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[We handle only discrete random variables and joint distributions of finitely many of them.]

Appendix

In this appendix we summarize some basic definitions and results from the theory of probability. Most
proofs are omitted as they may be found in standard textbooks on probability, such as Feller [1], Ash [2],
Shiryayev [3], Chow and Teicher [4], Durrett [5], Grimmett and Stirzaker [6], and Zygmund [7]. We also give
a list of useful inequalities that are used in the text.

1 Basics of Measure Theory

Definition 1 Let S be a set, and let F be the family of all subsets of S. Then (S,F) is called a measurable
space. The subsets of S are called measurable sets.

Definition 2 Let (S,F) be a measurable space and let ν : F → [0,∞) be a function. ν is a measure on F
if

(i) ν(∅) = 0,
(ii) ν is σ-additive, that is, A1, A2, . . . ∈ F , and Ai ∩Aj = 0, i 6= j imply that ν(∪∞

i=1Ai) =
∑∞

i=1 ν(Ai).

In other words, a measure is a nonnegative, σ-additive set function.

Definition 3 The triple (S,F , ν) is a measure space if (S,F) is a measurable space and ν is a measure on
F .

Definition 4 Let ν1 and ν2 be measures on the measurable spaces (S1,F1) and (S2,F2), respectively. Let
(S,F) be a measurable space such that S = S1 × S2, and F1 × F2 ∈ F whenever F1 ∈ F1 and F2 ∈ F2. ν is
called the product measure of ν1 and ν2 on F if for F1 ∈ F1 and F2 ∈ F2, ν(F1 × F2) = ν1(F1)ν2(F2). The
product of more than two measures can be defined similarly.

1



2 Probability

Definition 5 A (countable) measure space (Ω,F ,P) is called a probability space if P{Ω} = 1. Ω is the
sample space or sure event, the measurable sets are called events, and the Ω 7→ R functions are called
(discrete) random variables. If X1, . . . ,Xn are random variables then X = (X1, . . . ,Xn) is a vector-valued
random variable.

Definition 6 Let X be a random variable, then X induces the measure µ on the subsets of R by

µ(B) = P {{ω : X(ω) ∈ B}} = P{X ∈ B}, B ⊆ R.

The probability measure µ is called the distribution of the random variable X.

Definition 7 Let X be a random variable. The expectation of X is

E{X} =
∑

x

xP{X = x} =
∑

x>0

xP{X = x} +
∑

x<0

xP{X = x},

if at least one term on the right-hand side is finite.

Definition 8 Let X be a random variable. The variance of X is

Var{X} = E
{

(X − E{X})2
}

if E{X} is finite, and ∞ if E{X} is not finite or does not exist.

Definition 9 Let X1, . . . ,Xn be random variables. They induce the measure µ(n) on the subsets of Rn with
the property

µ(n)(B) = P {{ω : (X1(ω), . . . ,Xn(ω)) ∈ B}} , B ⊆ Rn.

µ(n) is called the joint distribution of the random variables X1, . . . ,Xn. Let µi be the distribution of Xi

(i = 1, . . . , n). The random variables X1, . . . ,Xn are independent if their joint distribution µ(n) is the product
measure of µ1, . . . , µn. The events A1, . . . , An ∈ F are independent if the random variables IA1

, . . . , IAn
are

independent.

Theorem 1 If the random variables X1, . . . ,Xn are independent and have finite expectations then

E{X1X2 . . . Xn} = E{X1}E{X2} · · ·E{Xn}.

3 Inequalities

Theorem 2 (Cauchy-Schwarz inequality). If the random variables X and Y have finite second
moments (E{X2} < ∞ and E{Y 2} < ∞), then

|E{XY }| ≤
√

E{X2}E{Y 2}.

Theorem 3 (Markov’s inequality). Let X be a nonnegative-valued random variable. Then for each
t > 0,

P{X ≥ t} ≤
E{X}

t
.
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Theorem 4 (Chebyshev’s inequality). Let X be a random variable. Then for each t > 0,

P{|X − E{X}| ≥ t} ≤
Var{X}

t2
.

