Adapted from AIMA slides

Extended Bayesian networks

<u>Peter Antal</u> <u>antal@mit.bme.hu</u>

Outline

- Reminder
- Bayesian network extensions
 - Canonical local models
 - Decision tree/graph local models
 - Dynamic Bayesian networks

Independence, Conditional independence

 $I_P(X;Y|Z)$ or $(X \perp Y|Z)_P$ denotes that X is independent of Y given Z defined as follows for all x,y and z with P(z)>0: P(x;y|z)=P(x|z) P(y|z)

(Almost) alternatively, $I_P(X;Y|Z)$ iff P(X|Z,Y) = P(X|Z) for all z,y with P(z,y) > 0. Other notations: $D_P(X;Y|Z) = def = \neg I_P(X;Y|Z)$ Direct dependence: $D_P(X;Y|V/{X,Y})$

The independence model of a distribution

The independence map (model) M of a distribution P is the set of the valid independence triplets:

 $M_{P} = \{I_{P,1}(X_{1};Y_{1}|Z_{1}), ..., I_{P,K}(X_{K};Y_{K}|Z_{K})\}$

If P(X,Y,Z) is a Markov chain, then $M_P=\{D(X;Y), D(Y;Z), I(X;Z|Y)\}$ Normally/almost always: D(X;Z)Exceptionally: I(X;Z)

Bayesian networks: three facets

Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - 0
 - a directed, acyclic graph (link \approx "directly influences")
 - a conditional distribution for each node given its parents: • $P(X_i | Parents(X_i))$
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: *Burglary*, *Earthquake*, *Alarm*, *JohnCalls*, *MaryCalls*
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.

Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)

- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with *n*, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^{5}-1 = 31$)

A multinomiális általános eset I.

Tfh:

5 szülő csomópont bináris értékű 2 szülő csomópont 3-as értékű 1 szülő csomópont 4-es értékű és az eredmény csomópont 5-ös értékű ?????

A multinomiális általános eset II.

Minden kombináció

 $2^5 \times 3^2 \times 4$ szülői feltétel van (FVT sor) és 4 (független érték) (FVT oszlop) = összesen: (32 x 9 x 4) x 4 = 4608 cgyüttes eloszláshoz kell: $2^5 \times 3^2 \times 4 \times 5 - 1 = 5759$

Constructing Bayesian networks

- ▶ 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that

 $P(X_i | Parents(X_i)) = P(X_i | X_1, ..., X_{i-1})$

This choice of parents guarantees:

$$P(X_{1}, ..., X_{n}) = \pi_{i=1}^{n} P(X_{i} | X_{1}, ..., X_{i-1}) //(chain rule) = \pi_{i=1}^{n} P(X_{i} | Parents(X_{i})) //(by construction)$$

Effect of ordering

- Construct a general BN for the example using the ordering M, J, A, B, E.
- Construct a Naïve-BN for a reverse ordering when the central variable Y is the last one (and not the first).

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_{1}, ..., X_{n}) = \pi_{i=1} P(X_{i} | Parents(X_{i}))$$

e.g., $P(j \land m \land a \land \neg b \land \neg e)$

 $= P(j | a) P(m | a) P(a | \neg b, \neg e) P(\neg b) P(\neg e)$

Context-specific independence

 $I_P(X;Y|Z=z)$ or $(X \perp Y|Z=z)_P$ denotes that X is independent of Y for a specific value z of Z: for z and for all x,y: P(x;y|z)=P(x|z) P(y|z)

Boutilier, C., Friedman, N., Goldszmidt, M. and Koller, D., 2013. Context-specific independence in Bayesian networks. *arXiv preprint arXiv:1302.3562*. Fierens, Daan. "Context-Specific Independence in Directed Relational Probabilistic Models and its Influence on the Efficiency of Gibbs Sampling." *ECAI*. 2010. Ma, Saisai, et al. "Discovering context specific causal relationships." *Intelligent Data Analysis* 23.4 (2019): 917-931.

Learning decision trees

- Problem: decide whether to wait for a table at a restaurant, based on the following attributes:
 - 1. Alternate: is there an alternative restaurant nearby?
 - 2. Bar: is there a comfortable bar area to wait in?
 - 3. Fri/Sat: is today Friday or Saturday?
 - 4. Hungry: are we hungry?
 - 5. Patrons: number of people in the restaurant (None, Some, Full)
 - 6. Price: price range (\$, \$\$, \$\$\$)
 - 7. Raining: is it raining outside?
 - 8. Reservation: have we made a reservation?
 - 9. Type: kind of restaurant (French, Italian, Thai, Burger)
 - 10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

Attribute-based representations

- Examples described by attribute values (Boolean, discrete, continuous)
- E.g., situations where I will/won't wait for a table:

Example	Attributes									Target	
Linampie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Wait
X_1	Т	F	F	Т	Some	\$\$\$	F	Т	French	0–10	Т
X_2	Т	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	Т	F	F	Some	\$	F	F	Burger	0–10	Т
X_4	Т	F	Т	T	Full	\$	F	F	Thai	10–30	Т
X_5	Т	F	Т	F	Full	\$\$\$	F	Т	French	>60	F
X_6	F	Т	F	Т	Some	\$\$	Т	Т	Italian	0–10	Т
X_7	F	Т	F	F	None	\$	Т	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	Т	Т	Thai	0–10	Т
X_9	F	Т	Т	F	Full	\$	Т	F	Burger	>60	F
X_{10}	Т	Т	Т	Т	Full	\$\$\$	F	Т	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	Т	Т	Т	T	Full	\$	F	F	Burger	30–60	Т

Classification of examples is positive (T) or negative (F)

Decision trees

- One possible representation for hypotheses
- E.g., here is the "true" tree for deciding whether to wait:

Expressiveness

- > Decision trees can express any function of the input attributes.
- E.g., for Boolean functions, truth table row \rightarrow path to leaf:

- Trivially, there is a consistent decision tree for any training set with one path to leaf for each example (unless *f* nondeterministic in *x*) but it probably won't generalize to new examples
- Prefer to find more compact decision trees

Hypothesis spaces

How many distinct decision trees with *n* Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}
- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees

Hypothesis spaces

How many distinct decision trees with *n* Boolean attributes?

- = number of Boolean functions
- = number of distinct truth tables with 2^n rows = 2^{2^n}
- E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 trees
- How many purely conjunctive hypotheses (e.g., *Hungry* \land <u> $\neg Rain$)?</u>
- Each attribute can be in (positive), in (negative), or out $\Rightarrow 3^n$ distinct conjunctive hypotheses
- More expressive hypothesis space
 - increases chance that target function can be expressed
 - increases number of hypotheses consistent with training set \Rightarrow may get worse predictions

Decision trees, decision graphs

Decision tree: Each internal node represent a (univariate) test, the leafs contains the conditional probabilities given the values along the path. Decision graph: If conditions are equivalent, then subtrees can be merged. E.g. If (Bleeding=absent,Onset=late) ~ (Bleeding=weak,Regularity=irreg)

A.I.: BN homework guide

Noisy-OR

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \ldots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

 $\Rightarrow P(X|U_1 \dots U_j, \neg U_{j+1} \dots \neg U_k) = 1 - \prod_{i=1}^j q_i$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	Т	F	0.8	0.2
F	Т	Т	0.98	$0.02 = 0.2 \times 0.1$
Т	F	F	0.4	0.6
Т	F	Т	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

Dynamic Bayesian networks

 \mathbf{X}_t , \mathbf{E}_t contain arbitrarily many variables in a replicated Bayes net

http://phoenix.mit.bme.hu:49080/kgt/

DBNs vs. HMMs

Every HMM is a single-variable DBN; every discrete DBN is an HMM

Sparse dependencies \Rightarrow exponentially fewer parameters; e.g., 20 state variables, three parents each DBN has $20 \times 2^3 = 160$ parameters, HMM has $2^{20} \times 2^{20} \approx 10^{12}$

Inferring independencies from structure: d-separation

I_G(X;Y|Z) denotes that X is d-separated (directed separated) from Y by Z in directed graph G.

d-separation and the global Markov condition

Definition 7 A distribution $P(X_1, \ldots, X_n)$ obeys the global Markov condition w.r.t. DAG G, if

$$\forall X, Y, Z \subseteq U (X \perp Y | Z)_G \Rightarrow (X \perp Y | Z)_P, \tag{9}$$

where $(X \perp | Y|Z)_G$ denotes that X and Y are *d*-separated by Z, that is if every path p between a node in X and a node in Y is blocked by Z as follows

- 1. either path p contains a node n in Z with non-converging arrows (i.e. $\rightarrow n \rightarrow or \leftarrow n \rightarrow$),
- 2. or path p contains a node n not in Z with converging arrows (i.e. $\rightarrow n \leftarrow$) and none of its descendants of n is in Z.

Summary

- Conditional independencies allows:
 - efficient representation of the joint probabilitity distribution,
 - efficient inference to compute conditional probabilites.
- Bayesian networks use directed acyclic graphs to represent
 - conditional independencies,
 - conditional probability distributions,
 - causal mechanisms.
- Design of variables and order of the variables can drastically influence structure

Suggested reading:

- Charniak: Bayesian networks without tears, 1991
- Koller, Daphne, et al. "Graphical models in a nutshell." *Introduction to statistical relational learning* (2007): 13-55.