

Embedded and Ambient Systems
Laboratory

Laboratory guide

ARM microcontroller programming in C
language

Written by: Zoltán Szabó (zoltan.szabo@aut.bme.hu)

 Viktor Kovacs (viktor.kovacs@aut.bme.hu)
 Gergely Kardos (gergely.kardos@aut.bme.hu)
 Norbert Koszó (norbert.koszo@aut.bme.hu)

Last modified: April 13, 2016

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics
Embedded and control systems specialization

mailto:gergely.kardos@aut.bme.hu

2

Introduction

The main goal of the laboratory is to get familiar with the STM32F4 development kit
and its programming in C language, using an Eclipse-based development
environment.

Description of the laboratory

Through the measurement tasks, students get an overview and get familiar with
programming the SM32F4Discovery development kit and its extension board in C
language. It is recommended to use the available peripheral library, which provides
descriptively named functions to modify the registers of the hardware. The
peripheral library’s source code is available for free, and it contains useful
comments, making the development easier.

The extension board

An extension board has been created for the F4Discovery developer kit that contains
numerous input and display devices to extend the functionality of the developer kit.
The following peripherals can be found on the extension board (if the signal name
starts with # - means the signal is low active):

 4 pieces of pushbuttons with common enable input (BTNEN – PD11; BTN1 –
PD12; …; BTN4 – PD15)

 4 pieces of switches with common enable input (SWEN – PC6; SW1 – PE2;
SW2 – PE4; SW3 – PE5; SW4 – PE6)

 Display peripherals: LEDs, 7 segment displays, graphic LCD display. Each one
of these has an 8 bit bus driver which is connected to the same 8 bit bus. The
LEDs and the 7 segment displays use D flip-flops with clock and enable inputs,
the LCD display is driven by a bidirectional bus driver with direction and
enable inputs.

o 8 pieces of LEDs, with common enable and clock signal (#LEDEN –
PC11; LEDCLK - PA15; LD1 – PE8 (DB0); …; LD8 – PE15 (DB7))

o 4 pieces of 7 segment displays, with enable, clock, and two selection
signals (#7SegEN – PD10; 7SegCLK – PD2; display selector inputs:
7SEL0 - PB14, 7SEL1 – PB15; segments: „a” – DB0 – PE8, „b” – DB1 –
PE9, … „DP” – DB7 – PE15)

o 64x128 pixel monochrome graphic LCD display with enable (#GLCDEN
– PB7; backlight enable: BL_PWM – PC8; control: GLCD_RESET – PD3,
GLCD_R/#W – PE7; GLCD_CS1 – PB4; GLCD_CS2 – PB5; GLCD_E – PD7;
GLCD_DI – PD3; data: DB0 – PE8; …; LCD_DB7 – PE15)

 Analog potentiometer (PB1)

 Analog input (PB0) (Directly or through a follower differential amplifier, or
through a comparator with hysteresis.)

 I2C temperature meter (SDA- PB9; SCL – PB6; T_INT – PB8)

3

 Digital SPI potentiometer which sets the parameters of the comparator of the
analog input (SPI_CS_POT – PA3; MOSI – PA7; SPI_SCK – PA5)

 RS232 port (USART3_TX - PD8; USART3_RX - PD9)

 CAN (CAN1_RX - PD0; CAN1_TX - PD1)

 Micro servo PWM output (PA8)

 Ethernet (JP3 needs to be shorted to operate, which also disables the MEMS
sensor on the F4Discovery kit)

Preparing for the laboratory

Review the schematics of the extension board! In the laboratory we will use the push
buttons, the switches, the seven segment displays and the LEDs, so focus on these
peripherals. During the laboratory the push buttons, switches, LEDs and 7 segment
displays will be used.

Fill the following table! The table specifies the content of the control byte for each
displayable character on the 7 segment display

 a

PE8
(DB0)

b
PE9

(DB1)

c
PE10
(DB2)

d
PE11
(DB3)

e
PE12
(DB4)

f
PE13
(DB5)

g
PE14
(DB6)

dp
PE15
(DB7)

Hexa érték

0 X X X X X X - - 3F

1

2

3

4

5

6

7

8

9

A

b

C

D

E

F

Review the parts of the peripheral library which are relevant for the laboratory!

4

Introduction to the microcontroller and it’s programming

Block structure of the MCU:

The MCU has a lot of peripherals, but only a few of them will be used during the
laboratory (GPIO, Timer, NVIC…).
To start the MCU, two essential things must be done: the stack pointer needs to be
initialized and the entry point of the main function must be set at the reset vector.
Additionally it is recommended to implement the error handler functions. These
functions are already implemented in the library for the STM32F407VGT6
microcontroller and the STM32 HAL library. Finally the system clock must be
configured, but the default initialization also accomplishes this task for this
microcontroller
The clock structure of the system can be seen on the image below.

51/82/114/140 I/Os

USB 2.0 OTG

FS/HS

Encryption**

Camera Interface

3x 12-bit ADC
24 channels / 2Msps

3x I2C

Up to 16 Ext. ITs

Temp Sensor

2x6x 16-bit PWM
Synchronized AC Timer

2x Watchdog
(independent & window)

5x 16-bit Timer

XTAL oscillators
32KHz + 8~25MHz

Power Supply
Reg 1.2V

POR/PDR/PVD

2x DAC + 2 Timers

2 x USART/LIN

1 x SPI

1 x Systic Timer

PLL
Clock Control

RTC / AWU

4KB backup RAM

Ethernet MAC

10/100, IEEE1588

USB 2.0 OTG FS

4x USART/LIN

1x SDIO

Int. RC oscillators
32KHz + 16MHz

3 x 16bit Timer

2x 32-bit Timer

2x CAN 2.0B

2 x SPI / I2S

HS requires an external PHY connected to ULPI interface,

** Encryption is only available on STM32F415 and STM32F417

A
R

M
 ®

 3
2

-b
it
 m

u
lt
i-
A

H
B

 b
u
s
 m

a
tr

ix

A
rb

it
e
r

(m
a
x
 1

5
0
M

H
z
)

F
la

s
h
 I
/F

CORTEX-M4
CPU + FPU +
MPU
168 MHz

128KB SRAM

JTAG/SW Debug

DMA

16 Channels

Nested vect IT Ctrl

Bridge

Bridge APB1 (max 42MHz)

ETM

512kB- 1MB
Flash Memory

External Memory
Interface

AHB1

(max 168MHz)

AHB2 (max 168MHz)

A
P

B
2

 (m
ax 8

4
M

H
z)

64KB CCM data RAM

D-bus

I-bus

S-bus

5

The clock system of the MCU is complicated and has many options. The
manufacturer provides an application note which describes the clock system in
details and makes understanding easier.
After reset, the MCU operates from its internal 16MHz RC oscillator (HSI), and almost
all the peripheries switched off from the clock network. During the laboratory, a
template program will be given, which sets up the external crystal oscillator and
configures the PLL to work on the maximal 168MHz clock. But it does not enable the
clock of any periphery. These clocks must be enabled manually where it is necessary.

Using the peripheral library

STM32 hardware registers

Application

HAL

HW

Do NOT modify!

System folder

src and include folders

_initialize_hardware.c

main.c

stm32fxx_hal_conf.h

stm32fxx_hal.h

stm32f4xx_hal_gpio.c

stm32f4xx_hal_gpio.h

6

The peripheral library has been written in ANSI C language with separate source and
header files to each periphery (e.g. stm32f4xx_hal_gpio.c, stm32f4xx_hal_gpio.h). To
use the peripheral library the stm32f4xx_hal.h and the stm32f4_hal_cortex.h header
files must be included. The header included in the project (stm32f4xx_hal_conf.h)
file includes all the HAL header files. The unnecessary includes may be removed to
decrease compilation time. Full description of the HAL libraries can be found in the
referenced document. Also the source files are well commented and contain a
description at the beginning. Types, constants, symbols and functions defined in the
HAL header files are named self-describing as all start with prefixes of the
peripheries: HAL_GPIO_Init(), NVIC_PriorityGroup_0 etc.

