

Embedded and Ambient Systems
Laboratory

Laboratory guide

Microcontroller programming in assembly
level

Written by: Zoltán Szabó (zoltan.szabo@aut.bme.hu)

 Gergely Kardos (gergely.kardos@aut.bme.hu)
Last modified: March 10, 2014

Budapest University of Technology and Economics
Faculty of Electrical Engineering and Informatics

Department of Automation and Applied Informatics
Embedded and control systems specialization

2

Introduction

The main goal of the laboratory is to get familiar with the C8051 development kit
and its programming in assembly language, using the Keil µVision development
environment.

Description of the laboratory

Through the measurement tasks, the students get an overview and get familiar with
the developer kit (C8051F040-DK) and the extension board with programming them
using assembly language.

 The Extension Board

An extension board has been created for the C8051F040-DK developer kit that
contains numerous input and display devices to extend the functionality of the
developer kit. The following peripherals can be found on the extension board (if the
signal name starts with # - means the signal is low active):

Function
Enable / activate Control signals

Signal Port Signal Port

8 push buttons #BTNEN P4.4 BTN0..BTN7 P1.0..P1.7

8 switches #SWEN P4.5 SW0..SW7 P2.0..P2.7

8 LEDs #LDEN P4.3 #LD0..#LD7 P5.0..P5.7

7 segment displays (4 pieces)
digit selector bit 0..1

#7SEN P4.2 7S_DP P6.7

7SSEL0..7SSEL1 P4.0..P4.1 7S_A..7S_G P6.0..P6.6

2x16 character based LCD
display

#LCD_EN P3.3 #LCD_BL
LCD_RS

LCD_R/#W
LCD_DB0..7

P3.2
P3.0
P3.1

P7.0..P7.7

Analog potentiometer - - AIN0.0 AIN0.0

Analog thermometer - - AIN0.1 AIN0.1

Infrared transceiver - - AIN0.3 AIN0.3

I2C thermometer - - SDA
SCL

I2CTEMP_CMP

P0.6
P0.7
P3.7

SPI thermometer #CS_SPITEMP P4.6 MISO
SCK

P0.3
P0.2

SPI potentiometer #CS_SPIPOT P4.7 MOSI
SCK

P0.4
P0.2

3 digital inputs
(on extension header)

- - #EXT_IN0
#EXT_IN1
#EXT_IN2

P3.4
P3.5
P3.6

The internal peripherals of the 8051 microcontroller – used for this laboratory –
connect to the external I/O pins through the Priority Crossbar Decoder. The Priority
Crossbar Decoder is a crossbar that specifies the pin allocation for each internal

3

peripheral. All peripherals have a fixed priority that means enabling a peripheral with
high priority will shift the peripherals with lower priority backwards. To understand
the Priority Crossbar Decoder, and the pin assignments, check the configuration
window of PCD in the “Configuration Wizard 2“ application’s „Peripherals->Port I/O”
menu item.
A lot of peripherals can do they function without assigning IO pins for them, so it’s
not required to assign a pin for example a timer peripheral.

To use the peripherals on the Extension Board, the following modules must be
enabled in the Priority Crossbar Decoder: UART0, SPI0 (4 wire mode), SMBus (I2C).
(XBR0 = 0x07, XBR2=0x40). Besides of these the GPIO ports used as output, the push-
pull mode must be enabled (P0MDOUT = 0x15, P3MDOUT = 0x0F, P4MDOUT = 0xFF,
P5MDOUT = 0xFF, P6MDOUT = 0xFF, P7MDOUT = 0xFF).
For applying these mandatory settings always include the „adefs.inc” definition file,
and call the „A_Init” function in the initialization part of the application.

Preparing for the laboratory
Review the schematics of the extension board! In the laboratory we will use the push
buttons, the switches, the seven segment displays and the LEDs, so focus on these
peripherals.

Fill the following table! The table specifies the content of the control byte for each
displayable character on the 7 segment display.

 a
7S_A
P6.0

b
7S_B
P6.1

c
7S_C
P6.2

d
7S_D
P6.3

e
7S_E
P6.4

f
7S_F
P6.5

g
7S_G
P6.6

dp
7S_DP
P6.7

Hex value

P6

0 X X X X X X - - 3F

1

2

3

4

5

6

7

8

9

A

4

b

C

D

E

F

Review the program code in „F04x_Blinky.asm” file – use the basics of assembly
language presented on the lectures of “Microcontroller based systems”. The
program uses a software timer for blinking the LED on the 8051 development kit.

Laboratory tasks

Task 1. Basic GPIO usage
1.1.
Write an application the will light up the LD0 LED while the user holds the BTN0
button in pressed state!

