Stochastic inference in Bayesian networks, Markov chain Monte Carlo METHODS

AI: Stochastic inference in BNs

Outline

\diamond Types of inference in (causal) BNs
\diamond Hardness of exact inference in general BNs
\diamond Approximate inference by stochastic simulation
\diamond Approximate inference by Markov chain Monte Carlo

Inference tasks

Simple queries: compute posterior marginal $\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right)$
e.g., $P($ NoGas \mid Gauge $=$ empty, Lights $=o n$, Starts $=$ false $)$

Conjunctive queries: $\mathbf{P}\left(X_{i}, X_{j} \mid \mathbf{E}=\mathbf{e}\right)=\mathbf{P}\left(X_{i} \mid \mathbf{E}=\mathbf{e}\right) \mathbf{P}\left(X_{j} \mid X_{i}, \mathbf{E}=\mathbf{e}\right)$
Optimal decisions: decision networks include utility information; probabilistic inference required for P (outcome|action, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?
Explanation: why do I need a new starter motor?
Causal inference: what is the effect of an intervention?
Counterfactual inference: what would have been the effect of a hypothetical/imagery past intervention\&observation?

Inference by enumeration: principle

Let X be all the variables. Typically, we want the posterior joint distribution of the query variables Y given specific values e for the evidence variables E.

Let the hidden variables be $\mathrm{H}=\mathrm{X}-\mathrm{Y}-\mathrm{E}$.
Then the required summation of joint entries is done by summing out the hidden variables:

$$
\mathbf{P}(\mathbf{Y} \mid \mathbf{E}=\mathbf{e})=\alpha \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e})=\alpha \sum_{\mathbf{h}} \mathbf{P}(\mathbf{Y}, \mathbf{E}=\mathbf{e}, \mathbf{H}=\mathbf{h})
$$

The terms in the summation are joint entries!
Obvious problems:

1) Worst-case time complexity $O\left(d^{n}\right)$ where d is the largest arity
2) Space complexity $O\left(d^{n}\right)$ to store the joint distribution
3) How to find the numbers for $O\left(d^{n}\right)$ entries???

Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- time and space cost of exact inference $O\left(d^{k} n\right)$

Multiply connected networks:

- can reduce 3SAT to exact inference: $0<\mathrm{p}($ AND $) ? \Rightarrow$ NP-hard
- equivalent to counting 3SAT models \Rightarrow \#P-complete

1. $A \vee B \vee C$
2. $C \vee D v \neg A$
3. $B \vee C \vee \neg D$

Inference by stochastic simulation

Basic idea:

1) Draw N samples from a sampling distribution S
2) Compute an approximate posterior probability
3) Show this converges to the true probability P

Outline:

- Sampling from an empty network
- Rejection sampling: reject samples disagreeing with evidence
- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior

Sampling from an empty network

```
function PRIOR-SAMPLE( }bn\mathrm{ ) returns an event sampled from bn
    inputs: bn, a belief network specifying joint distribution }\mathbf{P}(\mp@subsup{X}{1}{},\ldots,\mp@subsup{X}{n}{}
    x}\leftarrow\mathrm{ an event with }n\mathrm{ elements
    for }i=1\mathrm{ to }n\mathrm{ do
        x}\leftarrow\mp@code{a random sample from }\mathbf{P}(\mp@subsup{X}{i}{}|\operatorname{parents}(\mp@subsup{X}{i}{})
        given the values of Parents( }\mp@subsup{X}{i}{})\mathrm{ in x
    return x
```

Example

Example

Example

Example

Example

Rejection sampling

$\hat{\mathbf{P}}(X \mid \mathbf{e})$ estimated from samples agreeing with e

```
function REJECTION-SAMPLING \((X, \mathbf{e}, b n, N)\) returns an estimate of \(P(X \| \mathbf{e})\)
    local variables: \(\mathbf{N}\), a vector of counts over \(X\), initially zero
    for \(j=1\) to \(N\) do
        \(\mathbf{x} \leftarrow \operatorname{PRIOR}-\operatorname{SAMPLE}(b n)\)
        if x is consistent with e then
            \(\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
    return Normalize( \(\mathrm{N}[X]\) )
```

