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Abstract - In the first part of this paper, the full equiva- 
lence between time and frequency domain identification is 
established. Next the differences that show up in the practi- 
cal applications are discussed. Finally, an illustration on the 
identification of a servo-system in feedback is given. 

I. INTRODUCTION 
For a long time, frequency domain identification and time 
domain identification were considered as competing 
methods to solve the same problem: building a model for a 
linear time-invariant dynamic system. In the end, the 
frequency domain approach got a bad reputation because the 
transformation of the data from the time domain to the 
frequency domain is prone to leakage errors: noiseless data 
in the time domain resulted in noisy frequency response 
function (FRF) measurements. This is illustrated in the 
simulation below. A system is excited with a random input. 
The input U , ( / )  and the output yo@) are sampled in 256 
points uo(k),yo(k) with k = 1,2,  ..., 256.  No disturbing 
%eke is added. Starting from these measurements, the FRF 
G(jw,) is measured andcompared to the true FRF Go (FIG. 
1 .). It can be seen that G is strongly disturbed. This was the 
major reason to drop the frequency domain approach. The 
statement: Why would we move from the time to the 
frequency domain? The only thing we buy for it are 
problems! expresses very well the feeling that lived in the 
identification society. 

This problem is further analysed in Section I11 where it 
is shown that i) exactly the same problem is present in the 
time domain; ii) by extending the models, a full equivalence 
exists between both domains. 

Once this equivalence between both domains is estab- 
lished, one can wonder why to bother about it? Are there 
any differences at all? The answer is definitely yes. 
Although both domains cany exactly the same information, 
it may be more easy to access this informaiion in one 
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FIG. !. Comparison of the true FRF Go (-)with the estimated 
FRF G (+) 
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domain than in the other because the same information is 
represented differently. 

When discussing the differences between time- and fre- 
quency domain methods, a clear distinction should be made 
between the aspects that are intrinsically due to the fre- 
quency domain formulation, and on the other hand the addi- 
tional signal processing possibilities that are opened by 
using periodic excitations. The latter might also be useful 
for time domain identification methods. 

The practical aspects that take advantage of the fre- 
quency domain formulation are: arbitrary selection of the 
active frequencies where the model is matched to the meas- 
urements; continuous-time modelling; and identification of 
unstable models. By including also periodic excitations, we 
will be able to address in addition: the use of nonparametric 
noise models; separati,on of plant and noise model estima- 
tion; errors-in-variables identification and identification 
under feedback; separation of nonlinear distortions and 
(process) noise. These aspects are discussed in Section IV 
and V. A comprehensive discussion of other aspects can be 
found in (Pintelon and.Schoukens, 2001; Ljung, 2004). 

In Section VI, an extensive case study on the closed 
loop identification of a compact disc servo-system is pre- 
sented. A frequency domain approach using periodic excita- 
tions is made. Many of the aspects mentioned before are 
illustrated. 

11. SETUP 
The discussion in this paper is completely focused on 
single-input-single-output linear systems (SISO), but the 
reader should be aware that many results can be directly 
extended and generalized to multiple-input-multiple-output 
(MIMO) systems, and even a nonlinear'behaviour can be 
included in the framework (Schoukens ef al., 2003). 

y(f) = Go(q)Uo(f) + ff,,(q)e(f) = y0(f) + NO, 
Consider the discrete time system 

(1) 

with f : -m -t m,  and X(I  - 1) = q-'x(r) . The aim of 
system identification is to extract the hest model G(q, 0) 
for the plant G(q), and at times the disturbing noise power 
spec- lH(q, @ ) I 2 .  
Ill. TRANSIENTS: THE KEY TO THE EQUIVALENCE 

OF TIME AND FREQUENCY DOMAIN 
In practice the identification should be done from a finite set 
of measurements 

u0(t) ,y(f)  , f = 0, I ,  ..., N -  1 , (2) 

The description ( I )  should be extended to include the 
impact of reducing the observation window from 
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f : -m -. m to t = 0, ..., N -  1 . This is illustrated in FIG. 
2. The records are split in three parts: the observation win- 
dow, the preceding and following unobserved signals. Two 
effects can be seen: 

i) The past excitation (before the start of the observation 
t = 0 )  contributes to the output in the observation window: 
a tail is added to the observed output (FIG. 2.a). These 
effects are well known in the time domain, a transient term 
T&) has to be added to describe the contributions of the 
initial conditions to the output. 

ii) When the data are processed in the frequency domain, 
it is implicitly assumed that the observed signals are periodi- 
cally repeated. At that moment not only the tail (a) is added 
to the output, also the tail (b) will be missing. Although this 
looks more complicated than the previous situation it leads 
eventually to expressions that are completely equivalent to 
the time domain description. Both extended models are 
given below. 