GPIO configuration

The following block diagram shows the structure of one GPIO:

First clock must be enabled for a given GPIO port with the following macro:
__GPIOx_CL_ENABLE() where x denoted the port identifier (GPIOA, GPIOB etc).
After reset, every GPIO pin is configured in input floating mode. This can be modified
by the HAL_GPIO_Init(…) function. The first parameter of the function is the port
(GPIOA, GPIOB, etc.) the second is a GPIO_InitTypeDef structure which contains the
following variables:

 Pin -> GPIO_Pin_0 15, GPIO_Pin_All, GPIO_Pin_None (Multiple selection is
possible with bitwise OR)

 Mode:
o GPIO_MODE_INPUT // Input Floating Mode
o GPIO_MODE_OUTPUT_PP // Output Push Pull Mode
o GPIO_MODE_OUTPUT_OD // Output Open Drain Mode
o GPIO_MODE_AF_PP // Alternate Function Push Pull Mode
o GPIO_MODE_AF_OD // Alternate Function Open Drain Mode
o GPIO_MODE_ANALOG // Analog Mode

(1) VDD_FT is a potential specific to five-volt tolerant I/Os and different from VDD.

To On-chip Peripherals

Analog

From On-chip Peripherals

Push-Pull

Open Drain Output
Driver

I/
O

 p
in

VS
S

On/Off
P

u
ll

 -
U

p
P

u
ll

 -
D

o
w

n

VDD

On/Off

B
it

 S
e

t/
R

e
s

e
t

R
e
g

is
te

r

In
p

u
t

D
a
ta

 R
e
g

is
te

r
O

u
tp

u
t

D
a
ta

 R
e
g

is
te

r

Read / Write

Alternate Function Input

Alternate Function Output

Schmitt

Trigger

VDD

VSS

0

Input
Driver

Read

Write

OnOff

VDD or VDD_FT(1)

VS
S

OUTPUT

CONTROL

Analog

MODER(i)
[1:0]

OTYPER(i)
[1:0]

I/O configuration
PUPDR(i)

[1:0]

11 x Analog modex

01

0

0 0 Output Open Drain
0 1 Output Open Drain with Pull-up
1 0 Output Open Drain with Pull-down

1

0 0 Output Push Pull
0 1 Output Push Pull with Pull-up
1 0 Output Push Pull with Pull-down

10

0

1
0 0 Alternate Function Open Drain
0 1 Alternate Function OD Pull-up
1 0 Alternate Function OD Pull-down

0 0 Alternate Function Push Pull
0 1 Alternate Function PP Pull-up
1 0 Alternate Function PP Pull-down

00 x
0 0 Input floating
0 1 Input with Pull-up
1 0 Input with Pull-down

* In output mode, the I/O speed is configurable through OSPEEDR
register: 2MHz, 25MHz, 50MHz or 100 MHz

7

o GPIO_MODE_IT_RISING // External Interrupt Mode with Rising edge trigger
detection

o GPIO_MODE_IT_FALLING // External Interrupt Mode with Falling edge
trigger detection

o GPIO_MODE_IT_RISING_FALLING // External Interrupt Mode with
Rising/Falling edge trigger detection

o GPIO_MODE_EVT_RISING // External Event Mode with Rising edge trigger
detection

o GPIO_MODE_EVT_FALLING // External Event Mode with Falling edge trigger
detection

o GPIO_MODE_EVT_RISING_FALLING // External Event Mode with
Rising/Falling edge trigger detection

 Speed:
o GPIO_SPEED_LOW //lowest EMI -> softer edges
o GPIO_SPEED_MEDIUM
o GPIO_SPEED_FAST
o GPIO_SPEED_HIGH //highest EMI -> sharper edges

 Pull:
o GPIO_ NOPULL
o GPIO_PULLUP
o GPIO_PULLDOWN

 Alternate
o GPIO_AF0_RTC_50Hz
o …
o GPIO_AF15_EVENTOUT

Basic timer handling

This microcontroller includes several timers with different capabilities, but we will
only cover the basic functionalities. The following figure presents the functionalities
of a general purpose timer:

General Purpose timer Features overview

 TIM2, 3, 4 and 5 on Low Speed APB (APB1)

 Internal clock up to 84 MHz (if AHB/APB1 prescaler

distinct from 1)