Theorem 5 (Jensen’s inequality). If f is a real-valued convex function on a finite or infinite interval
of R, and X is a random variable with finite expectation, taking its values in this interval, then

f(E{X}) ≤ E{f(X)}.

4 Convergence of Random Variables

Definition 10 Let {Xn}, n = 1, 2, . . ., be a sequence of random variables. We say that

lim
n→∞

Xn = X in probability

if for each ε > 0
lim

n→∞
P{|Xn − X| ≥ ε} = 0.

We say that
lim

n→∞
Xn = X with probability one (or almost surely),

if

P

{

ω : lim
n→∞

Xn(ω) = X(ω)
}

= 1.

For a fixed number p ≥ 1 we say that
lim

n→∞
Xn = X in Lp,

if
lim

n→∞
E {|Xn − X|p} = 0.

Theorem 6 Convergence in Lp implies convergence in probability.

Theorem 7 limn→∞ Xn = X with probability one if and only if

lim
n→∞

sup
n≤m

|Xm − X| = 0

in probability. Thus, convergence with probability one implies convergence in probability.

5 Conditional Expectation

If Y is a random variable with finite expectation and A is an event with positive probability, then the
conditional expectation of Y given A is defined by

E{Y |A} =
E{Y IA}

P{A}
.

The conditional probability of an event B given A is

P{B|A} = E{IB |A} =
P{A ∩ B}

P{A}
.
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Definition 11 Let Y be a random variable with finite expectation and X be a d-dimensional vector-valued
random variable. For x ∈ Rd such that P{X = x} > 0, let

g(x) = E{Y |X = x} =
E{Y I{X=x}}

P{X = x}
.

The conditional expectation E{Y |X} of Y given X is a random variable with the property that E{Y |X} =
g(X) with probability one.

Definition 12 Let C be an event and X be a d-dimensional vector-valued random variable. Then the
conditional probability of C given X is P{C|X} = E{IC |X}.

Theorem 8 Let Y be a random variable with finite expectation. Let C be an event, and let X and Z be
vector-valued random variables. Then

(i)
(ii) E{Y } = E{E{Y |X}}, P{C} = E{P{C|X}}.
(iii) E{Y |X} = E{E{Y |X,Z}|X}, P{C|X} = E{P{C|X,Y }|X}.
(iv) If Y is a function of X then E{Y |X} = Y .
(v) If (Y,X) and Z are independent, then E{Y |X,Z} = E{Y |X}.
(vi) If Y = f(X,Z) for a function f , and X and Z are independent, then E{Y |X} = g(X), where

g(x) = E{f(x,Z)}.

6 The Binomial Distribution

An integer-valued random variable X is said to be binomially distributed with parameters n and p if

P{X = k} =

(

n

k

)

pk(1 − p)n−k, k = 0, 1, . . . , n.

If A1, . . . , An are independent events with P{Ai} = p, then X =
∑n

i=1 IAi
is binomial (n, p). IAi

is called a
Bernoulli random variable with parameter p.

7 The Multinomial Distribution

A vector (N1, . . . , Nk) of integer-valued random variables is multinomially distributed with parameters
(n, p1, . . . , pk) if

P{N1 = i1, . . . , Nk = ik} =

{

n!
i1!···ik!p

i1
1 · · · pik

k if
∑k

j=1 ij = k, ij ≥ 0

0 otherwise.

8 The Exponential Distribution

A nonnegative random variable has exponential distribution with parameter λ > 0 if it has a density

f(x) = λe−λx, x ≥ 0.
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9 The Multivariate Normal Distribution

A d-dimensional random variable X =
(

X(1), . . . ,X(d)
)

has the multivariate normal distribution if it has a
density

f(x) =
1

√

(2π)d det(Σ)
e−

1

2
(x−m)T Σ−1(x−m),

where m ∈ Rd, Σ is a positive definite symmetric d × d matrix with entries σij , and det(Σ) denotes the
determinant of Σ. Then EX = m, and for all i, j = 1, . . . , d,

E

{

(X(i) − EX(i))(X(j) − EX(j))
}

= σij .

Σ is called the covariance matrix of X.
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