
Verilog introduction

Embedded and Ambient Systems Lab

Purpose of HDL languages

• Modeling hardware behavior

– Large part of these languages can only be used for

simulation, not for hardware generation (synthesis)

– Synthesizable part depends on the actual synthesizer

• Replace graphical, schematic based design method

(which very time consuming)

• RTL (Register Transfer Level) level description

– Automatic hardware synthesis

– Increase productivity

HDL languages

• Modular languages

• HDL module

– Input and output port definitions

– Logic equations between the inputs and the outputs

• Unlike software programming languages, NOT a

sequential language

– Describes PARALLEL OPERATIONS

Modules

• Building blocks to design complex, hierarchical systems

• Hierarchical description, partitioning

states

state

timer

timer_s

timer

timer_ps

timer

timer_p

timer

timer_z

led[2:0]
[2:0]

rst
clk clk

rst

[3:0]
step_state[3:0]

[3:0]
state[3:0]

[2:0]
leds[2:0]

clk
rst

[0]
state

[0]
zero

clk
rst

[1]
state

[1]
zero

clk
rst

[2]
state

[2]
zero

clk
rst

[3]
state

[3]
zero

Verilog: module (2001)

„module” keyword
„module” name

Input ports

Output ports

„endmodule”

keyword

Functional

description

module test(

input clk,

input [7:0] data_in,

output [7:0] data_out,

output reg valid

);

…….

…….

…….

endmodule

Verilog Syntax

• Comments (like C)

– // one line

– /* */ multiple lines

• Constants

– <bit width><‘base><value>

• 5’b00100: 00100 decimal value: 4, 5 bit wide

• 8’h4e: 01001110 decimal value: 78, 8 bit wide

• 4’bZ: ZZZZ high impedance state

Bit operations

• ~, &, |, ^, ~^ (negate, and, or, xor, xnor)

• Bitwise operator on vectors, e.g.:

– 4’b1101 & 4’b0110 = 4’b0100

• If the operand widths are not equal, the smaller one is

extended with zeros

– 2’b11 & 4’b1101 = 4’b0001

• (Logic operators: !, &&, ||)

Bit reduction operators

• Operates on all bits of a vector, the output is a single bit

• &, ~&, |, ~|, ^, ~^ (and, nand, or, nor, xor, xnor)

– &4’b1101 = 1’b0

– |4’b1101 = 1’b1

– Typical usage scenarios:

• Parity check

Comparison

• Same as in C

• Equal, not-equal

– ==, !=

– ===: equality considering „Z”, „X”

– !==: not-equal considering „Z”, „X”

• Comparison

– <, >, <=, >=

Arithmetic

• Same as in C

• Operators: +, -, *, /, %

– Not all of them is synthesizable

• Typically division, modulo are only synthesizable

when the second operator is power of 2

– Negative numbers in twos-complement code

Other operators

• Concatenate: {}

E.g.:

– {4’b0101, 4’b1110} = 8’b01011110

• Shift:

– <<, >>

• Bit selection

– Selected part has to be constant

– data[5:3]

Data types

• wire

– Behaves like a real wire (combinatorial logic)

– Declaration of an 8 bit wire: wire [7:0] data;

• reg

– After synthesis it can translate into

• Wire

• Latch

• Flip-flop

– E.g.: reg [7:0] data;

Assign

• Assign can be used only on wire types

• Continuous assignment

– Left operand continuously gets a new value

• E.g.

– assign c = a & b;

• A wire can be driven by only one assign statement

• Multiple assigns operate parallel to each other

• Can be used to describe combinatorial logic

c
b
a

Always block

• Syntax:

• A reg type variable should be written only in one always

block

• The sensitivity list cannot contain the outputs (left-side

variables) of the always block

• Assign cannot be used within an always block

• Multiple always blocks are executed in parallel

always @ (….)

begin

…..

…..

end

Sensitivity list

Operations

Always – assignments

• Blocking: =

– Blocks the execution of operations after it till it is

executed -> sequential operation (don’t use it unless

really necessary)

• Nonblocking: <=

– Nonblocking assignments are executed in parallel ->

hardware-like operation

• Always use nonblocking assignment

Always – Flip Flop

• Flip Flop: edge sensitive storage element

• Synchronous reset

• Asynchronous reset

cb
a

clk

Q[0]D[0]

always @ (posedge clk)

if (rst)

c <= 1'b0;

else

c <= a & b;

always @ (posedge clk)

c <= a & b;

c
b
a

rst

clk

Q[0]D[0]
R

always @ (posedge clk, posedge rst)

if (rst)

c <= 1'b0;

else

c <= a & b;

R

c
b
a

rst

clk

Q[0]D[0]

Always – Flip Flop

• In Xilinx FPGAs

– Reset and set can be synchronous or asynchronous

– Priority in synchronous case:

