i} to the network
- select parents from X_{l}, \ldots, X_{i-1} such that

$$
\boldsymbol{P}\left(X_{i} \mid \operatorname{Parents}\left(X_{i}\right)\right)=\boldsymbol{P}\left(X_{i} \mid X_{1}, \ldots X_{i-1}\right)
$$

This choice of parents guarantees:

$$
\begin{aligned}
P\left(X_{l}, \ldots, X_{n}\right) & =\pi_{i=l}{ }_{1}^{n} P\left(X_{i} / X_{l}, \ldots, X_{i-1}\right) & & \text { //(chain rule }) \\
& =\pi_{i=1} P\left(X_{i} / \operatorname{Parents}\left(X_{i}\right)\right) & & \text { //(by construction) }
\end{aligned}
$$

Effect of ordering

- Construct a general BN for the example using the ordering M, J, A, B, E.
- Construct a Naïve-BN for a reverse ordering when the central variable Y is the last one (and not the first).

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$
\boldsymbol{P}\left(X_{l}, \ldots, X_{n}\right)=\pi_{i=1}^{n} \boldsymbol{P}\left(X_{i} / \operatorname{Parents}\left(X_{i}\right)\right)
$$

$$
\text { e.g., } P(j \wedge m \wedge a \wedge \neg b \wedge \neg e)
$$

$$
=P(j / a) P(m / a) P(a / \neg b, \neg e) P(\neg b) P(\neg e)
$$

Context-specific independence

$\mathrm{I}_{\mathrm{p}}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z}=\mathrm{Z})$ or $(\mathrm{X} \Perp \mathrm{Y} \mid \mathrm{Z}=\mathrm{Z})_{\mathrm{p}}$ denotes that X is independent of Y for a specific value z of Z :
for z and for all $x, y: P(x ; y \mid z)=P(x \mid z) P(y \mid z)$

Boutilier, C., Friedman, N., Goldszmidt, M. and Koller, D., 2013. Context-specific independence in Bayesian networks. arXiv preprint arXiv:1302.3562.
Fierens, Daan. "Context-Specific Independence in Directed Relational Probabilistic Models and its Influence on the Efficiency of Gibbs Sampling." ECAI. 2010. Ma, Saisai, et al. "Discovering context specific causal relationships." Intelligent Data Analysis 23.4 (2019): 917-931.

Learning decision trees

Problem: decide whether to wait for a table at a restaurant, based on the following attributes:

1. Alternate: is there an alternative restaurant nearby?
2. Bar: is there a comfortable bar area to wait in?
3. Fri/Sat: is today Friday or Saturday?
4. Hungry: are we hungry?
5. Patrons: number of people in the restaurant (None, Some, Full)
6. Price: price range (\$, \$\$, \$\$)
7. Raining: is it raining outside?
8. Reservation: have we made a reservation?
9. Type: kind of restaurant (French, Italian, Thai, Burger)
10. WaitEstimate: estimated waiting time ($0-10,10-30,30-60,>60$)

Attribute-based representations

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait for a table:

Example	Attributes										Target Wait
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	
X_{1}	T	F	F	T	Some	\$\$\$	F	T	French	0-10	T
X_{2}	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_{3}	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_{4}	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_{5}	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_{6}	F	T	F	T	Some	\$	T	T	Italian	0-10	T
X_{7}	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_{8}	F	F	F	T	Some	\$	T	T	Thai	0-10	T
X_{9}	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	\$\$\$	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

- Classification of examples is positive (T) or negative (F)

Decision trees

- One possible representation for hypotheses
- E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

- Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless f nondeterministic in x) but it probably won't generalize to new examples
- Prefer to find more compact decision trees

Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$

- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
$=$ number of distinct truth tables with 2^{n} rows $=2^{2^{n}}$

- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

How many purely conjunctive hypotheses (e.g., Hungry^ \neg Rain)?

- Each attribute can be in (positive), in (negative), or out $\Rightarrow 3^{n}$ distinct conjunctive hypotheses
- More expressive hypothesis space
- increases chance that target function can be expressed - increases number of hypotheses consistent with training set
\Rightarrow may get worse predictions

Decision trees, decision graphs

Decision tree: Each internal node represent a (univariate) test, the leafs contains the conditional probabilities given the values along the path.
Decision graph: If conditions are equivalent, then subtrees can be merged.
E.g. If (Bleevin-absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

A.I.: BN homework guide

Noisy-OR

Noisy-OR distributions model multiple noninteracting causes

1) Parents $U_{1} \ldots U_{k}$ include all causes (can add leak node)
2) Independent failure probability q_{i} for each cause alone

$$
\Rightarrow P\left(X \mid U_{1} \ldots U_{j}, \neg U_{j+1} \ldots \neg U_{k}\right)=1-\prod_{i=1}^{j} q_{i}
$$

Cold	Flu	Malaria	$P($ Fever $)$	$P(\neg$ Fever $)$
F	F	F	0.0	1.0
F	F	T	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02=0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06=0.6 \times 0.1$
T	T	F	0.88	$0.12=0.6 \times 0.2$
T	T	T	0.988	$0.012=0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Dynamic Bayesian networks

$\mathbf{X}_{t}, \mathrm{E}_{t}$ contain arbitrarily many variables in a replicated Bayes net

http://phoenix.mit.bme.hu:49080/kgt/

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^{3}=160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

Inferring independencies from

 structure: d-separation$\mathrm{I}_{\mathrm{G}}(\mathrm{X} ; \mathrm{Y} \mid \mathrm{Z})$ denotes that X is d -separated
(directed separated) from Y by Z in directed graph G.

d-separation and the global Markov condition

Definition 7 A distribution $P\left(X_{1}, \ldots, X_{n}\right)$ obeys the global Markov condition w.r.t. DAG G, if

$$
\begin{equation*}
\forall X, Y, Z \subseteq U(X \Perp Y \mid Z)_{G} \Rightarrow(X \Perp Y \mid Z)_{P} \tag{9}
\end{equation*}
$$

where $(X \Perp Y \mid Z)_{G}$ denotes that X and Y are d-separated by Z, that is if every path p between a node in X and a node in Y is blocked by Z as follows

1. either path p contains a node n in Z with non-converging arrows (i.e. $\rightarrow n \rightarrow$ or $\leftarrow n \rightarrow$),
2. or path p contains a node n not in Z with converging arrows (i.e. $\rightarrow n \leftarrow$) and none of its descendants of n is in Z.

Summary

- Conditional independencies allows:
- efficient representation of the joint probabilitity distribution,
- efficient inference to compute conditional probabilites.
- Bayesian networks use directed acyclic graphs to represent
- conditional independencies,
- conditional probability distributions,
- causal mechanisms.
- Design of variables and order of the variables can drastically influence structure
- Suggested reading:
- Charniak: Bayesian networks without tears, 1991
- Koller, Daphne, et al. "Graphical models in a nutshell." Introduction to statistical relational learning(2007): 13-55.