A. Extended time domain descripfion 
The reduction from t : -m + m to f = 0, ..., N -  1 adds 
initial conditions effects on the output of the dynamic 
systems (plant and noise filter). These are described by the 
plant and the noise filter transients T&), Tdt) , Both decay 
exponentially to zero. 

~ ( t )  = Go(q)uo(O + Ho(q)e(t) + T&) + Tdt) , f 0 .  (3) 

E. Extendedfrequency domain description 
The finite data records (uo(t),y(t) : t = 0, ..., N -  I ] are 
transferred to the frequency domain using the discrete 
Fourier transform (DFT): 

2 n  
X(k) = L z N - i x ( t ) e - j N ' k  , k = 0, 1, ..., N -  1 (4) JN f = O  

with x = U, y ,  e ,  and X = U, I', E .  Although the spectra 
U,, Yo are affected by leakage, their relation remains 
remarkably simple: it is again suficient to add a transient 
term to the system equations, completely similar to what is 

FIG. 2. : Illusbation of the effect of the finite observation window. 

done in the time domain (Pintelon et al.,  1997; Pintelon and 
Schoukens, 2001). This teim describes the impact of the tails 
(a) and (b) on the input-output relation. 

Yo@) = Go(Zi9 Uo(k) + T&) . ( 5 )  

The relation between U,, E and Y is: 

Y(k) = Go(z;l)Uo(k) + HO(zi i )E(k)  + TG(k) + T d k )  , 

(1) - d ' Z n k / N .  
k -  

The reader should be aware that this expression is valid for 
arbitrary signals, no periodic excitation is required. 

Loosely spoken, the impact of the transients disappears 
at a rate of N-Il2 or faster. In practice the noise transient 
T, is always omitted. For simplicity we do the same in this 
paper. 

C. Equivalence between time- andfrequency domain 
During the identification step, parametric plant- and noise 
models are identified by minimizing the squared prediction 
errors. This can be done in the time- or in the frequency 
domain (Ljung, 1999; S derstr m, and Stoica, 1989): 

N- 1 

ypE(e. z )  = 2 JH-% e)(u(o - G(q, e)u,(t) - TG(q, 
r = o  

k = O  

(Z stands for the data). (6) 
Both expressions result in exactly the same value for the 

cost function, and this for arbitrary excitations. This estab- 
lishes the full equivalence between the time- and frequency 
domain formulation of the prediction error framework. 

Remark The transfer function model and the transient 
model have very similar expressions: 

ma@,. nb) . 
1,z-n 

(7) ~ ( ~ i l . e )  = Crib b z-" C,=O rdzil, e) = 
n, 

oa,z-R 2" = oa"z-n 

Hence the inclusion of the transient term does not increase 
the complexity of the cost function because both rational 
forms have +e same denominator. 

D. Differences? 
Although we established a full equivalence between the 
time- and frequency domain formulation, there are some 
remarkable differences in the practical use of these 
expressions. 

1) Unstable plant models: If an unstable plant model is 
identified, the time domain calculations are tedious and often 
impossible because the calculation noise explodes. From 
Forsell and Ljung (2000) it is known that the predictor 
should be stable H-' G . In the frequency domain, this prob- 
lem is not a problem because only multiplications of the 
finite DFT-spectra are made, and the stability of the models 
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is not at the order, even not for the intermediate models dur- 
ing the iteration process (The zeros of H should be kept in 
the unite circle!). 

2) It is very easy in the frequency domain to restrict the 
sum to a selected set of frequencies, for example the fre- 
quency band of interest; to those frequencies with a good 
signal-to-noise ratio; or to eliminate spurious components. 
Although this should not affect the prediction error result (it 
can be interpreted as a maximum likelihood estimator, and 
throwing away information does never improve the result), it 
has a strong impact on the calculation of initial estimates 
with sub optimal (linear) methods like ARX or subspace 
identification. 