• reset, set, ce

• Asynchronous example:

always @ (posedge clk, posedge rst,

posedge set)

if (rst)

c <= 1'b0;

else if (set)

c <= 1'b1;

else if (ce)

c <= a & b;

c

R

S

c
b
a

ce

set

rst

clk

Q[0]D[0]
E

Always – comb. logic

• Result is continuously calculated – if any of the inputs changes the

output immediately changes

always @ (a, b)

c <= a & b;

c
b
a

always @ (*)

c <= a & b;

Always – latch

• Latch: level sensitive storage element

– as long as the „gate” input is ‘1’, the input is sampled into the

latch

– If the „gate” input is ‘0’, the previously sampled value is kept

always @ (*)

If (g)

c <= a & b;

lat

c

cb
a

g

D[0]
Q[0]

C

Always – latch error

• Using latch is typically a bad idea; it can be generated by wrong

code

– Not full if or case statements

– Synthesizers typically give a warning

always @ (*)

case (sel)

2’b00: r <= in0;

2’b01: r <= in1;

2’b10: r <= in2;

endcase

LD

r

0

1

0

1

r

in2

in1

in0

sel[1:0]
[1:0]

D
G

Q

[1]

[0]

[1]

[0]

[0]

always @ (*)

if (sel==0)

r <= in0;

else if (sel==1)

r <= in1;

else if (sel==2)

r <= in2;

Always – correct if/case

• Correct code using combinatorial if/case

always @ (*)

case (sel)

2’b00: r <= in0;

2’b01: r <= in1;

2’b10: r <= in2;

default: r <= ‘bx;

endcase

always @ (*)

if (sel==0)

r <= in0;

else if (sel==1)

r <= in1;

else

r <= in2;

0

1

0

1 r

in2

in1

in0

sel[1:0]
[1:0]

[1]

[0]

[0]

Structural description

• Creating hierarchy: connecting modules

• Port – signal assignment based on the port names

module top_level (input in0, in1, in2, output r);

wire xor0;

xor_m xor_inst0(.i0(in0), .i1(in1), .o(xor0));

xor_m xor_inst1(.i0(xor0), .i1(in2), .o(r));

endmodule

xor_m

xor_inst0

xor_m

xor_inst1

r

in2

in1

in0 i0

i1
o i0

i1
o

Example – MUX (1.)

• 2:1 multiplexer

module mux_21 (input in0, in1, sel, output r);

assign r = (sel==1’b1) ? in1 : in0;

endmodule

module mux_21 (input in0, in1, sel, output reg r);

always @ (*)

if (sel==1’b1) r <= in1;

else r <= in0;

endmodule

module mux_21 (input in0, in1, sel, output reg r);

always @ (*)

case(sel)

1’b0: r <= in0;

1’b1: r <= in1;

endmodule

Example – MUX (2.)

• 4:1 multiplexer

module mux_41 (input in0, in1, in2, in3, input [1:0] sel, output reg r);

always @ (*)

case(sel)

2’b00: r <= in0;

2’b01: r <= in1;

2’b10: r <= in2;

2’b11: r <= in3;

endcase

endmodule

0

1

0

1

r

in3

in2

in1

in0

sel[1:0]

I0

I1

[0] S

O
[1]

[1]

Example – Shift register

• 16 bit deep shift register (e.g. for delaying a value)

module shr (input clk, sh, din, output dout);

reg [15:0] shr;

always @ (posedge clk)

if (sh)

shr <= {shr[14:0], din};

assign dout = shr[15];

endmodule

Example – Counter

• Binary counter with synchronous reset, clock enable,

load and direction inputs
module m_cntr (input clk, rst, ce, load, dir,

input [7:0] din,

output [7:0] dout);

reg [7:0] cntr_reg;

always @ (posedge clk)

if (rst)

cntr_reg <= 0;

else if (ce)

if (load)

cntr_reg <= din;

else if (dir)

cntr_reg <= cntr_reg – 1;

else

cntr_reg <= cntr_reg + 1;

assign dout = cntr_reg;

endmodule

Example – Secundum counter

• 50 MHz clock frequency, 1 sec = 50 000 000 clocks
module sec (input clk, rst, output [6:0] dout);

reg [25:0] clk_div;

wire tc;

always @ (posedge clk)

If (rst)

clk_div <= 0;

else

if (tc)

clk_div <= 0;

else

clk_div <= clk_div + 1;

assign tc = (clk_div == 49999999);

reg [6:0] sec_cntr;

always @ (posedge clk)

If (rst)

sec_cntr <= 0;

else if (tc)

if (sec_cntr==59)

sec_cntr <= 0;

else

sec_cntr <= sec_cntr + 1;

assign dout = sec_cntr;

endmodule

Tri-state lines

• Bi-directional buses, eg.