 16-bit Counter for TIM3 and 4

 32-bit Counter for TIM2 and 5

 Up, down and centered counting modes

 Auto Reload

 4 x 16 High resolution Capture Compare Channels

 Programmable direction of the channel: input/output

 Output Compare

 PWM

 Input Capture, PWM Input Capture

 One Pulse Mode

 Synchronization

 Timer Master/Slave

 Synchronisation with external trigger

 Triggered or gated mode

 Encoder interface

 6 Independent IRQ/DMA Requests generation

 At each Update Event

 At each Capture Compare Events

 At each Input Trigger

16-Bit Prescaler

ITR 1 Trigger/Clock

Controller
Trigger

Output

Clock

Auto Reload REG

+/- 16-Bit Counter

Capture Compare

ITR 2

ITR 3

ITR 4

Capture Compare
Capture Compare

Capture Compare

CH1

CH2

CH3

CH4

ETR

CH1

CH2

CH3

CH4

8

Functions used for configuration:
 __TIMx_CLK_ENABLE() – enabling the timer clock source

 TIM_Base_InitTypeDef:
o Period – last value of the counter

f = TIM_counter_clk/(Period+1)
o Prescaler - [0 -> 216-1] – clock division value

TIM_counter_clk=APBx_clk/(prescaler+1)
o ClockDivision – used for digital filters, let’s set it to 1
o CounterMode – TIM_COUNTERMODE_ [UP/DOWN/CENTERALIGNED(1..3)]

 HAL_TIM_Base_Init(…) – initialize the timer based on the structure

 HAL_TIM_Base_Start_IT() – start the timer

 HAL_TIM_Base_Stop_IT() – stop the timer

During the exercises Timer4 and Timer 6 are used, these connect to bus APB1, thus
the base clock for these timers is 84MHz.

Interrupt handling

An interrupt controller (NVIC) is responsible for interrupt handling in this
microcontroller. After reset all peripheral interrupts is disabled. To enable interrupts,
the interrupt groups and priority levels must be set up in the interrupt controller and
the interrupt handler function must be implemented. In case of external interrupts,
the external interrupt controller (EXTI) and the system configuration controller
(which maps the ports to interrupt channels) also must be configured.

Interrupts may be grouped into “preemption priority” or “sub priority” group. The
main difference between the two groups is that interrupts in preemption priority
(lower number, higher priority) may interrupt sub priority interrupts. In case of
interrupts with the same preemption priority the handling order is defined by sub
priority. The number of preemption and sub priority levels depends on the priority
group settings. The following table defines the relation between the group settings
and the number of levels in each group.

PRIGROUP
(3 bits)

Binary Point
(group.sub)

Preemting Priority
(Group Priority)

Sub-Priority

Bits Levels Bits Levels

011
(NVIC_PriorityGroup_4)

4.0 gggg 4 16 0 0

100
(NVIC_PriorityGroup_3)

3.1 gggs 3 8 1 2

101
(NVIC_PriorityGroup_2)

2.2 ggss 2 4 2 4

110
(NVIC_PriorityGroup_1)

1.3 gsss 1 2 3 8

111
(NVIC_PriorityGroup_0)

0.4 ssss 0 0 4 16

Five priority models are available, which determine the number of bits available for
priority groups and subpriorities. Lower priority numbers denote higher priority.

 HAL_NVIC_SetPriorityGrouping(…) – set up priority model

9

 HAL_NVIC_SetPriority(…) – set the priority of a selected interrupt

 HAL_NVIC_EnableIRQ(…) – enable a selected interrupt

 HAL_NVIC_DisableIRQ(…) – disable a selected interrupt

In order to handle a given interrupt the native interrupt handler function must first
be written. The function name associated to a given interrupt can be found in
vectors_stm32f4xx.c, ie. TIM4_IRQHandler is associated to TIM4:
 TIM4_IRQHandler, // TIM4

In this handler routine the task is only to call the predefined handler function of the
HAL library, which will later call back the final handler function. The greatest benefit
of this method is that the builtin handler of the library does all the checks and clears
the interrupt flag. The developer must only care about the application logic in the
callback function. The name of the callback function can be found in the
documentation or the related header file. In the example the following function is
called by at the overflow of a timer:
void HAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef *htim);

Laboratory tasks

A number of IDE software available for the STM32 microcontrollers (MDK-ARM, IAR,
TASKING). We are going to use Eclipse CDT with Sourcery CodeBench Lite Edition for
ARM EABI GCC compiler and OpenOCD debugger to avoid the limitations of
proprietary IDEs.
(A short tutorial to the most popular IDEs can be found in UM1467 documentation
on the ST webpage).