IV. PERIODIC SIGNALS: A FREE ACCESS TO THE 
NONPARAMETRIC NOISE MODEL 

A.  Introduction 
The prediction error method can be considered as the 
solution of a weighted least squares problem: 

(8) 

with v = ,,(I) :_. v ( ~  , , v(k) = ~ ( 0  - G(q, BG)uO(t!, 

^T ~ v =  v C;lv 

C, the N x N l ovariance -1- tnx of v . The major problem IS 
that C, is a large dense matrix that should be inverted which 
is impractical. This is nicely circumvented in the prediction 
error method by whitening the residuals with a parametric 
noise model E ( [ )  = H-'(q, e )v ( t ) ,  leading to 

VpE(e,z) = E r E .  (9) 

This is exactly the time domain form of VpE(e, Z) in (5 ) .  In 
the frequency domain the matrix inversion does not come 
into play. The covariance matrix C, of the frequency 
domain noise is asymptotically ( N  - m )  a diagonal matrix: 

c, = diag([ogl) ... 0;(N)])9 (10) 

with u3k) = lH(8"k)12. This gives an altemative fre- 
quency domain representation of the cost function: 

The full details and the proof of the equivalence of (5) and 
(11) are given in Schoukens et al. (1999). 

B. Taking advantage ofperiodic excitations 
In the classical prediction error framework, the plant 

model G(q, 0) and the noise model H(q, e)  are identified 
simultaneously because this is the only possibility to sepa- 
rate the signal yo(') and the noise v(t) , However, if the exci- 
tation is periodical, u(t + Z) = u ( t ) ,  it is possible to collect 
M successive periods, and to average the measurements 
over these repeated periods. This process is exemplified for 
the output measurement in FIG. 3.: 

y['l(t) y [ z l ( t )  "' y['l(t) ." 
,I 

FIG. 3. Processing periodic excitations: y['](t) is the l'* period. 

The sample variance B g k )  is a nonparametric estimate of 
o$(k ) .  Substituting it in the frequency domain expression of 
V,, (1 I )  gives: 

This results in a two step procedure: i) The nonparametric 
noise model 6gk) = var(Y(k)) is determined in the pre- 
processing step, ii) the plant model G(zi', e) is estimated in 
the 2nd step, keeping the noise model fixed. 

C. Discussion 
This approach has many advantages: i) It is no longer 
required to estimate plant and noise model simultaneously; 
ii) Even before starting the identification process, it is 
possible to verify the quality of the raw data as is illustrated 
in the example of Section VI; iii) The estimated noise model 
is no longer influenced by the plant model errors; iv) This 
method can be extended to the errors-in-variables problem. 
This includes identification in feedback as a special case. 

The price to be paid for all these advantages is the 
restriction to periodic signals and the need for multiple peri- 
ads to be measured, resulting in a frequency resolution loss. 
However, the required number of periods M can be small, 
for example M = 4 is enough for consistency, and M = 6 
reduces the efticiency loss to less than 33% in variance 
(Schoukens et al., 1997). 

D. Extension: the errors-in-variables problem 
In some applications, there is not only process noise on the 
output. Also the input measurements can be disturbed by 
noise, as is for example the case for identification in 

, V ( O  

Standard u0q---& 

' , J/Uo 
FIG. 4. : Standard and alternative noise assumption. 

feedback. The nonparamehic noise model is extended with 
the input noise variance ah(k) and the input-output 
covariance 6&k) ( x  denotes the complex conjugate): 
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The corresponding cost function to be minimized is the 
sample maximum likelihood (Pintelon and Schoukens, 
2001): 
VML(0. z )  

b 
li = I o$k) + $,(k)lG(Q, @I2 - 2Re(aiU(k)G(Q, e)) 

The use of nonparametric noise models combined with iden- 
tification in feedback is illustrated in SectionVI. 

V. FREQUENCY DOMAIN IDENTIFICATION: 
A HIGHWAY TO CONTINUOUS TIME 

IDENTIFICATION 

A .  Arbitrary excitation signals 
In the last theory section of the paper, we combine the 
advantages of the time- and frequency domain identification 
approaches. A continuous-time modelling procedure is 
proposed using arbitraty excitations. The relation between 
the spectra of band limited measurements is the continuous- 
time model(see FIG. 5) :  

ZOH- BL- 

I 

FIG. 5. : Ideal ZOH- and BL-setup. AA: an ideal anti-alias filter. 

By combining this with a discrete time noise model, a mixed 
Box-Jenkins continuous time identification method is found 
that is based on the minimization of the cost function (Pmte- 
Ion et al., 2000): 

B. Periodic excitation signals 
For periodic excitation signals the sample maximum 

likelihood method (15) can be used without any modifica- 
tion to identify a continuous-time model. 