Start the Keil µVision4 development environment, and select the „Project->New-
>uVision Project” menu item. Create a separate folder for the project on the user
drive, and give a name to the project. In the next step select the Silicon Laboratories
C8051F040-es microcontroller. The project wizard will ask about startup code
generation, answer it with selecting the “No” option. In the Project Workspace tree,
select the „Target 1” branch and from the right click menu, select the „Options for
Target: Target 1” item. On the „Debug” tab, select the „Use” radio button, and set
the “Silicon Laboratories uVision driver” in the driver combo box. At the „Settings”,
select the „USB Debug adapter” option (the debugger interface must be connected
to the PC). On „Utilities” tab at the „Use target driver for Flash programming”
combobox select the „Silicon Laboratories uVision driver” option.
Open the „template.asm” file, and save it to the project folder, with an arbitrary
name using the “asm” extension. At the last step, the file we have just saved into the
project folder should be added to the project. For this, right click at the „Source
Group 1” branch and select the „Add files to Group Source Group 1” menu item.

1.2.
Change the functionality of the previous task! The LD0 Led should light up when the
user presses the BTN0 button and it should switch off when the user presses the
BTN0 button again. Use the F0 user flag for temporary storage!

1.3.
Write an application that will show the state of the switches on the leds, when the
user presses the BTN0 button. If the user presses the BTN1 button, all the leds should
switch off!

5

Task 2. Timer usage
2.1.
Write an application the will blink the LD0 led at 1 Hz frequency – using the Timer2
timer. (Without interrupts)

For the previous tasks the default clock settings (internal oscillator clock divided by 8
≈ 3 MHz) were good enough, but for more accurate timing the clock settings should
be modified. For this configuration use the Configuration Wizard 2 application
supplied by Silicon Laboratories. When the Configuration Wizard starts, the New
Project dialog pops up, where the C8051F040 microcontroller should be selected,
and in the „Options->Code Format” menu, select ASM option. Check the
configuration options, and follow the changes in the different register values at the
source code panel.
After successful configuration, the code made by the wizard can copied and pasted
into our application code, or it can be saved in a separate file.
A generated configuration code can be seen in the following example – it will
configure only the oscillator parameters of the microcontroller.

;------------------------------------

;- Generated Initialization File --

;------------------------------------

 rseg INIT

; Peripheral specific initialization functions,

; Called from the Init_Device label

Oscillator_Init:

 mov SFRPAGE, #CONFIG_PAGE

 mov OSCICN, #083h

 ret

; Initialization function for device,

; Call Init_Device from your main program

Init_Device:

 lcall Oscillator_Init

 ret

Setup the Timer2 timer to overflow in every 5 msec, and check the TF2 flag
countinuously. (After successfully evaluating the TF2 value, don’t forget to delete it!)
Count the TF2 impulses in a register or variable and create the frequency for the
blinking LED.

Declaring a variable at 0x40 address of the internal data segment:

 dseg AT 0x40

Cnt: DS 1

The usage of the variable:

mov Cnt, #0FFh

6

2.2.
Write an application - using the Timer2 timer – that will show a running light on the 8
leds! Use interrupts in the solution!

Modify the previous application to use interrupts. For handling the Timer2 interrupt,
you must put the handler at the 0x002B address in the jump table.

 cseg AT 0

 ljmp Main

 org 0x002B

 ljmp Timer2IT

 .

 .

 .

Timer2IT: //Timer2 IT rutin

 reti

To enable the interrupt, the interrupt of the periprhery (ET2), and the global
interrupt enable flag (EA) also should be set. Don’t forget to save and restore the
registers used in the interrupt handler routine!

Task 3.
Write an application that will display the state of the lower 4 switches as
hexadecimal number on the leftmost 7 segment display.

Use the table prepared as homework, store it in the code memory (with DB control
statement) and access these data using the MOVC instruction.

movc A, @A+DPTR

Task 4.
Create a 4 digit hexadecimal counter for the 7 segment displays! The least significant
digi should step forward in every 100 msec!

The Extension Board is capable to drive only one 7 segment display in a moment, but
switching the driven digit quick enough will result as we will see all of them
(persistence of vision), this usually called as time multiplexed display. For the
counter use the Timer2 timer, and for the time multiplex display use the Timer3
timer – figure out the settings of both!

Related documents:

The Configuration Wizard 2 application:
http://www.silabs.com/Support%20Documents/Software/ConfigAndConfig2Install.e
xe.

http://www.silabs.com/Support%20Documents/Software/ConfigAndConfig2Install.exe
http://www.silabs.com/Support%20Documents/Software/ConfigAndConfig2Install.exe

1

Appendix 1. (ADefs.inc)