Create a folder under “D:\users” and unzip the file under it. The source code will
contain comments, which helps solving the tasks. At some parts functions from the
periphery library has to be used. Only the name of the function will be given, the
parameter list has to be looked up. The signals of the peripheries can be easily read
from the schematics of the board.

Task 0: Project and IDE setup

Let’s start the Eclipse IDE, which will ask where the workspace should be. Select the
previously created folder and do NOT make it default.
Select File|Import|General/Existing Projects into Workspace. Select archive file
(select the previously downloaded template) and press Finish.
Setting up the debug configuration:
Roll down the debug button and select Debug configurations. Select GDB OpenOCD
Debugging and add a New Debug Configuration. On the Debugger tab, select the
openocd executable. In the other options box, paste:
-f board/stm32f4discovery.cfg

Debugging should work now. Close the window.
Go to Window/Preferences/General/Workspace, turn on Save automatically before
build option.

10

Go to Window/Preferences/ C/C++/Editor/Content Assist/Advanced, turn on all
options. Close. Right click the name of the project in the Project explorer, select
index/Rebuild.

Task 1: Basic port handling, timers

1.1 Chase light with software timing

Write a program, which create running lights on the LD1-LD8 LEDs of the F4-Ext
board. Use software timing.

Files to modify: main.c, bsp_led.c, bsp.c

Functions to implement/modify:

 main (modify)

 bsp_led.c (implement all functions)

 HAL_MspInit (modify)

Recommended functions from the library:

 __GPIOx_CLK_ENABLE() – enable periphery clock source

 HAL_GPIO_Init() – initialize GPIO ports

 HAL_GPIO_WritePin(), HAL_GPIO_TogglePin() – setting, modifying PGIO pin state

 GPIOx->ODR – GPIO port output register

The LEDs are driven by a flip-flop circuit, which also needs to be enabled (LED_CLK,
#LEDEN, DB0-7).

1.2 Running light with hardware timing

Modify the previous program. Use Timer4 with interrupt for timing. Each LED have to
light for 250ms.

Files to modify: main.c, bsp_timer.c, bsp.c

Functions to implement/modify:

 main (modify)

 Timer4_Init, Timer4_Start, Timer4_Stop, HAL_TIM_PeriodElapsedCallback (implement)

 HAL_MspInit (modify)

Recommended functions from the library:

 HAL_NVIC_SetPriorityGrouping() – NVIC priority model selection

 __TIMx_CLK_ENABLE() – enable timer clock

 HAL_TIM_Base_Init() – timer initialization

 HAL_NVIC_SetPriority() – setup interrupt priority

 HAL_NVIC_EnableIRQ() – enable interrupt

 HAL_TIM_Base_Start_IT() – start timer with interrupt mode

 HAL_TIM_Base_Stop_IT() – stop timer with interrupt mode

Task 2: Stop watch

In this task a stop watch have to be implemented, which shows the time with 0.1s
precision on the seven-segment displays.

11

1.3 Seven-segment display

Write a function (DisplayDigit) which displays a single digit on one of the seven-
segment displays. The function has to accept three parameters: which display to
write, what hexadecimal value to write (0…F), and light up the decimal point or not.
To assign the hexadecimal numbers with the seven-segment displays hexadecimal
code set the SegmentTable array in the code. To try your DisplayDigit
implementation, display the “F” hexadecimal value on the 2nd display. Call
DisplayDigit() from the main() function.

Files to modify: main.c, bsp_7seg.c, bsp.c

Functions to implement/modify:

 main (modify)

 implement all methods in bsp_7seg.c

 HAL_MspInit (modify)

Recommended functions from the library:

 __GPIOx_CLK_ENABLE() – enable periphery clock source

 HAL_GPIO_Init() – initialize GPIO ports

 HAL_GPIO_WritePin(), HAL_GPIO_TogglePin() – setting, modifying PGIO pin state

 GPIOx->ODR – GPIO port output register

All GPIO ports have 16 bits. GPIO_Write() modifies all of these bits at once, keep it in
mind if you want to modify only few of them.