VI. CASE STUDY IDENTIFICATION OF A SERVO- 
SYSTEM IN CLOSED LOOP OPERATlON 

In this example we illustrate all the aspects that were 

- use of periodic signals 
- extraction of a non parametric noise model 
~ use of a selected set of frequencies 
- removal of large spurious components 
- separation of the signals, the noise, and the nonlinear 

- identification of a continuous or discrete time model in 

~ identification of an unstable model (due to nonlinear 

discussed before: 

distortions 

feedback using the errors-in-variables frame work 

distortions); 

A .  Experimental set-up 
The open loop transfer function GC of the radial posi- 

tion servo-system of a CD player is identified. Figure 6 
shows a simplified block diagram of the compact disc (CD) 

C 

FIG. 6. Setup of the CD measurements. 

player measurement setup. The block G stands for the cas- 
cade of a power amplifier, a lowpass filter, the actuator sys- 
tem and, finally, the optical position detection system. The 
block C stands for the parallel implementation of a lead-lag 
controller with some additional integrating action, that stabi- 
lizes the unstable actuator characteristics and takes care for 
the position control. In order to excite and to measure the 
open loop transfer function, two operational amplifiers have 
been inserted in between the lead-lag controller C and the 
power amplifier at the input of the process G , 

B. Need for closed loop identification 
The major advantages of this method compared to clas- 

sical continuous time identification techniques are that: i) 
The need for approximate differentiation or integration is 
completely removed; ii) There is no need for bnge oversam- 
pling rates, the full bandwidth can be used; iii) A noise 
model is included which increases the efficiency; iv) It is a 
logical extension of the well known Box-Jenkins identifica- 
tion method. 

Box-Jenkins method is the loss of consistency in feedback 
which is due to the mixture of a discrete- and continuous- 
time model. 

The actuator transfer function represents the dynamics of the 
arm moving over the compact disc, and is, in a first 
approximation, proportional to l/s2 . In practice, due to the 
friction, the double pole at the origin moves into the left half 
plane to a highly underdamped position. This explains why 
the characteristics of the position mechanism of a CD-player 
is vety hard to measure in open loop. 

The major drawback with the discrete time c. Use O f  errors-in-variablesfmework 
An external reference signal r is injected in the loop, the 
resulting signals u,y  are measured (the input is not exactly 
known). Moreover, the loop is also disturbed by the process 
noise d ,  mainly induced by tracking irregularities due to 
potato shaped spirals; non eccentric spinning of the disc; 
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dirt, stains and scratches on the disc surface. The following 
relations exist between the Fourier spectra (assuming that 
they all exist): 

In the absence of disturbances, the open loop aansfer func- 
tion between U and y is G(/w)C(jw) and it is the aim of this 
section to provide a parametric model for it. A periodic refer- 
ence signal et) will be applied, the contributions 
( C ( j w ) D ( j w ) ) / (  1 + G(jw)C( jw) )  are considered as noise. 
Hence the input and output measurements are disturbed by 
mutually correlated noise which fits perfectly in the errors- 
in-variables approach. 

D. Design o f a  periodic excitation, use of a well selected set 
offrequencies 
For the sake of control, a 582.5 Hz sinusoidal wobble signal 
is intemally injected in the feedback loop. It is measured at 
different points in the electronic circuit, and serves as an 
input signal for an automatic gain controller (AGC), to 
compensate, amongst other things, for the effect that the 
displacement of the arm is not perpendicular to the track 
over the whole disc, resulting in a variable gain of the 
process. The wobble signal complicates the measurement 
process significantly, since it is more than 20 dB above the 
normal signal levels in the loop. For this reason, we had to 
make a careful experiment design to eliminate its impact on 
the measurements. 

As an external reference signal a multisine 
r(t) = g- Aksin(2nfolkf+ pk) with F = 305, 
fo = 2. 42'Hz, I ,  = 1,3,9, 11, 17, 19,25,27, ... , and 
A k  = constant, is used (Schoukens and Pintelon, 2001). 
The frequencies are selected to allow for the detection of 
nonlinear distortions at the non-excited frequencies. The 
multisine is generated with a clock frequency of 
10 MHz/2I0 and N = 4096 points inoneperiod. 

E. Preprocessing: extraction of the signals and noise levels 
In the first experiment, 256 K points are measured. The long 
record is broken in 16 blocks of 4 basic periods each 
( M  = 16). This is done in order to reduce the leakage effect 
of the wobble signal on the rest of the spectrum. The 
measurement window does not contain an integer number of 
periods of. the wobble signal since its frequency is not 
synchronized to the measurement system (Figure 7). In this 
figure, it can be seen that the contribution of the reference 
signal is clearly above the disturbances level. Also the 
wobble signal (with its leakage) is clearly visible, its 
amplitude is more than 20 dB above the signals of interest. 