E.g., estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true $)$ using 100 samples
27 samples have Sprinkler $=$ true
Of these, 8 have Rain=true and 19 have Rain=false.
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true $)=\operatorname{NORMALIZE}(\langle 8,19\rangle)=\langle 0.296,0.704\rangle$

Analysis of rejection sampling

$$
\begin{array}{ll}
\hat{\mathbf{P}}(X \mid \mathbf{e})=\alpha \mathbf{N}_{P S}(X, \mathbf{e}) \quad \text { (algorithm defn.) } \\
& \left.=\mathbf{N}_{P S}(X, \mathbf{e}) / N_{P S}(\mathbf{e}) \quad \text { (normalized by } N_{P S}(\mathbf{e})\right) \\
& \approx \mathbf{P}(X, \mathbf{e}) / P(\mathbf{e}) \quad \text { (property of PrIORSAMPLE) } \\
& =\mathbf{P}(X \mid \mathbf{e}) \quad \text { (defn. of conditional probability) }
\end{array}
$$

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if $P(\mathbf{e})$ is small
$P($ e $)$ drops off exponentially with number of evidence variables!

The Markov chain

With Sprinkler $=$ true, WetGrass $=$ true, there are four states:

Wander about for a while, average what you see

Markov blanket

Each node is conditionally independent of all others given its Markov blanket: parents + children + children's parents

Approximate inference using MCMC

"State" of network = current assignment to all variables. Generate next state by sampling one variable given Markov blanket. Sample each variable in turn, keeping evidence fixed

```
function MCMC- \(\operatorname{Ask}(X, \mathbf{e}, b n, N)\) returns an estimate of \(P(X \mid \mathbf{e})\)
    local variables: \(\mathbf{N}[X]\), a vector of counts over \(X\), initially zero
                                    \(\mathbf{Z}\), the nonevidence variables in \(b n\)
                                    x , the current state of the network, initially copied from
```

 initialize x with random values for the variables in Y
 for \(j=1\) to \(N\) do
 for each \(Z_{i}\) in Z do
 sample the value of \(Z_{i}\) in \(\mathbf{x}\) from \(\mathbf{P}\left(Z_{i} \mid m b\left(Z_{i}\right)\right)\)
 given the values of \(M B\left(Z_{i}\right)\) in \(\mathbf{x}\)
 \(\mathbf{N}[x] \leftarrow \mathbf{N}[x]+1\) where \(x\) is the value of \(X\) in \(\mathbf{x}\)
 return Normalize(\(\mathrm{N}[X]\))
 Can also choose a variable to sample at random each time

MCMC example contd.

Estimate $\mathbf{P}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$

Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.
E.g., visit 100 states

31 have Rain = true, 69 have Rain $=$ false
$\hat{\mathbf{P}}($ Rain \mid Sprinkler $=$ true, WetGrass $=$ true $)$
$=$ Normalize $(\langle 31,69\rangle)=\langle 0.31,0.69\rangle$
Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

Markov blanket sampling

Markov blanket of Cloudy is Sprinkler and Rain
Markov blanket of Rain is
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:

$$
P\left(x_{i}^{\prime} \mid m b\left(X_{i}\right)\right)=P\left(x_{i}^{\prime} \mid \operatorname{parents}\left(X_{i}\right)\right) \Pi_{Z_{j} \in \operatorname{Children}\left(X_{i}\right)} P\left(z_{j} \mid \text { parents }\left(Z_{j}\right)\right)
$$

Easily implemented in message-passing parallel systems, brains
Main computational problems:

1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large: $P\left(X_{i} \mid m b\left(X_{i}\right)\right)$ won't change much (law of large numbers)

\diamond Hardware!
\diamond Bayesian model averaging

MCMC analysis: Outline

Transition probability $q\left(\mathrm{x} \rightarrow \mathrm{x}^{\prime}\right)$
Occupancy probability $\pi_{t}(\mathbf{x})$ at time t
Equilibrium condition on π_{t} defines stationary distribution $\pi(\mathbf{x})$
Note: stationary distribution depends on choice of $q\left(\mathrm{x} \rightarrow \mathrm{x}^{\prime}\right)$
Pairwise detailed balance on states guarantees equilibrium
Gibbs sampling transition probability:
sample each variable given current values of all others
\Rightarrow detailed balance with the true posterior
For Bayesian networks, Gibbs sampling reduces to
sampling conditioned on each variable's Markov blanket