BTN EQU P1

BTN0 EQU P1.0

BTN1 EQU P1.1

BTN2 EQU P1.2

BTN3 EQU P1.3

BTN4 EQU P1.4

BTN5 EQU P1.5

BTN6 EQU P1.6

BTN7 EQU P1.7

SW EQU P2

SW0 EQU P2.0

SW1 EQU P2.1

SW2 EQU P2.2

SW3 EQU P2.3

SW4 EQU P2.4

SW5 EQU P2.5

SW6 EQU P2.6

SW7 EQU P2.7

LCD_RS EQU P3.0

LCD_R_nW EQU P3.1

__LCD_BL EQU P3.2

__LCD_EN EQU P3.3

__EXT_IN0 EQU P3.4

__EXT_IN1 EQU P3.5

__EXT_IN2 EQU P3.6

I2TEMP_CMP EQU P3.7

_7SSEL0 EQU P4.0

_7SSEL1 EQU P4.1

__7SEN EQU P4.2

__LDEN EQU P4.3

__BTNEN EQU P4.4

__SWEN EQU P4.5

__CS_SPIPOT EQU P4.6

__CS_SPITEMP EQU P4.7

__LD EQU P5

__LD0 EQU P5.0

__LD1 EQU P5.1

__LD2 EQU P5.2

__LD3 EQU P5.3

__LD4 EQU P5.4

__LD5 EQU P5.5

__LD6 EQU P5.6

__LD7 EQU P5.7

_7S EQU P6

_7S_A EQU P6.0

_7S_B EQU P6.1

_7S_C EQU P6.2

_7S_D EQU P6.3

_7S_E EQU P6.4

_7S_F EQU P6.5

_7S_G EQU P6.6

_7S_DP EQU P6.7

2

LCD_DB EQU P7

LCD_DB0 EQU P7.0

LCD_DB1 EQU P7.1

LCD_DB2 EQU P7.2

LCD_DB3 EQU P7.3

LCD_DB4 EQU P7.4

LCD_DB5 EQU P7.5

LCD_DB6 EQU P7.6

LCD_DB7 EQU P7.7

INIT SEGMENT CODE

 rseg INIT

A_Init:

 ; P0.0 - TX0 (UART0), Push-Pull, Digital

 ; P0.1 - RX0 (UART0), Open-Drain, Digital

 ; P0.2 - SCK (SPI0), Push-Pull, Digital

 ; P0.3 - MISO (SPI0), Open-Drain, Digital

 ; P0.4 - MOSI (SPI0), Push-Pull, Digital

 ; P0.5 - NSS (SPI0), Open-Drain, Digital

 ; P0.6 - SDA (SMBus), Open-Drain, Digital

 ; P0.7 - SCL (SMBus), Open-Drain, Digital

 ; P1.0 - Unassigned, Open-Drain, Digital

 ; P1.1 - Unassigned, Open-Drain, Digital

 ; P1.2 - Unassigned, Open-Drain, Digital

 ; P1.3 - Unassigned, Open-Drain, Digital

 ; P1.4 - Unassigned, Open-Drain, Digital

 ; P1.5 - Unassigned, Open-Drain, Digital

 ; P1.6 - Unassigned, Open-Drain, Digital

 ; P1.7 - Unassigned, Open-Drain, Digital

 ; P2.0 - Unassigned, Open-Drain, Digital

 ; P2.1 - Unassigned, Open-Drain, Digital

 ; P2.2 - Unassigned, Open-Drain, Digital

 ; P2.3 - Unassigned, Open-Drain, Digital

 ; P2.4 - Unassigned, Open-Drain, Digital

 ; P2.5 - Unassigned, Open-Drain, Digital

 ; P2.6 - Unassigned, Open-Drain, Digital

 ; P2.7 - Unassigned, Open-Drain, Digital

 ; P3.0 - Unassigned, Push-Pull, Digital

 ; P3.1 - Unassigned, Push-Pull, Digital

 ; P3.2 - Unassigned, Push-Pull, Digital

 ; P3.3 - Unassigned, Push-Pull, Digital

 ; P3.4 - Unassigned, Open-Drain, Digital

 ; P3.5 - Unassigned, Open-Drain, Digital

 ; P3.6 - Unassigned, Open-Drain, Digital

 ; P3.7 - Unassigned, Open-Drain, Digital

 mov SFRPAGE, #CONFIG_PAGE

 mov P0MDOUT, #015h

 mov P3MDOUT, #00Fh

 mov P4MDOUT, #0FFh

 mov P5MDOUT, #0FFh

 mov P6MDOUT, #0FFh

 mov P7MDOUT, #0FFh

 mov XBR0, #007h

 mov XBR2, #040h

 ret

1

Appendix 2. (Template.asm)

$NOMOD51

#include <c8051f040.inc>

#include "ADefs.inc"

 cseg AT 0

 //select the 0 address of the code segment,

 ljmp Main

 //the command execution starts at 0 address after reset

Startup segment CODE

 rseg Startup

 using 0

 //select the register page 0

Main: mov WDTCN, #0DEh

 //disable WDT

 mov WDTCN, #0ADh

 call A_Init

 //Initializing ports according to the extension card

Startup:

 ljmp Startup

END