– E.g. data bus of external memories

• The bus drive enable signal is critical (bus_drv), take

care when generating it

module tri_state (input clk, inout [7:0] data_io);

wire [7:0] data_in, data_out;

wire bus_drv;

assign data_in = data_io;

assign data_io = (bus_drv) ? data_out : 8’bz;

endmodule

FSM – Finite State Machine

• FSM – to create complex control machines

• General structure

• State register: state variable

• Next state function: determines the next state
(combinatorial logic)

• Output function: generates outputs

– Moore: based on the state register

– Mealy: based on the state registers and the current
inputs

NEXT

STATE

STATE

REGISTERINPUTS

OUTPUT

FUNCTION

CLK RESET

Mealy model

OUTPUTS

FSM example

• Traffic light (simple)

– States: red, yellow, green, red-yellow (no blinking

yellow)

– Inputs: timers for the different states

– Output: state

R

RY

G

Y

FSM example – Verilog (1)

module light(

input clk, rst,

output reg [2:0] led);

parameter RED = 2'b00;

parameter RY = 2'b01;

parameter GREEN = 2'b10;

parameter YELLOW = 2'b11;

reg [15:0] timer;

reg [1:0] state_reg;

reg [1:0] next_state;

always @ (posedge clk)

if (rst)

state_reg <= RED;

else

state_reg <= next_state;

always @ (*)

case(state_reg)

RED: begin

if (timer == 0)

next_state <= RY;

else

next_state <= R;

end

RY: begin

if (timer == 0)

next_state <= GREEN;

else

next_state <= RY;

end

YELLOW: begin

if (timer == 0)

next_state <= RED;

else

next_state <= YELLOW;

end

GREEN: begin

if (timer == 0)

next_state <= YELLOW;

else

next_state <= GREEN;

end

default:

next_state <= 3'bxxx;

endcase

FSM example – Verilog (2)

always @ (posedge clk)

case(state_reg)

RED: begin

if (timer == 0)

timer <= 500; //next_state <= RY;

else

timer <= timer - 1;

end

RY: begin

if (timer == 0)

timer <= 4000; //next_state <= GREEN;

else

timer <= timer - 1;

end

YELLOW: begin

if (timer == 0)

timer <= 4500; //next_state <= RED;

else

timer <= timer - 1;

end

GREEN: begin

if (timer == 0)

timer <= 500; //next_state <= YELLOW;

else

timer <= timer - 1;

end

endcase

• Timer

– Loads a new value

when state changes

– Down-counter

– ==0: state change

always @ (*)

case (state_reg)

RY : led <= 3'b110;

RED: led <= 3'b100;

YELLOW: led <= 3'b010;

GREEN: led <= 3'b001;

default: led <= 3’b100;

endcase

endmodule

Simulation

• Testbench creation: drive the input ports of the unit

under test

– Verilog Test Fixture

• Generating inputs using Verilog

• All synthesizable language elements can be used

• Other constructs which are not synthesizable are

also available (e.g. delay)

• Simulator

– ISE Simulator (Isim)

– Modelsim (MXE)

Verilog Test Fixture

• Test Fixture

– Test Fixture is a Verilog module

– The module under test is a sub-module of the test

fixture

– All Verilog syntax constructs can be used

– There are non-synthesizable constructs

• Time base

– ‘timescale 1ns/1ps

• Time base is 1 ns

• Simulation resolution: 1 ps

Test Fixture - initial

• „initial” block

– Execution starts at time „0”

– Executed once

– „initial” blocks are executed in parallel with each other

and with always blocks and assigns

• The delays are cumulative, e.g.

initial

begin

a <= 0;

#10 a <= 1;

#25 a <= 2;

#5 a <= 0;

end
0

1 2 0

10 35 40

Test Fixture - always

• Generating clock

• Clocked inputs (propagation time!)

initial

clk <= 1;

always #5

clk <= ~clk;

initial cntr <= 0;

always @ (posedge clk)

#2 cntr <= cntr + 1;

0 1 2 3 4 5 6

t =2nsOH

Task

• Declaration:

– In the module which uses the task

– In a different file (more modules can use the same

task)

• Arbitrary number of inputs and outputs

• Can contain timing (delay)

• Variables declared in a task are local variables

• Global variables can be read or written by the task

• A task can call another task

Example - Task

• Simulating an asynchronous read operation

• Verilog code

task bus_w(input [15:0] addr, input [7:0] data);

begin

xaddr <= addr;

#5 xdata <= data;

#3 xwe <= 0;

#10 xwe <= 1;

while (xack != 1) wait;

#4 xdata <= 8’bz;

xaddr <= 0;

end

endtask;

XWE

XDATA

XADDR

XACK

Example - Task

• „bus_w” is located in „tasks.v” file

• x* variables used by the task are global variables defined

in the test fixture

• Using the task in a test fixture

– 3 write cycles

– 10 ns between them

`include “tasks.v”

initial

begin

bus_w(16’h0, 8’h4);

#10 bus_w(16’h1, 8’h65);

#10 bus_w(16’h2, 8’h42);

end

File operations

• Reading data into an array

• Writing data into a file

reg [9:0] input_data[255:0];

initial

$readmemh(“input.txt”, input_data);

integer file_out;

wire res_valid;

wire [16:0] res;

initial

file_out =$fopen(“output.txt");

always @ (posedge clk)

if (out_valid)

$fwrite(file_out, "%d \n", res);