Starting from the 16 repeated spectra, U, ? are esti- 
mated, together with the (co-)variances oh! o;, o&, and 
shown in Figure 8. It out that there is an extremely high 
correlation (cr$"/&--l ) between the noise on U 
and Y. From ( I @ ,  it is seen that this indicates that the proc- 
ess noise dominates completely the measurement noise 

-1004 . . 
0 2sw sow n 2JW JWC 

Frequmncy (W Frsqumy (Hz) 

FIG, 7. Pilot test with a special odd multisine signal 

4 o o i  
0 1000 2000 3000 

Frequency (Uz) 
FIG. 9. nonlinearity test: power on the FRF measurement 
frequencies (linear), detected distortions aAer compensation 
for the linear feed through (cubic), --- ay. 

E Quantibing the nonlinear distortions 
Checking the non-excited odd frequencies in Figure 7 seems 
to indicate the presence of odd nonlinear distortions 
(Schoukens et al., 1998; Pintelon and Schoukens, 2001; 
Schoukens et al. 2003), but they are almost completely 
hidden under the noise level of the test. Hence, a second 
experiment with a reduced set of frequencies: 
(fb = 19.07'tiz with F = 39) is made. This does not affect 
the relative level of the nonlinearities with respect to the 
linear contributions, but it increases the SNR (Pintelon and 
Schoukens, 2001). From the results in Figure 9 it is seen that 
the odd distorcions are now well above the noise level of the 
test. Especially at the lower frequencies a very high 
distortion can be seen, indicating that the'linearised models 

0 1000 2000 3000 0 loo0 2000 3000 
Frequency (Hz) 

FIG. 8. SNR of the output measurements after processing the raw 
data. 
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will have poor value in this frequency band. 

G. Identification o f a  continuous or discrete time model 
ARer these non-parametric tests, we have already a good 
idea about the limiting quality of the model. For the given 
input power, the nonlinearities are for sure less than 30 dB 
below the linear output. Next a linear model is identified that 
approximates the system as good as possible. A 24th order 
discrete-time or continuous time model ( n ,  = nb = 24)  
was identified (both give very similar results). The measured 
FRF is compared to the parametric model in Figure IO. As 
can be seen, a very good fit is obtained. The residuals are 
below the noise level. Only at the low frequencies, where the 
nonlinearities detected in the nonlinearity test are very large, 
the fit is poor. Because we knew in advance that in this band 
the data are of poor quality, the frequencies below 230 Hz 
were not considered during the fit. The cost function of the 
tit is 842.6, while a theoretical value of 256.5 is expected. 
This points to model errors. However, the auto-correlation of 
the residuals is white, therefore we can conclude that the best 
linear approximation is extracted. The remaining errors are 
due to the nonlinear behaviour of the process. 

A stability analysis showed that two poles of the model 
were unstable (z = 1.021 +j0.00344), but the correspond- 
ing closed loop model is stable and hence the model is valu- 
able for a closed loop analysis. This instability is due to the 
fact that the system has 2 poles, almost equal to one (double 
integration in z -domain), that are very difficult to estimate 
due to the presence of the nonlinearities in this band. 

VII. CONCLUSIONS 
In this paper the equivalencies and differences of time- and 
frequency domain identification are discussed. This 
discussion should not be mixed up with the use of periodic 
excitations. 

The'major conclusion is that there exist a full equiva- 
lence between both approaches from theoretic and informa- 
tion point of view. Transforming data from the time to the 

frequency domain does neither create or delete information. 
Hence, what can be done in one domain can also be done in 
the other domain. However, in practice it might be easier to 
access the information in one of both domains. Arbitrary 
selection of active frequency bands, continuous time model- 
ling, and identification of unstable models are typical exam- 
ples. 

It is also shown that the restriction to periodic inputs 
opens a number of practical possibilities and this for time- 
and frequency domain identification. It does not only allow 
to extract nonparametric noise models, it also simplifies sig- 
nificantly the identification under feedback conditions and 
gives access to a nonlinear distortion analysis. 
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FIG. IO. : Comparison of the estimated transfer function (full line) 
with the measured FRF (dots). The residuals (+) are compared to 
the 95% noise level (thin full line). 
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