1.4 Displaying with time multiplexing

Write the interrupt handler function of the Timer4 to display the last 4 hexadecimal
digits of the global “counter” variable on the seven-segment displays. On the
schematic of the F4-Ext board it can be clearly seen, that the seven-segment displays
must be driven with time multiplexing. The numbers on the displays must look
stationary (they should not flicker); keep it in mind when setting up timer4. The
displays will show time in tenth of a second precision (e.g. 123.9), turn on the
appropriate decimal point!

Files to modify: main.c, bsp_timer.c

Functions to implement/modify:

 main (modify)

 Timer4_init (modify)

 HAL_TIM_PeriodElapsedCallback (modify)

1.5 Counter with 0.1s precision

Set up the Timer6 to generate interrupts with 0.1s intervals. Write the interrupt
handler function to increase the “counter” variable. The “counter variables value is
only valid in the range of [0…9999].

Files to modify: main.c, bsp_timer.c, bsp.c

Functions to implement/modify:

 main (modify)

 HAL_MspInit (modify)

 Timer4_init (modify)

 HAL_TIM_PeriodElapsedCallback (modify)

12

1.6 Control the timer with buttons

Set the corresponding GPIOs, the EXTI and NVIC controller to generate interrupt every
time, when BTN[123] is pressed. The BTN1 has to start, BTN2 has to stop the
measurement, and BTN3 has to clear the counter.

Files to modify: main.c, bsp_button.c, bsp.c

Functions to implement/modify:

 main (modify)

 HAL_MspInit (modify)

 Implement all functions in bsp_button.c

Task 3. Reaction game (optional task)

Based on the previous task, create a reaction game. In the game after BTN4 pressed,
lit up one of the LEDs from LD[123]. At the same time, start a stop watch on the
seven-segment displays with hundred of a second precision. The player has to press
the appropriate button from BTN[123] as fast as he can. The stop watch has to stop,
when the appropriate button is pressed. Display the elapsed time in seconds dot
hundreds of seconds format (e.g. 01.89), on the seven-segment displays. After the
BTN4 is pressed, wait 1-4 seconds randomly before turning on one of the LEDs. The
internal random number generator can be used to generate random numbers,

Questions for preparation

 What clock source is used by the microcontroller after reset?

 What is the maximal system clock of the controller?

 What operating modes does a GPIO port have?

 What setup parameters does a basic timer have?

 What are the typical steps of a periphery initialization? What kind of
functions are available for this purpose?

 What are priority groups and sub priority groups, what are the main
differences?

 What is needed to handle an interrupt using the STM32 HAL library?

 What steps are required using the STM32 platform to enable a timer
peripheral and handle its interrupts?

Related documents

Information about the MCU from STMicroelectronics:
http://www.st.com/internet/mcu/subclass/1521.jsp
Useful site about the MCU:
http://www.emcu.it/STM32F4xx/STM32F4xx.html

http://www.st.com/internet/mcu/subclass/1521.jsp
http://www.emcu.it/STM32F4xx/STM32F4xx.html

13

14

Appendix

Mapping of peripheries on the F4-Ext board:
Name PortPin

DB0 PE8 7seg_a/LD1/GLCD_DB0

DB1 PE9 7seg_b/LD2/GLCD_DB1

DB2 PE10 7seg_c/LD3/GLCD_DB2

DB3 PE11 7seg_d/LD4/GLCD_DB3

DB4 PE12 7seg_e/LD5/GLCD_DB4

DB5 PE13 7seg_f/LD6/GLCD_DB5

DB6 PE14 7seg_g/LD7/GLCD_DB6

DB7 PE15 7seg_dp/LD8/GLCD_DB7

#LDEN PC11

LED_CLK PA15

#7SEN PD10

7SEL0 PB14

7SEL1 PB15

7SEG_CLK PD2

BTNEN PD11

BTN1 PD12

BTN2 PD13

BTN3 PD14

BTN4 PD15