Stationary distribution

$\pi_{t}(\mathrm{x})=$ probability in state x at time t
$\pi_{t+1}\left(\mathrm{x}^{\prime}\right)=$ probability in state x^{\prime} at time $t+1$
π_{t+1} in terms of π_{t} and $q\left(\mathbf{x} \rightarrow \mathrm{x}^{\prime}\right)$

$$
\pi_{t+1}\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi_{t}(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)
$$

Stationary distribution: $\pi_{t}=\pi_{t+1}=\pi$

$$
\pi\left(\mathbf{x}^{\prime}\right)=\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) \quad \text { for all } \mathbf{x}^{\prime}
$$

If π exists, it is unique (specific to $q\left(\mathbf{x} \rightarrow \mathrm{x}^{\prime}\right)$)
In equilibrium, expected "outflow" = expected "inflow"

Detailed balance

"Outflow" = "inflow" for each pair of states:

$$
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \quad \text { for all } \mathbf{x}, \mathbf{x}^{\prime}
$$

Detailed balance \Rightarrow stationarity:

$$
\begin{aligned}
\sum_{\mathbf{x}} \pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =\sum_{\mathbf{x}} \pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right) \sum_{\mathbf{x}} q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \\
& =\pi\left(\mathbf{x}^{\prime}\right)
\end{aligned}
$$

MCMC algorithms typically constructed by designing a transition probability q that is in detailed balance with desired π

Gibbs sampling

Sample each variable in turn, given all other variables
Sampling X_{i}, let $\overline{\mathbf{X}}_{i}$ be all other nonevidence variables Current values are x_{i} and $\overline{\mathbf{x}}_{i} ; \mathrm{e}$ is fixed Transition probability is given by

$$
q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right)=q\left(x_{i}, \overline{\mathbf{x}}_{i} \rightarrow x_{i}^{\prime}, \overline{\mathbf{x}}_{i}\right)=P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right)
$$

This gives detailed balance with true posterior $P(\mathrm{x} \mid \mathrm{e})$:

$$
\begin{aligned}
\pi(\mathbf{x}) q\left(\mathbf{x} \rightarrow \mathbf{x}^{\prime}\right) & =P(\mathbf{x} \mid \mathbf{e}) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right)=P\left(x_{i}, \overline{\mathbf{x}}_{i} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) \\
& =P\left(x_{i} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) P\left(\overline{\mathbf{x}}_{i} \mid \mathbf{e}\right) P\left(x_{i}^{\prime} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) \quad \text { (chain rule) } \\
& =P\left(x_{i} \mid \overline{\mathbf{x}}_{i}, \mathbf{e}\right) P\left(x_{i}^{\prime}, \overline{\mathbf{x}}_{i} \mid \mathbf{e}\right) \quad \text { (chain rule backwards) } \\
& =q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right) \pi\left(\mathbf{x}^{\prime}\right)=\pi\left(\mathbf{x}^{\prime}\right) q\left(\mathbf{x}^{\prime} \rightarrow \mathbf{x}\right)
\end{aligned}
$$

Performance of approximation algorithms

Absolute approximation: $|P(X \mid \mathrm{e})-\hat{P}(X \mid \mathrm{e})| \leq \epsilon$
Relative approximation: $\frac{|P(X \mid \mathbf{e})-\hat{P}(X \mid \mathbf{e})|}{P(X \mid \mathbf{e})} \leq \epsilon$
Relative \Rightarrow absolute since $0 \leq P \leq 1$ (may be $O\left(2^{-n}\right)$)
Randomized algorithms may fail with probability at most δ
Polytime approximation: poly $\left(n, \epsilon^{-1}, \log \delta^{-1}\right)$
Theorem (Dagum and Luby, 1993): both absolute and relative approximation for either deterministic or randomized algorithms are NP-hard for any $\epsilon, \delta<0.5$
(Absolute approximation polytime with no evidence-Chernoff bounds)

Summary

Exact inference:

- polytime on polytrees (NBNs,HMMs), NP-hard on general graphs
- space $=$ time, very sensitive to topology

Approximate inference:

- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables

