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he aim of this article is to give a tutorial overview 
of frequency response function (FRF) or impulse 
response (IR) function measurements of linear 
dynamic systems. These nonparametric system 
identification methods provide a first view on 

the dynamics of a system. As discussed in “Summary,” 
the article discusses three main points. The first replaces 
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classic FRF measurement techniques based on spectral 
analysis methods with more advanced, recently developed 
algorithms. User guidelines will be given to select the best 
among these methods according to four specific user situ-
ations: 1) measurements with a high or low signal-to-noise 
ratio (SNR), 2) systems with smooth or fast-varying transfer 
functions as a function of the frequency, 3) batch or real-
time processing, and 4) low or high computational cost. 
The second main point is to store the reference signal to-
gether with the data. This will be very useful whenever 
there are closed loops in the system to be tested, includ-
ing interactions between the generator and the setup. The 
final point is to use periodic excitations whenever possible. 
Periodic excitations provide access to a full nonparamet-
ric noise model, even under closed-loop experimental con-
ditions. Combining periodic signals with the advanced 
methods presented in this article provides access to high-
quality FRF measurements, while the measurement time is 
reduced by eliminating disturbing transient effects.

Depending upon the situation, it might be possible to 
reduce the measurement time or error by a factor of 2–100. 

The complete palette that was recently developed ranging 
from simple classical methods to advanced methods will 
be covered. The article provides a deep understanding of 
the problems related to FRF and IR measurements. These 
insights are used as a basis to understand the classical meth-
ods and explain how these methods can be improved to 
obtain better FRF-IR measurements than the classical meth-
ods that still dominate the field. This leads to a completely 
new class of IR-FRF estimators.

From the classic time and  
frequency-domain methods to recent 
advanced processing techniques
The overview of the classic time- and frequency-domain 
methods, developed in the 1950s and 1960s, will be comple-
mented by an introduction to the more powerful methods 
that were developed in the last decade. The measurement 
time can be significantly reduced using these new tech-
niques, at a cost of increased computational demands. 
Because the available computational power has grown by 
several orders of magnitude since the late 1960s, it is clear 
that there is no reason to continue to use the initial choices 
from 50 years ago. The computational time was the domi-
nant constraint driving prior research efforts, confining the 
algorithms to be simple [1]–[4] (see the section “Smoothing 
the Frequency Response Function Using the Classical Spec-
tral Estimation Methods”). However, more complex algo-
rithms are currently possible that will either reduce the 
measurement time or improve the quality of the measure-
ments. It is the goal of this article to make these new algo-
rithms accessible for a wide group of measurement and 
control engineers.

Frequency response function and  
impulse response function measurements
The goal is to obtain the IR or FRF of the system in Figure 1 
(together with a confidence bound), starting from discrete-
time (DT) measurements of the input ( )u kTs  and output 

( ), , , , ,y kT k N1 2s f=  with Ts  the sample period that is the 
inverse of the sample frequency .fs  The FRF measurement eval-
uates ( )G ~  at a discrete set of frequencies / ,f kf kf Nk s0= =  
while the IR measurement returns an estimate for ( )g t  at a 
discrete time grid .kTs  Both measurements provide equiva-
lent information. The FRF is the Fourier transform of the 
IR. Depending upon the needs, some information can be 
more easily accessed in the time or frequency domain. A 
dominant resonance can be more easily analyzed in the 
frequency domain, and the presence of dead time will 
be more easily observed in the time domain. The choice 
between them is set by the user’s needs, experiences, and 
personal preferences.

For didactic reasons, a major part of the article is focused 
on single-input, single-output (SISO) systems. “Frequency 
Response Function Measurements for MIMO Systems” 
gives an introduction to the multiple-input, multiple-output 

u (t ) g (t )

G (ω)

y (t )

Figure 1  A continuous or discrete-time (DT) system is considered 
with impulse response ( )g t  and a frequency response function 

( ) .G ~  For a continuous-time system, ( )G ~  is a shorthand 
notation for ( ),G s j~=  and for a DT system, ( )G ~  stands for 

( ) .G z e j= ~

Summary

Frequency response function (FRF) and impulse response 

(IR) measurements provide a first view on the dynam-

ics of a system. Previously developed FRF measurement 

methods were optimized for the available computer power 

at that time. These classical methods are still popular in en-

gineering curricula and industry. However, more advanced 

algorithms are now available that can reduce the measure-

ment time and errors by a factor of two to 100 by making 

better use of the increased compute power. Because 

these methods are not well known to the public, they are not 

frequently used, leading to a waste of money, resources, 

and time. The goal of this article is to bridge this gap by pro-

viding a deeper insight into the underlying problems of FRF 

and IR measurements and to use this better understand-

ing to introduce the recent more powerful methods. Links 

to publicly available software are provided, which helps to 

reconstruct the results shown in this article and minimizes 

the effort to adopt these new algorithms.
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(MIMO) systems while paying special attention to the 
design of the experiment [5]–[9]. Recent FRF measurements 
using some of the methods presented in this article are dis-
cussed in [10].

The discussion considers both continuous-time (CT) and 
DT systems. The actual nature of the system does not criti-
cally influence the presented algorithms, provided that the 
sampling frequency fs  is sufficiently high.

Time-domain methods to estimate the 
Impulse Response: Basic ideas
Consider the system in Figure 1 with

	 ( ) ( ) ( ) ( ) ( ),y t g u t d g t u t)x x x= - =
3

3

-
# � (1)

where *  denotes the convolution. A first class of methods 
estimates the IR ( ),g t  starting from the measured input 
and output signals by solving the deconvolution problem 
in (1). The equivalent description based on the cross-corre-
lation ( ) { ( ) ( )}R E y t u tyu x x= +  and autocorrelation function 

( ) { ( ) ( )}R E u t u tuu x x= +  is very useful in simplifying the 
computations [4], [11], [12]

	 ( ) ( ) * ( ) .R g Ryu uux x x= � (2)

White random noise excitations reduce the autocorrela-
tion of the input to ( ) ( ),Ruu u

2x v d x=  and the cross-correla-
tion becomes

	 ( ) ( ),R gyu u
2x v x= � (3)

allowing the IR to be measured directly, without making 
an explicit deconvolution. In the 1960s, pseudorandom 
binary sequences (PRBSs) [13], [14] were used to replace 
the white noise excitations, resulting in a lower uncer-
tainty on the estimated IR for a given measurement time. 
These methods are discussed in the “Time-Domain Ap
proach” section.

Using the increased computer power, it is currently 
possible to directly estimate the IR, even for arbitrary 
excitations. Combining the experimental data with prior 
user information like exponential decay and smoothness 
of the IR function further reduces the uncertainty [15]. 
These aspects are discussed in detail in the section “Vari-
ance Reduction by Combining Data and Prior Knowl-
edge: Regularization.”

Frequency-domain methods to  
estimate the Frequency Response  
function: Basic ideas
An alternative approach to the deconvolution problem in 
(1) or (2) to estimate ( )g t  is to transform (1) to the frequency 
domain. Define ( ), ( )U k kY  as the discrete Fourier transform 
(DFT) of the measured input and output ,u y  with k  the 
frequency index (see “The Discrete Fourier Transform”). 

Neglecting the finite length measurement effects, the fol-
lowing relation holds [16]

	 ( ) ( ) ( ) .Y k G k U k= � (4)

It is very tempting to estimate the FRF by direct division 
of ( )/ ( ) .Y k U k  However, this only works well if ( )U k  does 
not become very small or equal to zero (see the section 
“Frequency Response Function Measurements Using 
Periodic Excitations”). This can be realized using well-
designed signals (see “Design of Excitation Signals”). 
However, it is better to average the data over multiple sub-
records before the division. To do so, the Fourier trans-
form of (1) is replaced by the Fourier transform of (2), 
leading to the crossspectrum ( )S F Ryu yu=  and autospec-
trum ( ) .S F Ruu uu=  With ( ),S F R=  the Fourier transform 
of (2) becomes

	 ( ) ( )/ ( ) .G k S k S kyu uu= � (5)

This method became the standard approach in the 1960s 
and is still used today in all dynamic signal analyzers [1]–
[4], [11], [17], [18] (see the sections “Smoothing the Fre-
quency Response Function Using the Classical Spectral 
Estimation Methods” and “Time and Frequency-Domain 
Interpretation of Windows”).

Recently, a new class of spectral methods was developed 
that provides superior results over (5) [19], [20], again at the 
cost of higher computational demands (see the section 
“Improved Frequency Response Function Measurements 
Using Local Parametric Methods”). With the computational 
resources that are currently available, these new methods 
should be the default choice.

The Discrete Fourier Transform

Consider a discrete time sequence ( ), , , , .x t t N0 1 1f= -  

The discrete Fourier transform (DFT) and the inverse 

discrete Fourier transform (IDFT) are then given by

	 ( ) ( ) ,X k
N

x t e1 /

t

N
j tk N

0

1
2= r

=

-
-/ � (S1)

and

	 ( ) ( ) ,x t
N

X k e1 /

k

N
j kt N

0

1
2= r

=

-

/ � (S2)

( )kX  is the Fourier coefficient of ( )x t  at frequency / ,f kf Nk s=  

with /f T1s s=  the sampling frequency of the discrete time 

sequence. The scale factor of the DFT can vary from one 

definition to the other, depending on the purpose. For ran-

dom excitation, the N1  is commonly used because it 

returns an averaged amplitude that is independent of .N
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Parametric and nonparametric models
Parametric models are described by a finite number of pa
rameters, and this number does not depend upon the data 
length. A typical example is a transfer function model for a 
linear dynamic system, where the number of parameters is 
set by the number of poles and zeros. In nonparametric 
models, the number of parameters grows with the data 
length. A typical example is the FRF of a system. It will be 
shown that the frequency resolution is inversely proportional 
to the data length, and hence the number of frequencies 
where an FRF measurement is made grows proportional to 
the data length. There is no sharp definition for both classes 
of models. IR measurements can be assigned to both classes. 
The length of the IR that can be estimated from a given data 
set grows with the length of the data (a nonparametric model 
characteristic). However, it depends only logarithmically on 
the data length, so that it becomes almost constant for longer 
data records (a parametric model characteristic). Usually, it 
makes no sense to estimate the IR for more than a few time 
constants of the system.

This article focuses only on nonparametric identifica-
tion. There is extensive literature on the topic of parametric 
identification, including [16] and [21]–[23].

Experiment design: Choice of  
the excitation signal
In both the time- and the frequency-domain approach, 
the choice of the excitation signal has an impact on the 
methods to be used [24], [25]. The variance of the mea-
sured impulse or FRF strongly depends on this choice. 
Initially, only simple excitations like steps, impulses, 
or sines could be generated. In the late 1950s and 1960s, 
more advanced periodic binary excitations could be gen-
erated using simple hardware [14], [26]–[28]. These signals 
simultaneously excite multiple frequencies with the same 
power (see “Design of Excitation Signals” and Figure S2), 
which was a major step forward to reduce the required 
measurement time.

In the late 1970s and early 1980s, arbitrary random gen-
erators became available, so it then became possible to 
directly generate advanced signals that were designed and 
computed on a digital computer. This opened many pos-
sibilities to increase the SNR of the measurements and 
reduce the impact of nonlinear distortions on the FRF mea-
surement [16], [29], [30]. “Design of Excitation Signals” pro-
vides a detailed discussion of these signals, including the 

relevant design parameters, user choices, and advantages 
and disadvantages.

Outline
The article is organized as follows. First, the measurement 
setup and noise assumptions are presented. The FRF meth-
ods are split along the use of periodic excitations and random 
excitations. These sections cover both the classical and the 
recently developed methods. The time-domain methods are 
also organized in a similar manner. A small historical over-
view of the methods used before the early 1960s is included, 
which discusses the elegance of the methods that solved IR 
and FRF measurement problems. Throughout the article, 
user guidelines are included that provide practical tips and 
highlight useful information.

Measurement Setup
Each data-driven modeling process should start with a 
careful inspection of the measurement setup. A short dis-
cussion with the plant operators or the measurement 
team can save significant time. It is very important to 
know what preprocessing is applied to the data, includ-
ing if filters were turned on, if drift removal was applied 
to the raw data, if measurements were obtained around a 
given set point, if the mean values were included in the 
raw data, and how outliers and missing data were han-
dled. Without being aware of these actions, significant 
time and effort might be wasted by including their effects 
in the model.

Although the setup in Figure 2  covers many interesting 
situations, it still does not address all realistic ones. Often, 
the plant to be modeled is a part of a larger complex network 
with many interacting loops. Under these conditions, it is 
uncertain if it is possible to isolate the subsystem of interest 
from the rest of the plant using the available measurements. 
In [31], [32], and succeeding work, a detailed analysis of the 
minimum required measurement conditions is made to 
ensure that the IR/FRF of the actual subsystem is measured.

Intersample Assumptions
All data processing in this article starts from DT measure-
ments ( ), ( ),u kT y kTs s  sampled at a sampling frequency 

/ .f T1s s=  No information is available on how the CT sig-
nals ( ), ( )u t y t  vary between the measured samples. For this 
reason, assumptions are needed, and the measurement 
setup should match the intersample assumption well. The 

The overview of the classic time- and frequency-domain methods, developed 

in the 1950s and 1960s, will be complemented by an introduction to the more 

powerful methods that were developed in the last decade. 
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two most popular intersample assumptions [16], [33] are 
shown in Figure 3: the zero-order hold (ZOH) and the 
band-limited (BL) assumption. A detailed discussion of 
both intersample assumptions (the facts and their apprecia-
tion) is given in [16, Sec. 13.2 and 13.3].

Zero-Order Hold Setup
The ZOH setup places a condition on the excitation that is 
assumed to remain constant in between the samples. In 
this setup, the IR and FRF are estimated between the DT 
reference signal in the memory of the generator and the 
sampled output. The intersample behavior and the actuator 
characteristic are an intrinsic part of the model: if the 
intersample behavior changes, the corresponding model 
will also change. The ZOH assumption is very popular in 
digital control. The sampling frequency fs  is commonly 
chosen to be ten times larger than the frequency band of 
interest. A DT model provides an exact description of the 
CT system.

Band-Limited Setup
The BL setup assumes that above fmax  there is no power in 
the signals: .U f f 0max2 =^ h  The CT signals are filtered 
by well-tuned antialias filters (cutoff frequency below 

/ )f 2s ) before they are sampled. These should eliminate 
the signal power above half the sampling frequency /f 2s  
to a user-specified level to keep the alias errors under control. 
The high frequency /f f 2s2^ h  content of the measured 
signals is folded down in the frequency band of interest 
and acts as a disturbance. For this reason, it is strongly 
advised to always use antialias filters in the measure-
ment set-up. Outside of digital control, the BL setup is the 
standard choice for DT measurements.

Measurement Setup—Notations
The general BL setup given in Figure 2 is considered the 
standard setup. The alternative simplified ZOH setup is 
obtained as a special case of the BL setup, by using the 
known DT generator sequence ( )r kd  in the memory of the 
generator as the measured input and removing the anti-
alias filters.

The system is excited by the generator output signal ( )r t  
applied to the plant using the actuator. The generator signal 
is disturbed by generator noise ( ),n tg  and the output of the 
system is disturbed by the process noise ( ) .n tp  The CT input 
and output signals are first low-pass filtered by the antialias 
filters. The measurement noise on the filtered input and 
output is, respectively, ( )m tu  and ( ) .m ty  These signals are 

sampled at rate / .f T1s s=  Eventually, the DT measurements 
( ), ( ), , ,u kT y kT k N1s s f=  will be used as the raw data from 

which the IR and FRF estimates will be obtained.
For notational simplicity, the difference between CT and 

DT signals will be no longer explicitly indicated. In the re
mainder of the article, the sampled signals ( ), ( )u kT y kTs s  
will be denoted as ( ), ( ) .u k y k

The DFT of the measurements ( ), ( ), , ,u k y k k N1 f=  is 
calculated using the fast Fourier transform (FFT) [34], and 
denoted as ( ), ( ) .U k Y k  The frequency index k  indicates the 
frequency / .kf Ns  Because of the presence of the antialias 
filters, this setup is called the BL setup.

Noise Assumptions
The measured time-domain signals are

	
( ) ( ) ( ),
( ) ( ) ( ),

u k u k n k

y k y k n k
u

y

0

0

= +

= +
�

(6)

where ,u y0 0  are the disturbance free signals and ( ), ( )n k n ku y  
model the combined disturbance contributions on, respec-
tively, the input and output. The noise sequences ,nn yu  are 
assumed to be stationary sequences that can be mutually 
dependent (the input and output noise can be related). 
Without any loss of generality, they are assumed to be gen-
erated as filtered white noise, that is, n h ey y y)=  where ey  is 
a DT white noise source. Although this simplified DT des
cription of CT stochastic signals is very common in the 
system identification community, it is not obvious for this 
conceptual step. A profound theoretical foundation for this 
simplified representation is given in [16] and [35]

Assumption 1
In the time domain, the disturbing noise is ,n h e)=  where 
the white noise ~ ( , ) .e N 0 e

2v  Different noise sources can be 
mutually correlated.

Remark 1
The Gaussian assumption is not needed for many of the 
results. The actual distribution becomes important to 
obtain quantified uncertainty bounds in the time domain 
for very small data sets. Asymptotically, the impact of the 
distributions on the uncertainty bounds disappears, and a 
Gaussian setting can be used.

Similar assumptions are made in the frequency domain

	
( ) ( ) ( ),
( ) ( ) ( ),

U k U k N k

Y k Y k N k
U

Y

0

0

= +

= +
�

(7)

Parametric models are described by a finite number of parameters,  

and this number does not depend upon the data length.
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Design of Excitation Signals

F igure S1 highlights some important properties of excitation 

signals that are discussed in more detail below.

•	 Random excitations: Filtered random noise excitations (a) 

and (d) have a random amplitude spectrum for a given real-

ization. At the dips of the amplitude spectrum, the frequency 

response function (FRF) estimate is most sensitive to dis-

turbing noise (see the section “FRF Measurements Using 

Random Excitations” and Figure 7).

•	 Periodic excitations: Periodic signals give access to a gen-

eral and detailed nonparametric noise analysis (see the sec-

tion “Frequency Response Function Measurements Using 

Periodic Excitations”) without any user interaction. The signals 

(c) and (f) have a deterministic amplitude spectrum that can 

be set by the user. Such signals are not prone to dips in the 

amplitude spectrum that vary from one realization to the other. 

This results in a better guaranteed signal-to-noise ratio (SNR), 

even for a single realization. Leakage errors need to be avoid-

ed/removed by processing an integer number of periods (see 

the section “Frequency Response Function Measurements 

Using Periodic Excitations”) or by using the advanced algo-

rithms of the section “Improved Frequency Response Func-

tion Measurements Using Local Parametric Methods.”

•	 Deterministic amplitude spectrum: All the signals that are 

shown in Figure S1 have a random nature, even if the am-

plitude spectrum can be deterministic. This makes these 

signals well suited to be used as an excitation signal for 

FRF measurements in the presence of nonlinear distortions. 

The random nature is smoothing the impact of the nonlin-

ear distortions so that the FRF still represents the aver-

aged linearized behavior of the system [30].

•	 Special designed excitation signals: A number of special 

signals are discussed next: filtered noise, maximum length 

binary sequence (MLBS), pseudorandom binary sequence 

(PRBS), swept sine, and multisines. An extensive discussion 

of excitation signals can be found in [16], [18], [25], and [29].

Maximum Length Binary Sequence

The MLBS belongs to the class of PRBSs, which are determin-

istic, periodic sequences of length N that switch between one 

level (such as +1) and another (such as −1). The switches can 

occur only on an equidistant grid at multiples of the clock pe-

riod ,Tc  and they are chosen such that the autocorrelation is as 

spiky as possible to mimic a Dirac impulse (see Figure S4) [25], 

[26]. It is not possible to find a binary sequence with these prop-

erties for every arbitrary length .N  For example, MLBSs exist 

only for length .2 1n-  In [27], an overview is given of binary 

and near-binary sequences that give the user a large choice of 

sequence lengths beyond that of the MLBS. Publicly available 

software to generate these signals is discussed in [28].

The continuous-time (CT) sequence is obtained using a 

zero-order hold (ZOH)-reconstruction of the discrete-time se-

quence, as shown in Figure S3(a) for an MLBS. The amplitude 

spectrum of the discrete sequence is a constant (except for the 

dc value). The spectrum of the CT sequence rolls off with 

Gaussian Noise Periodic Noise Random Multisine

Time
(b) (c)(a)

Frequency
(e) (f)(d)

Figure S1  The characteristics of excitation signals are shown in the time and the frequency domain for (a) and (d) Gaussian noise, 
(b) and (e) periodically repeated Gaussian noise, and (c) and (f) random-phase multisine. In the frequency domain, the amplitude 
spectrum of the actual realization (blue) and the power spectrum (red) are shown.
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the ( ) ( ) ( )sinZOH f f fr r=  characteristic [see Figure S3(d)]. 

This restricts the useful frequency band, because the ( )ZOH f  

has zeros at the multiples of the clock frequency / .f T1c c=  

Moreover, the signal level drops with the frequency, which re-

sults in a decreasing SNR for higher frequencies. In the 1960s, 

dedicated generators were used to generate these signals (see 

Figures S2 and S13).

User Guidelines

•	 Choice of the clock frequency: Select .f f2 5 maxc =  to ob-

tain a sufficiently flat amplitude spectrum in the frequency 

band of interest [16].

•	 Signal length: Select the length N  of the sequence, such 

that /f N10 =  meets the frequency resolution requirement.

•	 Fast Fourier transform (FFT) analysis: Do not modify the 

signal by padding the signal with zeros to obtain a period 

length that is a power of two. Instead, generalized FFT 

algorithms should be used that can handle arbitrary sig-

nal lengths. These are widely available in commonly used 

routines. Zero padding will destroy the good spectral prop-

erties of the MLBS.

•	 Eliminate even nonlinearities: The major drawback of 

MLBSs or more general PRBSs is the sensitivity to nonlin-

ear distortions. These create large spikes in the impulse 

response estimates [26], [102]. A first possibility to remove 

these spikes is to calculate the median over multiple ran-

domized realizations. Alternatively, an inverse repeat-

ed sequence [ , ]u u-  can be generated. All even nonlinear 

distortions are eliminated by construction at a cost of a 

reduction of the frequency resolution with a factor two.

•	 Ternary signals: An increased robustness against non-

linear distortions is obtained using well-designed ternary 

signals [103]. These signals excite only a set of selected 

odd frequencies. The remaining unexcited odd frequen-

cies, and the even frequencies, can be used to measure 

the level of the nonlinear distortions [30].

General-Purpose Excitations

Figure S5 shows other general purpose excitation signals be-

sides the MLBS. The full details about these signals can be 

found in [16], [24], and [29]. The signals were designed to cover 

the frequency band [1, 50] Hz in a measurement window of 1 s.

Swept Sine or Chirp Excitation

This is a sine excitation with an instantaneous frequency that is 

periodically linearly varying between f1  and f2

Figure S2  A pseudorandom binary signal generator from the 
1960s used as an example in laboratories at the School of Engi-
neering, University of Warwick. Dedicated generators to gener-
ate maximum length binary sequence and related signals like the 
inverse repeat binary sequence were built and commercialized. 
Besides the original signal ( ),u t  a copy with a user adjustable 
delay ( )u t x-  was also generated. This allowed the correlation 

( ) ( )y t u t x-  to be measured using analog correlators, making a 
direct measurement of the impulse response ( )g x  possible.
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Figure S3  An example of a maximum length binary sequence 
(MLBS) with a length .N 2 1 315= - =  (a) Discrete-time (DT, 
blue dots) and continuous-time (CT, red line) MLBS with a clock 
frequency / .f T1 1c c= =  The CT sequence is obtained by a 
zero-order hold reconstruction. (b) The spectrum of the DT 
sequence, with .f fs c=  The spectrum of the DT sequence is 
perfectly flat (except for the dc value). This corresponds to the 
observation that the discrete correlation function consists 
within a dc offset of a perfect Dirac, as shown in Figure S4. The 
spectral resolution is / ,f Nc  which increases with the length of 
the sequence. The amplitude will drop as / N1  because the 
power is equally spread over N  frequencies. Parts (c) and (d) 
show the amplitude spectrum of the CT MLBS. The spectrum is 
proportional to ( ) ( )sin x xr r  with / .x f fc=  The amplitude spec-
trum has a zero at the multiples of .fc

Ruu(τ )

τ

1 1

Tc
–Tc NTc

–1/N

Figure S4  The autocorrelation of a continuous-time maxi-
mum length binary sequence with levels ±1 and length 

, .N n2 1 Nn != -  The autocorrelation is periodic with period 
length .N  Note the offset of / .N1  The width of the impulse is set 
by the clock period .Tc  For the discrete-time sequence, the 
autocorrelation exists only for .kTcx =  In that case, it becomes a 
perfect Dirac function with an offset of / .N1-



56  IEEE CONTROL SYSTEMS MAGAZINE  »  AUGUST 2018

where ,U Y0 0  are the disturbance free signals and ( ), ( )N k N kU Y  
model the combined disturbance contributions on respec-
tively the input and output at frequency .k

Assumption 2
In the frequency domain, the disturbing noises ( ), ( ),N k N kU Y  
for all frequencies ,k  are complex, circular, and normally 
distributed [16] with the following properties:

	

{ ( )} , { ( )} ,

( ) ( ), ( ) ( ),
( ) ( ) ( ), ( ) ( ) .

E N k E N k

E N k k E N k k

E N k N k k E N k N k

0 0

0

U Y

U U Y Y

Y U YU Y U

2 2 2 2

2

v v

v

= =

= =

= =r"

" "

"

,

,

,

,

�
(8)

In the last expression, xr  denotes the complex conjugate 
of .x

Assumption 3
The noise ( ), ( )N k N kU Y  is independent of ( ), ( ),U l Y l  for all

.k l!
The role of the generator noise in Figure 2 differs depend-

ing on the selected processing approach, and it also affects 
the definition of , .u y0 0  In the periodic framework (where the 
excitation is assumed to be periodic), ( ), ( )u t y t0 0  are the sig-
nals that are solely due to the reference excitation ( ) .r t  Using 
the notation of Figure 2, ( ) ( )u t u t1 0=  and ( ) ( )y t y t1 0=  if all 
noise sources , , ,n n m mg p u y  are equal to zero. The generator 

	 ( ) (( ) ), ,sinu t A at b t t T0 01#= + � (S3)

with /T f10 0=  the period, ( ) , ,a k k f b k f22 1 0
2

1 0r r= - =  ,f k f1 1 0=  

.f k f2 2 0=  We note that,  in Figure S5(b), some of the power is 

outside the frequency band of interest. Inside the frequency 

band, a ripple of a few decibels is present.

Multisine

A multisine is the sum of harmonically related sines

	 ( ) ( ) .cosu t A kf t2k
k

F

k
1

0r z= +
=

/ � (S4)

The user can freely choose the amplitudes Ak  and the fre-

quency resolution .f0  The choice of the phases will set the na-

ture of the signal. Random phases between [ , )0 2r  will create 

a Gaussian-like behavior. The phases can also be optimized 

to minimize the peak value of the signal [45]. In Figure S5(c) 

and (d), the amplitudes were put equal to a constant, and the 

phases were ( ) .k k F1kz r=- -  This is a Schroeder multisine 

[46] that mimics a swept sine, with a perfectly flat amplitude 

spectrum in the frequency band of interest and no power out-

side this band. This comes at a cost of an increased peak value 

in the frequency domain. The latter can be reduced by phase 

optimization algorithms [45]. Multisines are the most flexible 

class of periodic excitation signals [16], [24].

Filtered White Noise

As discussed in the section “Smoothing the Frequency Re-

sponse Function Using the Classical Spectral Estimation 

Methods,” the spectrum of filtered white noise in Figure S5(h) 

is also a random variable. At some frequencies, almost no 

power will be present, resulting in a low SNR. For that reason, 

it is strongly advised to average the FRF-measurements over 

a number of realizations (subrecords) to obtain good results. 

It can also be observed that the time-domain signal in Figure 

S5(g) has large peak values. This is typical for Gaussian noise 

excitations signals.
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Figure S5  A comparison of general-purpose excitation signals 
in the time and frequency domains. The aim is to excite a fre-
quency band between 1 and 50 Hz using signals with a length 
of 256 samples and a generator clock frequency of 256 Hz. (a) 
Swept sine, (c) Schroeder multisine, (e) maximum length binary 
sequence (MLBS), and (g) filtered white noise. For the MLBS, a 
clock frequency of 127 Hz was used.
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noise will act as a nonperiodic disturbance that does not 
affect the uncertainty of the estimates (see the section “Spe-
cial Case: Generator Noise Only”). In the nonperiodic frame-
work (using, for example, random excitations), ( ), ( )u t y t0 0  are 
the signals that are solely due to the reference excitation ( )r t  
and the generator noise ( ) .n tg  Here, ( ) ( ),u t u t1 0=  and 

( ) ( )y t y t1 0=  if the noise sources , ,n m mp u y  are equal to zero. 
The generator noise ( )n tg  can be considered to be a part of 
the excitation that is out of user control.

User Guidelines
The experimental setup has a significant impact on the final 
quality. Making small modifications can simplify and improve 
the processing of the data and the quality of the results. For this 
reason, the user must pay attention to the following aspects:

»» Antialias filters: Verify if antialias filters are present, 
and make a proper selection of the cut-off frequency.

»» Synchronization: Make sure that the data acquisition 
and data generation channels are well synchronized. 
Lack of synchronization can jeopardize the quality of 
the data. Nonparametric, periodic postprocessing 
heavily relies on a perfect synchronization. If the 
clocks of the data acquisition and the generator are not 
well synchronized, it is still possible to resample the 
signals using advanced signal processing algorithms 
that estimate the clock mismatch and the corrected 
discrete Fourier spectra [36].

»» Preprocessing: Check what manipulations are applied 
to the data: drift/trend removal, missing data han-
dling, removal of outliers, and prefiltering.

»» Reference signal: Store the reference signal together 
with the measured data. It becomes much easier to 
avoid systematic errors if the reference signal is avail-
able, especially for closed-loop measurements.

»» Signal assumption: Make sure that the measurement 
setup is in agreement with the ZOH (antialias filters 
switched off) or BL (antialias filters switched on) 
intersample assumption.

Frequency Response Function 
Measurements Using Periodic Excitations
This section analyzes the FRF measurement in full detail 
using periodic excitations. Initially, the FRF was measured 
frequency per frequency using a sine excitation [37]. By 
moving to periodic excitations that excite multiple frequen-
cies at once, it was possible to significantly reduce the mea-
surement time [38]. Such periodic signals are available in 
all commercial dynamic signal analyzers. Their use was 
strongly stimulated by the introduction of the Fourier trans-
form in the electrical engineering field [39]. The development 
of efficient numerical procedures to calculate the Fourier 
transform was the start of a new era [40]–[43]. Extending the 
study to include random excitations will be discussed in 
the next section, leading to the classic FRF measurement 
methods that have dominated the field since the 1960s.
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is disturbed by generator noise ( ),n tg  and the output of the system is 
disturbed by the process noise ( ).n tp  The measured input and 
output signals are first low-pass filtered by the antialias filters. The 
measurement noise on the input and output is, respectively, ( )m tu  
and ( ).m ty  These signals are sampled at rate / .f T1s s=  The discrete 
Fourier transform of the measurements ( ), ( ), , ,u kT y kT k N1s s f=  is 
calculated using the fast Fourier transform (FFT) algorithm, and it is 
denoted as ( ), ( ) .U k Y k  The frequency index k  indicates the fre-
quency / .kf Ns
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Note that the measured FRF is a random variable (see 
“Random Nature of Frequency Response Function Mea-
surements”), the stochastic behavior of which will be char-
acterized by calculating the mean value and the variance 
(see “Characterizing the Stochastic Properties of the Fre-
quency Response Function Estimates”).

Consider the SISO system in Figure 1. The frequency-
domain analysis begins with the measured input and output 
DFT spectra (7). To simplify the expressions, the frequency 
index k  will be omitted. Only when multiple frequencies are 
combined or when it is not clear from the context what fre-
quency is used will the frequency index will be added.

Stochastic Analysis of Periodic Excitations
The input ( )u t  and output ( )y t  are measured over multiple 
periods and broken into subrecords of one period each. For 
example, , , , ,u l P1[ ]l f=  as shown in Figure 4. In the next 
step, the mean value and the (co)variance are calculated as 
a function of the frequency by analyzing the variations of 
the periodic input and output signals over the measure-
ments of the repeated periods. While the disturbing noise 

,nn yu  varies from one period to another, the noiseless 

periodic signals ,u y0 0  do not. This results eventually in the 
following simple procedure. For each subrecord ,u y[ ] [ ]l l  
(corresponding to one period), the DFT ,U Y[ ] [ ]l l  is calcu-
lated using the FFT algorithm. If an integer number of 
periods is measured under steady-state conditions (no 
transients present), there will be no leakage in the results. 
The sample mean and noise (co)variances at frequency k  
are then

	 ( ) ( ) ( ) ( ),U k P U k Y k P Y k1 1[ ] [ ]l
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Note that the variance of the estimated mean values ( ), ( )U k Y kt t  
is given, respectively, by ( )/ , ( )/ .k P k PU Y

2 2v v  Combining this 

In both the time- and the frequency-domain approach, the choice of  

the excitation signal has an impact on the methods to be used.

Random Nature of Frequency Response Function Measurements

F requency response function (FRF) measurements ( )G kt  

(often called FRF estimates) that are obtained from finite-

length measurements differ from the true value ( )G k0  by an er-

ror term ( ),N kG  with ( ) ( ) ( )G k G k N kG0= +t  because the estima-

tion process is disturbed by many error sources (see Figure 2). 

The measured input and output are prone to measurement 

noise ( ), ( );m t m tu y  unknown inputs can act on the system to be 

modeled, which leads to process noise ( ) .n tp  Finite measure-

ment length effects also disturb the estimate ( )G kt  because 

the past inputs (before the start of the experiment) and the fu-

ture outputs (after finishing the measurements) are not always 

properly included in the calculations.

A typical FRF measurement is shown in Figure S6. It can 

be observed that the errors vary rapidly from one frequency 

to another. Repeating the experiment leads to a new FRF 

measurement ( )G kt  that differs from the previous one be-

cause the input changed (for random excitations). The mea-

surement and process noise also varies from one experiment 

to the other.

The error term ( )N kG  is modeled as a random variable that 

can be studied using statistical tools. The process of generat-

ing a new noise sequence each time is called a “realization” 

of the noise.
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Figure S6  Simulation results on a second-order, discrete-time 
system. Frequency response function (FRF) measurement 
starting from a finite-length record of undisturbed data uses a 
filtered random noise excitation with a bandwidth of . .f0 4 s  The 
pink line is true FRF ,G  and the blue dots are the FRF mea-
surement. Even in the absence of disturbing noise, the mea-
surements look very noisy due to the leakage effect. In this 
case, the response of a second-order system with a time con-
stant of eight samples was simulated in N 4096=  samples.
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information in one figure results in a full nonparametric 
analysis of the SNR of the measurements. No interaction 
with the user is needed during the processing. This makes 
the method well suited for implementation in standard 

measurement procedures. The FRF estimate is then / ,G Y U=t t t  
the properties of which are studied in the section “Smooth-
ing Frequency Response Function Measurements for Peri-
odic Excitations.”

Characterizing the Stochastic Properties of the Frequency Response Function Estimates
random variable is fully characterized in amplitude by its 

probability density function (pdf) [3], [55]. It is often too dif-

ficult to obtain the pdf of ( ),N kG  and for that reason the pdf is re-

placed by partial information: its mean value ( ) { ( )}k E N kGn =  

and its variance ( ) ( ) ,E N k kG
2 2
v n= -" ,  where { }E x  is the 

expected value of x  [55].

If ( ) ,k 0!n  the frequency response function measurement 

( )G kt  is prone to a systematic error that cannot be removed by 

averaging the result over multiple measurements. Such an er-

ror is called a bias. It is often desired to make the bias as 

small as possible because it cannot be (easily) removed in the 

remaining data processing. This is further discussed in “Bias 

and Variance Tradeoff of Estimators.”

The variability of ( )G kt  around its expected value is character-

ized by the variance .2v  The larger the variance, the wider the 

spread around the expected value. For a Gaussian pdf, the interval 

[ . , . ]1 96 1 96v v- +  corresponds to the 95% confidence interval.

In practice, the confidence of the measurement ( )G kt  is 

often given by drawing either the [ . , . ]1 96 1 96v v- +  interval 

around the measured value or by plotting ( ),kv  as was done in 

Figure 6. These intervals do not account for the presence of 

a bias (systematic errors).

A

Bias and Variance Tradeoff of Estimators
n error e can always be written as the sum of its mean 

value { }b E e=  (called the bias), and the remainder is v =  

e b-  with variance ,2v  such that .e b v= +  The total mean 

square error is

	 .e b2 2
MS v= + � (S5)

Depending on the preference, either the bias b or the mean 

square error eMS  should be as small as possible. It is always 

possible to scale an unbiased estimator (no bias present) to-

ward zero such that eMS  drops. This is illustrated in Figure S7 

on the following simple scalar example. Assume that it  is an 

unbiased estimate of the true parameter ,10i =  with variance 

.12v =  Consider next the scaled estimator .i mi=u t  The bias 

of iu  is ( ),b 1 m= -  and the variance iu  is .2 2v m=iu  The mean 

square error becomes

	 ( ) .e 1 2 2
MS m m= - + � (S6)

This error, plotted in Figure S7 as a function of the scaling fac-

tor ,m  shows a minimum at . .0 5m =

User guideline Bias and variance tradeoff  

for impulse response and frequency  

response function measuremenT

Depending on the need of the user, it is preferable to tune the 

results to have either a low bias or variance.

•	 If the nonparametric impulse response or frequency re-

sponse function estimates will be used as the input of 

a parametric modeling step, it is most important that no 

bias errors are present because these cannot be removed 

anymore in later postprocessing. The parametric estima-

tion step is considered an advanced smoothing algorithm 

that reduces the noise without introducing a bias error if it 

is well designed [16], [21], [22].

•	 To generate initial estimates for a parametric estimation 

step, a bias can be tolerated [75]. The final estimation 

should be completed on the original, not smoothed, bias-

free data.

•	 If the nonparametric results will be used, it is important 

that the combined bias/variance error is as small as pos-

sible, so that the mean square error is a better measure 

of the quality.
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Figure S7  The evolution of the total mean square error as a 
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variance error tradeoff is tuned by scaling an unbiased esti-
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mean square error, red line: bias error, and blue line: vari-
ance error.
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Example: The Flexible Robot Arm
As an example, experimental data measured under the BL 
assumption on a one degree-of-freedom flexible robot arm (see 
Figure 5 and [44] for a detailed description) are processed 
using (9) and (10). A periodic multisine excitation [45], [46] is 
used (see also “Design of Excitation Signals”). In Figure 6, the 
sample mean ,U Yt t  and standard deviation ,Uvt  Yvt  are plotted 
in (a) and (b), respectively. The uncertainty on the mean values 
will be 10 dB below the actual shown noise levels because ten 
periods are averaged (see “Impact of Averaging on the Vari-
ance of the Frequency Response Function Estimate”). These 
results show that, during the measurement process, an excel-
lent impression of the quality of the measurement is obtained 

Figure 5  The one degree-of-freedom flexible robot arm of the KU 
Leuven PMA Department of Mechanical Engineering. The red mass 
at the tip of the flexible arm is driven by an electric motor. The input 
signal is the motor current, and the output signal is the acceleration 
measured at the tip of the robot. A periodic excitation signal is used, 
the period length is N 4096=  with ,f 500 zHs =  and P 10=  periods 
are measured in steady-state conditions. Only the odd frequencies 
[ , , ..., ] ,f1 3 201 0  with / .f f N 0 1221 Hzs0 = =  are excited.

Impact of Averaging on the Variance of the 
Frequency Response Function Estimate

veraging an estimate over P independent realizations 

(that is, one measurement has nothing to do with the 

other) results in a reduction of the variance 2v  by a factor 

,P  or a reduction of the standard deviation by P

	 / .PG Gaverv v=t t � (S7)

Averaging can be done by repeating the experiment P  

times. This is a very simple and attractive solution to reduce 

the standard deviation, but it comes with a price. The mea-

surement time grows proportional to ,P  while the uncertainty 

drops only by .P  Reducing the standard deviation by a fac-

tor of ten increases the measurement time by a factor of 100.

A

... ...
t

u (t )

u [1](t ) u [l ](t )u [2](t )

Figure 4  Calculating the sample mean and sample variance of a 
periodic signal starting from multiple measured periods. The input 

( )u t  and output ( )ty  are measured over multiple periods and broken 
into subrecords of one period each, for example , , , .u l P1[ ]l f=  The 
fast Fourier transform is applied to each subrecord. In the next 
step, the mean value and the (co)variance are calculated as a 
function of the frequency.
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Figure 6  Processing the periodic measurements on the robot arm 
in Figure 5. (a) The discrete Fourier transform (DFT) spectrum U  
of the current, (b) the DFT spectrum Y  of the acceleration, (c) the 
correlation t  (11), and (d) the frequency response function ob
tained by (12) /G Y U=t t t  (see the section “Smoothing Frequency 
Response Function Measurements for Periodic Excitations”). Blue 
shows the amplitude, and red shows the standard deviation.
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without any user interaction. In this case, the SNR is approxi-
mately 20 dB before averaging, except for the input of 

/ .f f 0 015s =  corresponding to the first resonance frequency of 
the robot arm. The drop in the SNR is due to the impedance 
mismatch between the motor and the structure, creating a 
power drop at the input and resulting in a low SNR at the 
input (about 0 dB before averaging). This is also why it is often 
very difficult to make a precise damping measurement of 
lowly damped mechanical structures.

The correlation t  measures the linear relation between 
two noise sources

	 ,
U Y

YU
2

t
v v
v

= � (11)

and is shown in Figure 6(c). In this case, the high correlation 
(values close to one) indicates that the noise on the force and 
accelerator measurements are highly correlated. This can be 
due to either generator noise (which is not in this setup) or the 
presence of a dominant noise source in a closed loop. The latter 
is the case in this setup. The output of the motor is strongly 
loaded by the input of the mechanical structure, leading to an 
internal feedback mechanism. The measured FRF shown in 
Figure 6(d) is obtained using the methods discussed in the next 
section. The correlation is much lower at the first resonance and 
antiresonance because, at those frequencies, either the input or 
the output drops to very low values, as shown in Figure 6(a) 
and (b), and the measurement noise will then become domi-
nant. The latter is not correlated with the noise in the loop.

User Guidelines
»» Periodic inputs: Use periodic inputs whenever it 
is possible.

»» Number of repeated measurements: The (co)variance 
estimates improve with the number of repeated peri-
ods. However, in practice a small number of repeti-
tions )(P 4$  will suffice. If the variances are used in a 
parametric estimate, then P 4$  is enough to guaran-
tee consistency of the estimates. P 7$  guarantees the 
existence of the covariance matrix of the estimated 
parameters and their limiting distribution [16], [47].

»» Overlapping subrecords: These results can be general-
ized to measurements with only two repeated peri-
ods using overlapping subrecords [48].

»» Covariance information: It is strongly advised to calcu-
late the covariances, because these provide valuable 
information about the presence of generator noise or 
feedback loops.

Smoothing Frequency Response Function 
Measurements for Periodic Excitations

Smoothing: Average over the Periods
The simplest FRF estimate Gt  is the empirical transfer func-
tion estimate (ETFE) [21], starting from the sample mean 

,U Yt t  (9)
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with / .G Y U0 0 0=  This is a “local” nonparametric method; 
the estimates ( )G kt  at frequency k  make no use of informa-
tion at other frequencies .k l!  All the estimates are retrieved 
by repeating this calculation at all frequencies of interest.

Bias Expression
Creating the Taylor series expansion of (12) to degree two 
and using the noise Assumption 3, the bias is
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See [49] for 0t =  and [50] for the correlated noise situation. 
Even for SNR values as low as 10 dB, the relative bias /b G0  
is still below .10 4-  From (13) it follows that the bias on the 
FRF decreases exponentially with the number of averaged 
periods P. The order of the operations is important. First 
the spectra should be averaged, and the division can then 
be calculated. If the order is reversed, there will be no bias 
reduction. This leads to a general rule of thumb: the data 
should first be averaged before nonlinear operations like 
division or multiplication are applied. Failing to do so makes 
the method more prone to systematic errors. For nonsyn-
chronized measurements, it becomes difficult to apply an 
average before the division. In that case, nonlinear averag-
ing methods can be used to reduce the bias [49], [51] at a 
(small) loss in efficiency. For this reason, synchronized mea-
surements are still preferred whenever possible.

Practical Variance Expression: Study  
of the Distribution of Gt

In [52] and [53], it is shown that the variance of (12) does not 
exist, due to the presence of outliers when the denominator 
closely approaches zero. Nevertheless, it is still possible to 
provide exact uncertainty intervals on the FRF measure-
ment, starting from the probability density distribution of 

.Gt  The exact expression is known and studied in detail in 
[52] and [54]. A detailed discussion of these results is beyond 
the scope of this article. Instead, the practical conclusions 
of the full analysis are discussed.

Distribution
Under the Gaussian noise Assumption 2 and for a high 
SNR of the input signal (> 40 dB), the FRF Gt  is an approx-
imate, complex Gaussian distribution because, in (12), 
the division is /( / ) / .N U N U1 1 1Y Y.+ -t t  For a lower 
input SNR, the linear approximation no longer holds and 
the higher-order terms in the approximation will affect 
the distribution.
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Uncertainty Bounds
It is still possible to calculate a practical variance expres-
sion of Gt  that can be used to generate uncertainty bounds 
assuming a complex Gaussian distribution for .Gt  The 
higher the input SNR, the tighter the uncertainty interval 
is. For example, a tight 50% uncertainty interval is obtained 
for an SNR that is larger than 10–15 dB, and a tight 95% 
uncertainty bound requires an SNR that is larger than 20 
dB. The variance expression is obtained from the first-order 
Taylor series expansion of (12), under Assumption 3 [16]
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The variance is inversely proportional to the squared SNR 
of the measurements, and it drops in / .P1  In practice, the 
variance is estimated by replacing ,U Y0 0  by ,U Yt t  (9) and the 
(co)variances by the sample (co)variances (10).

This result will guide the excitation design in “Design of 
Excitation Signals.” Good excitation signals should maxi-
mize the SNR at all frequencies of interest. Doubling the 
SNR allows the measurement time to be reduced by a factor 
of four, so a good excitation design (increasing U0 ) and a 
good measurement setup design (decreasing the variances) 
reduce the measurement time significantly.

Special Case: Generator Noise Only
If only generator noise ng  is present in Figure 2, ,U N

2 2
gv v=  

,GY N
2 2 2

gv v=  and .GYU N
2 2

gv v=  Substituting these results in 
(14) shows that .0G

2
v =t  In the periodic framework, the gen-

erator noise does not contribute to the variance of the FRF 
measurement. The same conclusion holds true in the gen-
eral excitation framework, where the generator noise adds 
directly to the measured input signal and acts as an input 
that is not under user control.

Example: The Flexible Robot Arm—FRF Measurement
Both (12) and (14) are applied to the flexible robot arm data 
as previously discussed. The FRF estimate is calculated 
using the averaged input and output data, and the variance 
is calculated using the sample variances. The results are 
shown in Figure 6(d). A smooth FRF estimate is obtained, 
but it is also clearly visible that the uncertainty around the 
resonance (of the first mode) is very high. This is due to the 
poor SNR at the input in that frequency band, indicating 
once more that low damping values are very difficult to 
measure with high precision.

User Guidelines
»» Use periodic excitations whenever it is possible. Check 
the synchronization between the generator and the 
data acquisition channels. Use advanced signal pro-
cessing methods to remove synchronization errors [36].

»» Nonparametric noise analysis: Use nonparametric noise 
analysis to complete an initial quality check of the 
measurements. Identify the dominant noise source 
(input or output noise). This information might be 
useful to refine the experiment design or improve the 
measurement setup.

»» Mutual correlation: Check the cross-correlation between 
the input and output noise, which indicates if one 
or two independent noise sources are present in the 
setup. It can also be an indication of strong closed-
loop effects, which should be handled with care (see 
“Measuring the Frequency Response Function Under 
Closed-Loop Conditions”).

»» Steady-state conditions: Check if the measurements are 
completed under steady-state conditions. The initial 
transient is estimated by subtracting the last period 
from the first period. If transients are present, more 
advanced methods should be used (see the section 
“Improved Frequency Response Function Measure-
ments Using Local Parametric Methods”).

»» Averaging: Average the input and output DFT spectra 
before making the division, to reduce bias effects on 
the FRF estimate, as in (12).

Frequency Response Function 
Measurements Using Random Excitations
This section repeats the discussion of the FRF measurement 
for random excitations. The first step is to introduce the basic 
problems, which are 1) why noiseless data can result in the 
poor measurements shown in Figure 7 and 2) how these 
errors can be removed using smoothing methods. Further dis-
cussions consider the variance and bias tradeoffs that are 
made when smoothing is applied. The classical methods that 
were developed during the 1960s to solve these are discussed 
in the section “Smoothing the Frequency Response Function 
Using the Classical Spectral Estimation Methods.” Recent 
insights into the structured nature of leakage errors (see 
“Models for Dynamic Systems: Finite Length Effects”) will 
be used to provide a deeper understanding of these well-
established methods.

Smoothing Frequency Response Function 
Measurements for Random Excitations Using  
the Empirical Transfer Function Estimate
The poor results shown in Figure S6 were retrieved by 
applying the ETFE (12) with P 1=  (the data are not split 
into subrecords) on simulations obtained with a random 
noise excitation. No smoothing was applied before the divi-
sion. Figure 7 plots the same results as shown in Figure S6, 
with the amplitude U  of the DFT of the actual realization 
of the input that was used for this measurement. The latter 
is also a random variable, having dips at some frequen-
cies [4]. It is mainly at those frequencies that Gt  becomes 
very prone to disturbances, resulting in the very scattered 
nature on the left side of the figure. In this example, the 



AUGUST 2018  «  IEEE CONTROL SYSTEMS MAGAZINE  63

errors are completely due to leakage errors (see “Models 
For Dynamic Systems: Finite-Length Effects”), since there 
was no disturbing noise. Disturbing noise has a very simi-
lar effect. For this reason, no distinction is made in further 
discussions in this section. A detailed analysis of the dis-
turbing noise effects is provided in the section “Smoothing 
the Frequency Response Function Using the Classical Spec-
tral Estimation Methods.”

In the absence of input noise, the ETFE is asymptoti-
cally unbiased for ,N  growing to 3  if the expected value 
is calculated with respect to the output noise, conditioned on a 
given realization of the random input [21]. However, its vari-
ance does not decrease to zero [21], even if there is no input 
noise present. To reduce the variance, a proper smoothing 
procedure is needed. The simple averaging procedure used 
in the previous section works well for synchronized mea-
surements of periodic data but fails for random noise exci-
tations. For periodic excitations with P measured periods, 
the sample mean converges to the true value

	 .lim P U U1 [ ]

P

l

l

P

1
0=

"3
=

/ � (15)

For random noise excitations that have no periodic 
nature, it is not possible to split the record over the succes-
sive periods. Instead, the original data record is split into 
P  subrecords. In this case, the sample mean ( ), ( ),U k Y k k 0!t t  

converges to zero (that is, { }E U 0=t ) at the same rate as its 
standard deviation of the output noise, so that no increase 
in SNR is obtained. Moreover, the estimate (12) degenerates 
to 0/0, and hence an alternative averaging procedure is 
needed. Two approaches are discussed: smoothing over 
neighboring frequencies and smoothing over successive 
realizations (subrecords) of the data.

Smoothing the Empirical Transfer Function Estimate  
over Neighboring Frequencies
If the frequency resolution /f Ns  of the FRF measurement 
is small enough, it can be safely assumed that G  does not 

Measuring the Frequency Response Function Under Closed-Loop Conditions

M easuring the frequency response function (FRF) of a sys-

tem under closed-loop conditions (Figure S8) requires 

special precautions. Depending on the signal-to-noise (SNR) 

of the measurements, the resulting FRF is that of the feedfor-

ward pathway (or the inverse FRF of the feedback pathway) or 

a combination of both results. The FRF estimate starting from 

the cross and auto spectrum ,S SYU UU
t t  is ( ) ( ) ( )G k S k S kYU UU=t t t  

(19). When the measurement is made under feedback con-

ditions (see Figure S8), the output ( )y t  depends on both the 

measured input ( )tu  and the disturbance source ( ) .tv  Due to 

the presence of the feedback loop, the signal u  also depends 

on the disturbance .v  As a result, the FRF measurement at fre-

quency k  converges to [17]

	 .G
S C S
GS CS

RR VV

RR VV
2=

+

-u r
� (S8)

This expression reduces to G G=u  if S 0VV =  ( r  dominates over 

v ), and / ,G C1=-u  if S 0RR =  (v  dominates over r ). For mixed 

SNR, the estimate becomes a mixture of the feedforward and 

feedback characteristics.

The bias can be eliminated if the external reference signal 

r  is also available [17]. In that case, the indirect method can be 

used [85], [86]

	 .G G
G

S
S

ur

yr

U R

Y R= =u � (S9)

Because r  is known exactly and not correlated with ,v  the 

bias in (S8) is removed. This approach can also be inter-

preted within the instrumental variables identification frame-

work [21]–[23].

–

+
r u

y
G

C

v

+

Figure S8  The frequency response function (FRF) measure-
ment under closed-loop conditions requires special care. The 
FRF of the system G captured in a feedback loop is measured 
starting from the measured input ( )u t  and output ( ).ty  This 
leads to a bias because the input u  is correlated with the 
noise v  through the feedback path .C
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Figure 7  The frequency response function measurement shown 
in Figure S6 (a), together with the amplitude | |U  of the discrete 
Fourier transform of the actual realization of the input that was 
used for this measurement (b). | |U  is a random variable too that 
varies over the frequency. | |U  is very small at some frequencies, 
resulting in large errors on .Gt
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Models for Dynamic Systems: Finite-Length Effects
linear dynamic system is described by (1). When this rela-

tion is applied to finite-length records, additional effects 

appear (as illustrated in Figure S9) that plot the simulated in-

put and output for a random noise excitation. The time domain 

record is split into three subrecords, and for each of these the 

corresponding output is calculated (blue, green, and red), set-

ting the input equal to zero outside the subrecord. When only 

the middle subrecord is processed, it is clear that two prob-

lems appear: 1) the beginning of the output measurement is 

disturbed by the blue output transient of the first subrecord  

and 2) the green output-transient of the middle subrecord is 

missing because it belongs to the third output subrecord.

The effect of both transient terms is that the simple rela-

tion ( ) ( ) ( )Y k G k U k=  between the discrete Fourier transform 

(DFT) coefficients ( ), ( )U k Y k  of the middle record does no lon-

ger hold. An additional term is needed to account for it. Failing 

to do so creates errors in the impulse response (IR) and fre-

quency response function (FRF) estimates, even for noise-free 

measurements, as shown in Figure S6.

Adding the transient terms to ( ) ( ) ( )Y k G k U k=  is done be-

low for single-input, single-output (SISO) and multiple-input, 

multiple-output (MIMO) systems in the time and frequency 

domains. There is a full equivalence between the time- and 

frequency-domain equations.

In the time domain, the finite-length effects are known as tran-

sient effects due to the additional blue transient in Figure S9. In 

the frequency domain, the finite-length effects are called leakage 

errors and are due to the combined effect of the blue and green 

transient. Usually, leakage errors are considered to be random 

errors, although it is clear from the previous discussion and the 

mathematical description below that they are highly structured 

errors. For a long time, this was not fully realized, and only re-

cently has this insight been fully explored to develop more pow-

erful nonparametric methods that can remove the finite-length 

effects [19], [20], [66], [67], [69], [71]–[73]. These are discussed in 

the section “Improved Frequency Response Function Measure-

ments Using Local Parametric Methods.”

SISO systems

Time Domain: Including the Transient Effects

Consider the finite-length input/output measurement ( )u tFL =  

( ), ( ) ( ), , ,u t y t y t t N1FL f= = =  of the discrete-time SISO system 

in (1). When (1) is applied to ( ), ( ),u t y tFL FL  making ( ) ,u t 0 0FL 1 =  

it needs to be extended with an additional transient term ( )t tg  

to account for the unmeasured past inputs prior to the start of 

the experiment

	 ( ) ( ) * ( ) ( ) .y t g t u t t tgFL FL= + � (S10)

In a parametric presentation of (S10), the impulse response 

( )g t  and the transient ( )t tg  are both modeled by a rational form 

in the Laplace or z-domain

	 / , / ,G B A T I AG G G G1= = � (S11)

with , ,A B IandG G 1 polynomials in s  or .z

Frequency Domain: Modeling the Leakage Errors

Transforming (S10) to the discrete frequency domain using the 

discrete Fourier transform (DFT) (S1) gives the following rela-

tion between the DFT coefficients ( ), ( )U k Y k  [16], [19], [70], [71]

	 ( ) ( ) ( ) ( ), , , , / .Y k G k U k T k k N0 1 2G f= + = � (S12)

It can be shown that { } ,DFT t Tg G!  because the latter depends 

on the missing green output transient in subrecord 3 in Figure 

S9, while this is not the case for ( )t tg  [16], [19], [70], [71].

For a random-noise or quasi-stationary excitation [16], [21]

	 ( ) ( ), ( ) ( ),U k O N T k O N /
G

0 1 2= = - � (S13)

with O(x) an arbitrary function with the property (in probability) 

( ) / .lim O x xx 0 31"  This shows that the transient effect de-

creases as ( )O N /1 2-  to zero for a growing record length.

The parametric presentation (S14) of (S12) models the im-

pulse response ( )tg  and the transient ( )t tg  again by a rational 

form in the z-domain that is very similar to (S11)

Input Output

Figure S9  Understanding finite-length effects on the relation 
( ) ( ) ( )Y k G k U k=  between the discrete Fourier transform coef-

ficients ( ), ( )U k Y k  of the middle record for a linear dynamic 
system. The impact of the beginning (additional blue transient 
at the start of the middle subrecord) and end effects (missing 
green transient at the start of the left subrecord) are shown.

A
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	 / , / .G B A T I AG G G G= = � (S14)

However, this time the numerator of the transient term ,I I I1 2= -  

where the polynomials l1  and l2  depend, respectively, on the 

beginning and end conditions of the finite record. , , ,A B IG G 1  

and I2  are polynomials in z  as in the time-domain description. 

Again, these results can be extended to the continuous-time 

domain by adding a (small) error term that accounts for the 

alias errors of the sampled transient term [16].

State-Space Interpretation of the Leakage Errors

An interpretation of these results using an A, B, C, and D  state-

space representation is also very revealing [71], where

	 ( ) ( ) ( ) ( ),T z zC zI A I A x xG
N

p
1

0= - - -- � (S15)

with

	 ( ) ( ),x I A A Bu N t1p
N t

t

N
1

0

1

= - - --

=

-

/ � (S16)

with x0  the initial state. These expressions show clearly that 

the additional term is due to the transient response on ,x xp0-  

which is the difference in initial conditions between the true 

system and the assumed periodic one in the DFT analysis. As 

mentioned before, these expressions are only valid at the DFT 

frequencies / .kf Ns

The Z-transforms of tg  and TG  are both given by a rational 

form of the same order, having the same poles as the plant 

transfer function ( ).G z  These results extend also to continu-

ous-time systems, provided that the sampling frequency is high 

enough that the aliasing error of the sampled transient signals 

is negligible.

Experimental Illustration

The above results show that transient and leakage errors are 

highly structured. The induced errors have a “smooth” aspect, 

in both the time and the frequency domain. This was a key 

observation for the development of the new generation of non-

parametric frequency-domain algorithms. An experimental il-

lustration of these results is shown in Figure S10.

MIMO systems

All the SISO results can be generalized to MIMO systems with 

nu  inputs and ny  outputs. These are characterized by the IR 

matrix ( )g t Rn ny u! #  in the time domain, and by the frequency 

response matrix ( )G k Cn ny u! #  in the frequency domain. The 

transient term becomes a vector ,t Rg
n 1y! #  or .T CG

n 1y! #  

There are three different choices for the parametric represen-

tation of .G  The common denominator form

	 ( ) ( ) / ( ),G z B z A z= � (S17)

with G Cn ny u! #  and A a scalar. Alternatively, the left matrix 

fraction form

	 ( ) ( ) ( ),G z A z B z1= - � (S18)

with A Cn ny y! #  and ,B Cn ny u! #  or the right matrix fraction form

	 ( ) ( ) ( ) ,G z B z A z 1= - � (S19)

with A Cn nu u! #  and B Cn ny u! #  can be used. A detailed discus-

sion on the differences and similarities between these choic-

es is out of the scope of this article; more information can be 

found in [10].

Concatenating experiments

A model for concatenated data records is written using the 

generalized plant plus transient model structure. At each 

concatenation point, an additional transient is added to the 

model [74]. This allows longer records to be obtained start-

ing from short experiments and resulting in an increased fre-

quency resolution.
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Figure S10  An illustration of the importance of the transient 
term in (S12). A sixth-order bandpass filter is excited with 
random noise. A reference frequency response function is mea-
sured with a periodic, steady-state experiment. Next, the data 
are used to identify a parametric transfer function model with or 
without the transient term .TG  The black line is the  reference 
measurement Gref  using the steady-state periodic measure-
ments. The red dots are the error on the model without TG  esti-
mated on the random noise data. The green dots are the error 
on the model with TG  estimated on the random noise data. The 
black dots are the error of the model that is estimated on the 
reference data without a transient term. Note that the transient 
errors are smooth. Including the transient term brings the errors 
of the full model identified on the random data down to the 
same level as the errors in the model that are identified from the 
periodic reference data without the transient term.
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vary much in the frequency interval [ , ],B k n k n= - +  and 
hence a smoothed estimate for ( )G ktt  can be obtained by cal-
culating a properly weighted average [21], [55], [56]
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The second equality holds true if the output noise domi-
nates (lower SNR at the output than at the input) such that

	 ( )
( )
( )
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and the variance ( )mY
2v  remains constant in the interval .B

The major disadvantage of the ETFE smoothing tech-
nique is the creation of bias errors (mainly at the reso-
nances and antiresonances) because the estimate ( )G kt  is 
averaged over the frequency interval .B  This introduces 
errors that are proportional to the second derivative of G  
of order (( / .O d G df2 )2f )  For that reason, the width of the 
smoothing window B should be well tuned. Choosing it 
too small results in a large variance, while selecting it too 
large results in a large bias. Optimal tuning methods have 
been proposed in [57], where an initial estimate of the 
noise variance ( )mY

2v  is first completed and used to tune 
the bandwidth B in (16). The proposed method uses local 
polynomial approximations to estimate the noise variance. 
This idea will be extended in the section “Improved Fre-
quency Response Function Measurements Using Local 
Parametric Methods.”

In (16) the measurements are again averaged before the 
division is made. However, U 2  is averaged in the denomi-
nator, so a nonlinear operation is still applied before the 

averaging. This leads to biased estimates if the input mea-
surement is disturbed by noise. A detailed discussion of 
the bias and variance effects of the disturbing noise is pro-
vided in the section “Bias and Variance Analysis of Fre-
quency Response Function Leakage Errors.”

Smoothing the Empirical Transfer Function  
Estimate over Successive Realizations
An alternative approach to average the ETFE is to split the 
original data record into P n2 1= +  subrecords, as was 
done for the periodic excitation solution above. A new esti-
mate is defined by averaging over the subrecords instead of 
the neighboring frequencies

	 ( )
( )

( ) ( )
.G k

U k

Y k U k

[ ]

[ ] [ ]

l

l

P
l

P
l l

1

2
1=

=

=t
r

/

/
� (18)

Smoothing over the frequency interval B is avoided, but 
the frequency resolution of the subrecords is P  times 
smaller than that of the original record and equals the 
width of the interval .B  Hence, similar bias errors will 
appear for (18) as for (16) (see also the section “Bias and 
Variance Analysis of Frequency Response Function Leak-
age Errors” and Table 2).

The scaled numerator and denominator in (18) can also 
be interpreted as estimates of the cross spectrum SYU  and 
auto spectrum SUU  between , ,u y  so that (18) can be rewrit-
ten as

	 ( )
( )
( )

,G k
S k
S k
UU

YU
=t
t

t
� (19)

which links the ETFE method directly to the classical FRF 
estimation methods of the 1960s [1], [2], [11], [17], [58], [59] 
that will be discussed in detail in the next section. The sto-
chastic properties are also analyzed in the next section.

In Figure 8, the data from Figure S6 are processed 
using (19). The original data record of 4096 samples is split 
into 16 subrecords of 256 samples each, and (18) is then 
calculated. Averaging over 16 subrecords significantly 
reduced the presence of the dips in SUU  [see Figure 8(b)] 
with respect to ,U  resulting in a smoother FRF estimate 
as shown in Figure 8(a) when compared to previous re
sults using a single record (as shown in Figure  7). This 
was at a cost of a reduced frequency resolution. The FRF is 
measured at 128 frequencies instead of 2048 frequen-
cies in (8).

User Guideline
The spectral resolution is / ,BP NfD =  with B the smooth-
ing width, P  the number of subrecords or repeated experi-
ments, and N the total data length. The noise reduction is of 

.O BP1^ h  The number of subrecords P  and the smooth-
ing bandwidth B can be interchanged without affecting 
the effective frequency resolution or the uncertainty of 
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Figure 8  The frequency response function (FRF) starting from the 
simulation in Figure S6. The full record is broken into 16 subre-
cords of length .N 256=  (a) Pink line: true FRF ,G  and blue dots: 
FRF measurement .( ) ( ) ( )G k S k S kYU UU=t t t  (b) Blue dots: | |U  for 
the full record, and pink dots: .SUU

t  The frequency resolution of the 
pink dots is 16 times smaller than that of the blue dots because the 
length of the subrecords is 16 smaller than that of the full record.



AUGUST 2018  «  IEEE CONTROL SYSTEMS MAGAZINE  67

the result if the disturbing noise is dominating. The leak-
age errors will dominate for a high SNR, in which case it is 
better to increase B and keep P  as small as possible. This is 
because, for a given length ,N  the impact of the leakage 
errors grows with .P

Smoothing the Frequency Response  
Function Using the Classical Spectral  
Estimation Methods
For a long time, an FRF measurement was the division of 
two spectra [1], [2], [4], [11], [18] [see (12), (19)]. Hence, the 
individual spectra ,U Y  had to first be accurately esti-
mated, instead of determining a model between these two 
signals. This was a more demanding approach that was 
more sensitive to leakage errors. Measuring the spectrum 

( ), , , /X k k N0 2f=  of a random signal is a tedious job. Due 
to its random nature, it is not straightforward to obtain a 
high-quality measurement of the spectrum starting from a 
finite-length measurement ( ), , , .x t t N1 f=  The DFT (S1) 

( )X k  of ( )x t  is not a consistent estimate because its variance 
does not decrease to zero for a growing length .N  This is 
because the spectral resolution is growing with ,N  such that 
no “averaging” occurs, as is shown in Figure 9. For this 
reason, it is necessary to explicitly introduce an averaging 
step in the estimation procedure to obtain a reliable spectral 
estimate. This can be accomplished over neighboring fre-
quencies or multiple realizations (see [11] and the references 
therein), similar to the previous discussion of the ETFE. 
Eventually, the latter approach became the dominant one, 
especially after the introduction of the FFT [34] to calculate 
the DFT [60]. The main motivation was faster computation 

and reduction of the core storage necessary to process the 
shorter records [2].

These different approaches to experimental spectral 
analysis were also reflected in different proposals for FRF 
estimators using noise excitations. The standard proce-
dure (known as Welch’s method [2]) or the weighted-over-
lapped segment averaging procedure splits the original 
long data record ( ), ( )u t y t  into P  shorter (overlapping) 
subrecords , , , ,u y l P1[ ] [ ]l l f=  of length N  and calculates for 
each of these the DFT ,U Y[ ] [ ]l l  (see Figure 10). The auto spec-
trum SUU  and cross spectrum SYU  are estimated using 
the expressions
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These are equal to the numerator and denominator in 
(18), which clearly links both methods. In Figure 11, it is 
illustrated that averaging over P  realizations using these 
expressions reduces the variability. The dips disappear 
even more rapidly than would be expected with the / P1  
rule (see “Impact of Averaging on the Variance of the Fre-
quency Response Function Estimate”), especially for low 
values of .P

The FRF ( )G kt  is then obtained using (19). It is essential 
in this approach to realize that ( )G kt  is obtained as the 
division of two estimated spectra that are prone to errors 
due to the finite data length effects (called leakage 
errors) and disturbing noise. The errors in Figure 8 are 
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Figure 9  The discrete Fourier transform spectrum of white noise 
for a growing record length. The spectrum does not converge to a 
constant, as it could be expected for white noise. Longer mea-
suring does increase the number of frequencies on which the 
spectrum is calculated, but the variability of the measurement does 
not decrease.

R N

Figure 10  An illustration of the overlapped weighted segments—
here with a Hanning window wH  (black lines) and an overlap 

/ /R N1 1 2- =  (the window is shifted R samples in each step). 
Each subrecord is multiplied with the window (shown in green, 
shifted below the original signal in blue), and the discrete Fourier 
transform is applied to the product.
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completely due to the leakage; there was no disturbing 
noise added to the data.

The majority of the previous efforts focused on a better 
understanding and tuning of the leakage errors using well-
adopted time windows [4] that reshaped the errors to 
become less harmful. The impact of both the leakage and 
noise errors will be analyzed in more detail in this sec-
tion, because their combined effect determines the sto-
chastic properties of ( ) .G kt  Note that the alias errors are not 
considered anymore; it is assumed that the antialias filters 
and the sampling frequency are properly matched, so that 
these errors can be neglected.

Time- and Frequency-Domain Interpretation of Windows
Calculated DFT spectra are prone to leakage errors due to fi-
nite length effects [34]. A subrecord is obtained from an infi-
nitely long signal by multiplying the original signal with a 
“selection window” ( )w t  that is equal to zero outside the 
selected time interval. For example, as shown in Figure 10, the 
lth subrecord is ( ) ( ) ( ) .u t w t u t[ ] [ ]l l=  Multiplication in the time 
domain becomes a convolution in the frequency domain, so that

	 ( ) ( ) * ( ) .U k W k U k[ ] [ ]l l= � (21)

Many windows have been discussed in the literature, each 
being optimized for a given application (such as spectral 
resolution, detecting small spurious frequency components, 
and amplitude measurements [61]). In this article, the rect-
angular, Hanning, and Diff windows will be considered. 
However, instead of studying their impact on the spectral 
estimates ,U Y  [3], the focus will be directly on the impact of 
windowing on the relation (S12)

	 ( ) ( ) ( ),Y k G k U T kG= + � (22)

following the approach in [19], [62], and [63]. All the 
windows ( )w t  are defined on the half-open interval 

[ , )t 0 1!  for [ , , , ]/t N N0 1 1f= -  [see Table 1; outside this 
interval ( ) )] .w t 0=  The definition is given in the time 
domain, and the impact of the window on the DFT spec-
trum is given in the last column. The Diff and the half-sine 
windows are shown to have very similar properties for 
FRF measurements [63].

These different approaches to experimental spectral analysis  

were also reflected in different proposals for FRF estimators  

using noise excitations.

0 0.2 0.4
−30

−20

−10

0

10

A
m

pl
itu

de
 (

dB
)

Number of Averages = 1

0 2 4
0

100

200

300

Amplitude (Linear)

Histogram

0 0.2 0.4
−30

−20

−10

0

10

A
m

pl
itu

de
 (

dB
)

Number of Averages = 4

0 2 4
0

100

200

300

Amplitude (Linear)

Histogram

0 0.2 0.4
−30

−20

−10

0

10

A
m

pl
itu

de
 (

dB
)

Number of Averages = 16

0 2 4
0

100

200

300

Amplitude (Linear)

Histogram

f /fs f /fs f /fs

Figure 11  An illustration of the smoothing effect obtained by averaging SUU
t  over different realizations. The power spectrum is shown in 

the upper figures for , ,M 1 4 16=  and .N 2048=  The lower figures show the corresponding histograms. It can be shown that these follow 
a 2|  distribution with P2  degrees of freedom [16].
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The Diff window ( / ) [ ( ) ( )]X k X k X k1 2 1w + = + -  acts as 
a difference centered around / ,k 1 2+  where the latter fre-
quency index points to the frequency ( . ) / .f k f N0 5 s= +  The 
Hanning window ( ) ( ) ( ) ( )X k X k X k X k1 2 1w 4

1= - - + - +6 @ 
is a double difference centered around .k  From this ob
servation, it can be easily understood that windows push 
down spectra that are smooth in function of the frequency, 
as is the case for the transient ( )T kG  in (S12). The first term 
in this expression ( ) ( )G k U k  will be “rough” for random 
noise excitations and hence not be reduced by the window-
ing operation. This is also illustrated in Figure 12, where 
the amplitude spectrum of the rough signal and the smooth 
transient term are plotted using a rectangular and a Hann
ing window. This shows that windowing can decrease the 
leakage errors, since these are directly coupled to the tran-
sient term .TG

Understanding the Impact of Leakage on Frequency 
Response Function Measurements
Windowing will not remove all the errors; the tapered 
output will not be identical to the response of the system on 
the tapered input, as was previously shown in Figure S9. 
The precise impact on the FRF measurement is studied in 
this section. To keep the focus completely on the leakage 
errors, it is assumed that the disturbing noise is zero, so the 
errors in the FRF measurement will be solely due to leak-
age effects.

Assumption 4
No disturbing noise

	
( ) ( ),
( ) ( ) .

U k U k

Y k Y k
0

0

=

=
�

(23)

The impact of the Hanning window on the FRF measure-
ment is obtained by replacing Y GU TG= +  at the th ree 
frequencies , ,k k k1 1and- +  in ( ) [ ( )Y k Y k 1w 4

1= - - + 
( ) ( )] .Y k Y k2 1- +  The smooth functions ,O NG 0^ ^ hh  and 

T O N /
G

1 2-^ ^ hh can be approximated by [62]

	
( ) ( ) ( ),
( ) ( ) ( ),

G k G k O N

T k T k O N

1
1 /

G

G G T

2

5 2
G

! !

! !

9

9

= +

= +

-

- �
(24)

with ( ).O NG
19 = -  This results in

	 ( ) ( ) ( ) ( ) ( ),Y k G k U k E k E kw w G TG= + + � (25)

with

	
( ) ( ( ) ( )) ( ),

( ) .
E k U k U k O N

E O N

1 1
/

G G

T

1

5 2
G

9=- + + - =

=

-

-
�

(26)

The transient error ETG  remains from the transient after the 
double differentiation. ( ) ( )E k O NG

1= -  is a new error that 

is due to interpolation of G  over the left and right fre-
quency in the Hanning window. Since it became the 
dominating error, it can be concluded that the Hanning 
window replaces the leakage error that is of ( )O N /1 2-  by a 
smaller ( )O N 1-  interpolation error. These results are tabu-
lated in Table 2 [63] and compared to those of the rectangu-
lar and Diff (half-sine) windows. The results in Table 2 are 
normalized by the time constants of the system [64]. To do 
so, the dominant time constant fx  in the frequency b and of 
interest is selected, and N  is replaced by / .N fx  For a reso-
nating system, the dominant time constant is set by the 
damping of the actual resonance that is studied (see “Char-
acterizing a Resonance by Its 3-dB Bandwidth”).

Since the rectangular window makes no interpolation, 
it follows that only the leakage error will be present

	 ( ) ( ) ( ) .Y k G k U k E0R R TG= + + � (27)

For the Diff window with a width of one bin, the same 
expression as the Hanning window holds. The latter has a 
width of two bins, so the interpolation error for the Diff 
window will be smaller [although it is also (( / ) ),O N f

1x -  
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Figure 12  The impact of the (a) rectangular and (b) Hanning window 
on the signal term GU  (blue) and the transient term TG  (red). The 
signal term is “rough,” and the transient term is smooth. The double 
differentiation of the Hanning window reduces the smooth transient 
term, while the amplitude level of the rough signal term remains the 
same. The system is the same as in Figures S6 and 8, and the data 
length is .N 512=

Table 1 M any windows are defined and studied in signal 
processing [61]. Popular windows include the rectangular 
and Hanning windows. Recently, the Diff and half-sine 
windows were studied in detail [63]. The definition of 
these windows w(t) is given for [ ,0 1).t !

Window w(t) Xw

Rectangular 1 ( ) ( )X k X kw =

Hanning . ( )cos t0 5 1 2r- ( ) [ ( )

( ) ( )]

X k X k

X k X k
4
1 1

2 1

w = - -

+ - +

Diff e 1j t2 -r ( / )

[ ( ) ( )]

X k

X k X k

1 2

1
w +

= + -

Half-sine sin tr ( )sinF xr
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as it was for the Hanning window]. This is still larger 
than the leakage error of the Diff window, which i s 

(( / ) ),E O N /
T f

3 2
G x= -  because only one difference is made.

Remark 2
Exponentially decaying windows are also used [65] in modal 
analysis (analysis of vibrating mechanical structures) [18]. 
These add an artificial but known damping to data that 
can be compensated for when physical parameters are ex
tracted from the FRF data.

Bias and Variance Analysis of Frequency Response 
Function Leakage Errors
For random excitations, the leakage error is itself a random vari-
able. In “Models for Dynamic Systems: Finite‐Length Effects,” it 
is explained that leakage errors are created by transient effects at 

the output of the system and these have a smooth spectrum 
( ) .T kG  The leakage error is then given by ( )/ ( ),T k U kG  and, 

since ( )U k  is a random variable, the leakage error will be too. 
This error is conditioned on the random input, and it is charac-
terized by its mean value (bias errors) and variance [4].

Bias Errors
Averaging over successive realizations of the input reduces 
this error, but it will not decrease toward zero as the 
number of averages P  approaches .3  We note that the leakage 
error is due to the beginning and end transient. These 
depend linearly on the random input signal, and hence the cor-
relation { }E T UTG  between the input and the transient will be 
different from zero, leading to systematic errors (bias) in the 
FRF measurement [66]. For the rectangular window, the bias 
error is shown to be (( / ) )O N f

1x -  [62], [63]. For the Hanning 
and the Diff (half-sine) windows, 
the bias error is mainly due to 
the interpolation errors and drops 
to ( ) / .G k O N( )

f
2 2x -^^ h h  The bias 

error of the Diff window is 
slightly smaller than that of the 
Hanning window, because the 
width of the Diff window is half 
that of the Hanning window.

Variance Errors
Prior literature [2], [4] focused on 
the bias contribution of leakage. 
Little effort was spent on the 

Characterizing a Resonance by Its 3-dB Bandwidth

T he transfer function of a system can be written as the sum 

of first-order subsystems (with a real pole) and second-

order subsystems (with two complex conjugate poles). Lowly 

damped poles create (sharp) resonances in the frequency 

response function (FRF), and many FRF methods are most 

prone to errors around these resonance frequencies, as shown 

in Figure 14.

The frequency resolution fd  of the FRF measurement 

should be “small” enough to properly capture the resonance 

peaks; a too-small frequency resolution would underestimate 

the peak value of the FRF. The 3-dB bandwidth of a resonance 

can be used to make a quantified statement. In Figure S11, the 

3-dB bandwidth is shown in pink. The 3-dB bandwidth B3dB  in 

rad/s is given by the width of the frequency interval around the 

peak amplitude of the FRF, where ( ) .G G 3maxdB $~ -

There is a direct link between ,B3dB  the damping ,g  and 

the time constant x  of a second-order system with resonance 

frequency n~

	 / .B 2 2n3dB g~ x= = � (S20)

The frequency resolution of an FRF measurement should 

be high enough to cover all resonances of interest. For ex-

ample, the number of frequency points F3dB  in the 3-dB band-

width where the FRF is measured is / ( ),F N fs3dB sub rx=  which 

directly relates the time constant x  of the system to the record 

length .Nsub
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Figure S11  Characterizing a resonating system by its 3-dB 
bandwidth, indicated in pink.

Table  2 Applying a window in frequency response function measurements reduces 
the transient errors ETG  and creates interpolation errors EG. These errors, together with 
their bias and variance, are given as a function of N: the length of the subrecord, the 
dominant time constant in the frequency band of interest xf, and the second derivative 
of G with respect to the frequency G(2).

Window ETG EG Bias Variance 

Rectangular (( / ) )O N /
f

1 2x - 0 (( / ) )O N f
1x - ( ( / ) )O P N f

1 1x- -

Hanning (( / ) )O N /
f

5 2x - (( / ) )O N f
1x -  ( ) (( / ) )G k O N( )

f
2 2x - ( ( / ) )O P N f

1 2x- -

Diff or half-sine (( / ) )O N /
f

3 2x - (( / ) )O N f
1x -  ( ) (( / ) )G k O N( )

f
2 2x - ( ( / ) )O P N f

1 2x- -
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study of leakage-induced variance, although under good 
SNR conditions, the latter becomes the dominating error. 
The variance error is respectively of ( / )O P N f

1 1x- -^ h for 
the rectangular window and ( / )O P N f

1 2x- -^ h for the Diff 
(half-sine) and Hanning windows.

Overlapping Windows
While it is not possible to reduce the bias, the variance can be 
further reduced by allowing for an overlap of R  samples, 
when shifting the window with length N  over the long 
record [63], [67]. This increases the calculation time (because 
more subrecords need to be processed), but the variance is 
further reduced. Because in most applications, the measure-
ment time is a more important concern than the calculation 
effort, the overlapping strategy is the standard procedure in 
current practice. Because the overlapping subrecords are 
more correlated for an increasing overlap, the gain satu-
rates. In [63], a very detailed study shows that, under very 
loose conditions, the optimal choice among all windows 
with a bounded derivative is the Diff (half-sine) window 
with an overlap of / /R N1 2 3- =  (the window is shifted 
each time with / ).N 3  This results in a further reduction of 
the leakage-induced variance by more than a factor of 3.5 
(half of this at the zero and half at the sample frequency). 
This result will also extend to the disturbing noise sensitiv-
ity. However, the gain is about a factor of two.

Variance Analysis of the Frequency Response  
Function Measurements in the Presence of  
Disturbing Noise
The variance of Gt  (19) due to the disturbing input and 
output noise ,NU  NY  can again be retrieved by linearizing 
the expression with respect to the noise, similar to the 
approach in (12), but is now applied to the estimates ( )S kYU

t  
and ( ).S kUU

t  This results eventually in

	
( ) ( ) ( )

.ReP G
S k S k S k

1 2G
YY

Y

UU

U

YU

YU2
0

2
2 2 2

v
v v v

= + -t t t tee oo � (28)

For P  approaching ,3  the estimated auto and cross 
power spectra can be replaced by their exact value, and 
it is clear that Gv t  drops again in / .P1  However, for 
smaller values of ,P  this approximation is no longer valid 
(due to the presence of dips as illustrated in Figure 11), 
and the original expression (28) should then be used. The 
additional loss is plotted in Figure 13 [16], showing that, 
for small values of ,P  the excess loss is close to five for 

.P 1=  Using overlapping subrecords, the value of P  is 
artificially increased by a factor of two, as explained in 
the previous section.

A standard alternative for the variance expression 
(28) is [4], [18]

	 ( )
( )

( )
,P G k

k
k1 1

( )G k
2

0
2

2

2

v
c

c
=

-
t � (29)

with

	 .k
S k S k

S k
UU YY

YU2
2

c =^
^
^
^

h
h
h
h

� (30)

In practice, the coherence 2c  is estimated by replacing the 
theoretical values in (30) by their measured values. The 
coherence (30) has exactly the same interpretation as the 
correlation (11) for periodic excitations [4]. The coherence is 

12c =  for undisturbed measurements (no leakage, no noise, 
no nonlinear distortions), pointing to perfectly linearly 
related data. It drops to zero due to noise disturbances, 
unmeasured inputs, and data that are not linearly related 
[4]. It is a very popular measure for the quality of the data, 
and it is plotted in many commercial signal analyzers [3], 
[4]. Compared to the variance analysis for periodic data (10), 
the coherence provides less information because it makes 
no split between input and output noise  and their mutual 
correlation. This can be seen in the analysis of the flexible 
robot arm data in Figure 6, where the coherence (correla-
tion) is plotted in (c). If only this information is available, the 
insight in the origin of the dips in the coherence would be 
lacking (a drop in SNR of the input).

Bias Analysis of the Frequency Response Function: 
Impact of Noise Disturbances on the Reference  
Input and the H1, H2 Methods
The most popular FRF estimate Gt  is (19). However, 
this method fails completely in the presence of input 
noise. Consider

	 .limG k G k
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Assume for simplicity that the noise is not correlated with 
the input u  and the output .y  It follows that (31) equals
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Figure 13  Th impact of replacing SUU  by its finite sample estimate 
SUU
t  in / .G S SYU UU=t t t  The estimated power spectrum SUU

t  is a 
random variable that can become very small when the number of 
averages is small, as shown in Figure 11. These dips create large 
spikes after the division in ,Gt  leading to an increase of the stan-
dard deviation Gv t  of .Gt  The 95% bound of the relative increase of 
the standard deviation Gv t  is plotted.
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proving that (19) underestimates the true value of the FRF 
in the presence of noise on the input signal [4], [16]. In 
the mechanical community, this estimator is called the 
H1  estimator.

There is a simple trick to address this problem, provided 
that the SNR of the output is (very) high. In that case, the 
H2  method can be used [68]

	 .G k
S k
S k
YU

YY
= t

t
t ^

^

^
h

h

h
� (33)

The squared input U 2  is no longer averaged, and 
the source of the bias in (19) is eliminated. As a rule of 
thumb, the reference should always be selected as the 
signal with the highest SNR, resulting in the H1  or H2  
method [4], [18]. Commercial dynamic signal analyzers 
use the H1  method. Switching the input and output 
cables transforms it into the H2  method by inverting the 
estimated FRF / .G1 t

User Guidelines
»» Periodic or random excitation: The first advice re-
mains to use periodic excitations whenever it is 
possible. If this is not possible for technical rea-
sons, the most recent and powerful FRF measure-
ment techniques in the next section should be 
used. If, for some reason, the classical methods in 
this section should be used, the following advice 
can help to obtain the best results within the clas-
sical framework.

»» Bias errors: Check the experimental setup, and verify 
the SNR of the input signal. If it is well above 40 dB 
(1% noise floor), the relative bias of the H1  will be 
below .10 4-  For a lower SNR, the bias should not be 
too large for the application. If the bias is too large, it 
might be an option to switch to the H2  method if the 
output has a higher SNR than the input.

»» Variance errors: It is necessary to average over a suffi-
ciently large number ( )P 162  of subrecords to 
keep the additional variance loss small. Use overlapping 
subrecords (66% overlap) to further reduce the variance.

»» Leakage errors 1: Even for large SNR levels, the FRF esti-
mate can still be poor due to leakage errors. Use the half-
sine (Diff) window in combination with averaging over 
subrecords to reduce the error. Keep the subrecords as 
long as possible, because the leakage errors (bias, vari-
ance) drop in / .N1 2  We note that leakage creates bias 
and variance errors.

»» Leakage errors 2: The authors strongly advise use of 
the methods in the next section, because these almost 
completely eliminate the leakage errors.

Improved Frequency Response  
Function Measurements Using Local 
Parametric Methods
Leakage errors were long considered to be random errors. 
Only recently did it become clear that there is plenty of 
structure in these errors [66], [67], [69]–[72], as discussed 
in “Models for Dynamic Systems: Finite-Length Effects,” 
leading to a new family of FRF methods [19], [20], [70], 
[73], [74]. These recently developed methods do not 
target a precise estimation of the cross and auto spec-
trum as the classical methods did, but focus directly on 
the estimation of the relation (S12), ( ) ( ) ( ) ( )Y k G k U k T kG= +  
between the DFT spectra. This almost completely eli
minates the leakage error, so that only the noise errors 
remain important. Estimation of ( )G k  considers a narrow 
frequency interval [ , ]B k n k n= - +  around the frequen
cy of interest k. In that interval, the parametric models 

/ , / ,G B A T I AG G G G= =  (S14) can be represented by low-
order approximations, so that at each frequency ,k  a 
reduced system identification problem is solved. These 
methods will be shown to have better leakage reduction 
at a higher computational cost, while the noise sensitiv-
ity remains very similar to the classical windowing meth-
ods of the previous section.

A short discussion and comparison of the properties of 
the three local parametric models will be given. The math-
ematical details, proofs, and more extensive comparisons 
are discussed in [20], [64], [75], and [76].

The use of a local parametric model conflicts with the 
concept of nonparametric methods. However, compared to 
a full parametric approach, identifying a local parametric 
model is much simpler and requires no user interaction. 
This is because the model order will be fixed, and the (non-
linear) optimization problem is easily solved due to the 
simple nature of the local approximation problem. More-
over, the number of local models to be identified grows with 
the number of data. For these reasons, the local parametric 
methods still belong to the class of nonparametric methods.

The Local System Identification Problem
A system identification problem is defined by three play-
ers: the data, the model, and the cost function. In this case 
the data are given by (7)

	 ,U k U k N kU0= +^ ^ ^h h h �

	 ,Y k Y k N kY0= +^ ^ ^h h h � (34)

in the interval [ , ].B k n k n= - +  The local parametric model 
that is valid in the interval B is

	 , , .Y k G k U k T kG G T0 0 Gi i= +^ ^ ^^h h hh � (35)

Both the transfer function and transient term in this model 
are estimated by minimizing the errors ( )E k  on the frequency 
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interval [ , ].B k n k n= - +  The width n2  of this interval is 
called the local bandwidth of the method

	 ,E k Y k G k U k T kG= - -^ ^ ^ ^ ^h h h h h � (36)

using a weighted least-squares cost function

	 V k W l E l
B

2
=^ ^ ^h h h/ � (37)

that is minimized with respect to Gi  and .TGi  For a suffi-
ciently small frequency interval ,B  the (co)variances of the 
noise ,NU  NY  can be assumed to be constant, so that these 
do not affect the optimal choice for the weighting ( )W l  in 
(37). Instead, the combined choice of the weighting and the 
model structure will be used to manipulate the complexity 
of the identification problem.

Iterative Local Rational Method 
( ) ,W l 1=  / , / .G B A T I AG G G G= =

This setting results in

	 .V k Y l
A l
B l

U l
A l
I l

ILRM
G

G

GB

2

= - -^ ^
^
^

^
^
^

h h
h
h

h
h
h

/ � (38)

The presence of the denominator ( )A lG  leads to a nonlinear 
optimization problem that should be solved iteratively, 
which is affordable nowadays.

Properties
From the three proposed methods, the iterative local ratio-
nal method (ILRM) seems to be the most natural choice. 
This method suffers from a higher noise sensitivity than 
the other two methods. If the order is not well tuned, excess 
poles and zeros can create very large narrow spikes due to 
very closely spaced poles and zeros. This can only be 
avoided by a dedicated model tuning at every frequency, 
which reduces the robustness of this method even more. 
These effects are illustrated in [75, Sec. 3.4].

Local Polynomial Method
( ) ,W l 1=  , .G B T IG G= =

The nonlinear optimization problem is turned into a 
linear least-squares problem by setting the denominator 
equal to one ( ) ,A l 1G =  which leads directly to the local 
polynomial method [19], [77],

	 .V k Y l B l U l I lLPM G
B

2
= - -^ ^ ^ ^ ^h h h h h/ � (39)

The minimizer of the cost function is found by solving a 
linear set of equations, hence no iterative procedure is 
needed any more.

The pole/zero cancellation problems of the ILRM method 
are completely eliminated by putting the denominator 
equal to one. This results in a local polynomial approxima-
tion of the transfer function G  and the transient .TG  This 

simplified approach turns out to be very attractive. Besides 
reducing the optimization problem to a linear one, it also 
makes the model selection problem less critical. The order 
R  of both polynomials, BG  and I, can be set equal to R 2=  
(or )R 4=  with good results. Under these conditions, the 
disturbing noise induced variance of the local polyno-
mial method (LPM) is 1.74 dB below that of the classical 
Hanning method if both methods are tuned to the same 
frequency resolution.

It is clear that the polynomials can only approximate a 
rational form in the finite frequency window .B  The 
approximation errors are studied in full detail in [64]. The 
main conclusion is that it is most efficient to choose R to be 
even. For that choice, the leakage error ELPM  is bounded by

	 / ,E O B B O NP ( )
LPM

R R
3

1 1
dB= =+ - +^^ ^^h h h h � (40)

with B3dB  the 3-dB bandwidth of the resonance under 
study. Compared to the windowing methods that had 
errors of ( ) ,O N 1-  a huge gain is made in the reduction of 
the leakage errors. From (40), it follows also that the local 
bandwidth n2  of the interval B  should be chosen as small 
as possible, that is, more than two times smaller than 

.B3dB  At the same time, it should contain enough frequen-
cies to estimate the ( )R2 1+  complex coefficients in the 
two polynomials, so that n R 1$ + . This leads for R 2=  
and n 3=  to at least seven frequencies in the interval B.

The last result can also be translated in the minimum 
record length that is needed [64]. Using the relations in “Char-
acterizing a Resonance by Its 3-dB Bandwidth,” / ,B B 23dB#  
and that / ( ) / ,B1 2n 3dBx g~= =  it is found that the frequency 
resolution of the measurement should be better than 

/ ( ),B R2 23dB +  and the record length

	 ( ) .T R 1meas $ rx+ � (41)

Local (Linear) Rational Method
( ) ( ) , / , / .W l A l G B A T I AG G G G

2
= = =

An alternative to linearize the cost function (38) is to put 
the weighting ( ) ( ) ,W l A lG

2
=  resulting in another linear 

least-squares problem [78], [79]

	 .V k A l Y l B l U l I lLRM G G
B

2
= - -^ ^ ^ ^ ^ ^h h h h h h/ � (42)

Properties
The LPM was the start of a new era in FRF measurements. 
It was the first method that was proposed and studied in 
full detail to remove the leakage errors almost completely. 
However, for systems with low damping (as often happens 
in advanced mechanical applications), it can be hard to 
meet the constraint that /B B 23dB#  or alternatively that 

( ) .T R 1meas $ rx+  In that case, the LRM approach [79] can 
still solve the problem because it still identifies a rational 
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model that can deal with these lowly damped poles. For 
R 2=  (a second-order model), the error of the LRM is 

(( / ) ),O B D 4  with D the shortest distance to the neighboring 
poles and zeros.

The LRM combines the advantages of the LPM (linear in 
the parameters) and the IRLM (a rational model). How-
ever, for low SNR of the input, a relative bias of ( / )O SY Y Y

2
0 0v  

appears [75]. This is not a real issue in most practical 
problems, and for that reason the authors advise the LRM 
method as the default choice among the discussed local 
parametric models.

General Remarks

History
The LPM was the first local parametric method proposed in 
the literature [19], [20], and a detailed discussion of its proper-
ties for SISO and MIMO can be found in [20] and [77]. In 2012, 
the LRM method [79] was proposed as an attractive alterna-
tive that can better deal with lowly damped systems as often 
appear in vibrating mechanical structures. The ILRM method 
is studied in detail in [75]. It is the most expensive method 
since an iterative algorithm is needed, and it will turn out to 
be most sensitive to noise among the three proposals.

Alternative Methods
Alternative parametric approaches are discussed in [76] 
and [80]. The first alternative results in a “global” method that 
links all frequencies to each other, leading to large sets of 
equations to be solved. The second method is a Bayesian 
approach that makes an intrinsic tradeoff between variance 
and bias (see “Bias and Variance Tradeoff of Estimators”). 
These aspects are discussed later in this article in more detail.

Automatic Tuning of the Local Bandwidth B
Reference [57] proposes an automatic local bandwidth 
tuning algorithm that starts from a local polynomial model. 
These ideas can be transferred to the local parametric 
methods. A first attempt to do so is presented in [81]. A 
lower root mean square (RMS) error can be obtained at a 
cost of additional calculations.

Missing Input and Output Data
If data are lost due to sensor failure, overloads, and/or data 
transmission errors, special actions are needed to address 
these errors. Instead of making new measurements, ad
vanced signal processing methods can be used. The missing 
data are then estimated together with the FRF and its vari-
ance. If the reference signal is available, missing data in the 
input and the output can be restored. If that is not the case, the 
methods assume that only output data are missing [82], [83].

Illustration of the Leakage Rejection of the Hanning, 
Local Polynomial, and Local Rational Methods
The classical window method (Hanning) and the local 
parametric methods LPM/LRM are illustrated on a system 
with two resonances using noise free data (no disturbing 
noise added), so that the effect of the leakage errors is 
clearly visible (see Figure 14 for more details). For the 
Hanning method in Figure 14(a), subrecords are used with 
a length of N 256=  (red) and N 1024=  (pink) samples, 
both with an overlap of / .R N2 3=  Observe that the errors 
of the Hanning method become very large, especially 
around the second resonance (30% or more for the short 
subrecord length). Using longer subrecords reduces this 
error, but at a cost of fewer averages (larger risks for spiky 
errors due to dips in the input spectrum ).SUU

t  In Figure 14(b), 
the results of the LPM (pink) and LRM (red) are shown. 
For both methods, the errors are an order of magni-
tude smaller than those of the Hanning method. Around 
the second resonance, the error of the LPM increases 
sharply, because the local bandwidth B becomes large with 
respect to the 3dB  bandwidth. The LRM method performs 
very well under these conditions.

User Guidelines: Classical Window Methods—Local 
Polynomial and Local Rational Methods

»» Random excitation: For measurements with a high 
SNR of the input measurements, the LPM/LRM pro-
vide results with a comparable quality as those 
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Figure 14  An illustration of frequency response function (FRF) 
measurements using the classical Hanning method and the local 
polynomial method (LPM) and local rational method (LRM) on 
undisturbed data. A system with a highly and a lowly damped res-
onance is excited with filtered white noise (bandwidth . f0 4 s ). The 
full record length is 4096 samples. The blue dots are the esti-
mated FRF, and the red and pink dots plot the errors. Part (a) 
shows the results for the Hanning method that is applied on sub-
records with a length of N 256=  (red) and N 1024=  (pink) sam-
ples, both with an overlap of / .NR 2 3=  In the inset of (a), a zoom 
around the second resonance is given. Part (b) shows the results 
for the LPM (pink) and LRM (red), applied to the full length record. 
The errors of the LPM and LRM are an order of magnitude smaller 
than those of the Hanning method. The LRM method outperforms 
the LPM method.
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obtained using periodic methods, outperforming the 
classical windowing methods.

»» Periodic excitation: For periodic excitations, the LPM/
LRM methodology allows the transients to be removed, 
so that there is no need to wait for the steady-state 
regime. This can result in a significant reduction of the 
measurement time [84].

»» Noise analysis: High-quality noise power spectra esti-
mates are obtained using the LPM/LRM if the input 
SNR is high. For measurements with comparable 
SNR at the input and output, it is also possible to make a 
full noise analysis resulting in high-quality (co)variance 
estimates (as a function of the frequency) of the input/
output noise, provided that a good noise-free reference 
signal is available. If that is not the case, periodic excita-
tions can be a solution to obtain good estimates (see the 
section “Stochastic Analysis of Periodic Excitations”).

»» Leakage errors: The LPM/LRM methods almost com-
pletely remove the leakage errors. For this reason, these 
methods are advised as the default choice for FRF mea-
surements whenever random noise excitations are 
used. There is no reason to continue to use the classical 
windowing methods, except for very special cases 
where the memory of the processor would be very 
limited. The default setting to obtain a maximum 
leakage rejection and a minimal bias error is to choose 
the local bandwidth B in (37) as small as possible for a 
fixed degree (no user interaction is needed).

»» Disturbing noise sensitivity: With the default set-
tings (local bandwidth as small as possible), the 
noise sensitivity of the classical windowing meth-
ods and the LPM/LRM is comparable. For smooth 
systems, the local bandwidth can be increased 
without creating bias errors that are too large (this is 
an advanced form of smoothing over the neighbor-
ing frequencies). If needed, this gives an additional 
handle to the user to reduce the variance of the 
results [57].

»» Calculation time: The calculation demands in real-time 
applications can be strongly reduced by completing 
the majority of the calculations before the measure-
ments are done. An example of a real-time implemen-
tation on a microprocessor is discussed in [84].

Measuring the Power Spectrum of the 
Disturbing Noise on the Output
The major problem in measuring the spectral properties of 
the disturbing noise is the separation of the true signals ,U0  

Y0  and the noise ,NU  .NY  A first possibility is to use peri-
odic signals, as discussed in the section “Stochastic Analy-
sis of Periodic Excitations.” A full nonparametric analysis 
of the (co)variance of the input and output noise could be 
made, without any interaction from the user [16], [47].

If the periodicity assumption does not hold, then an 
alternative approach is needed. In that case, the noise is sepa-
rated from the signal using the estimated FRF, assuming that 
the input measurement is noise free. This can be generalized 
to noisy input and output measurements if an exactly known 
reference signal is available (for example, the signal in the 
memory of the generator) using the indirect method or the 
joint input–output method [85]–[87]. In that case, the SISO 
problem (from the input u to the output )y  is replaced by a 
MIMO problem (from the reference r  to the input u and the 
output ),y  and eventually it is still possible to obtain the (co)
variance of the input-output noise. Motivated by the previous 
discussion, it is assumed in this section that the input is 
exactly known, while the output is disturbed by noise.

Assumption 5
No disturbing input noise

	 ,U k U k0=^ ^h h �
	 .Y k Y k N kY0= +^ ^ ^h h h � (43)

Under these assumptions, only the variance ( )kY
2v  needs 

to be measured. This is done simultaneously with the FRF 
measurement. The classical windowing methods start from 
the measured coherence, while the new local parametric 
methods start from the residue analysis.

Coherence-Based Spectral Noise Analysis
Under Assumption 5, an estimate of the variance is ob
tained by [4]

	 ( ) .k S k
S k
S k

S k k1Y YY
UU

YU
YY

2
2

2v c= - = -t
t

t
t^

^

^
^ ^ ^h

h

h
h hh � (44)

The cross and auto spectra are estimated using the previous 
windowing methods, and the errors on the power spectrum 
estimate of the noise will be set by the leakage errors of 

,S SUU YY
t t  [62], which are of ( )O N 2-  for the Hanning window.

Spectral Noise Analysis Using the Local  
Parametric Methods
The system description (S12) can be extended by a paramet-
ric noise model

The LRM combines the advantages of the LPM (linear in the parameters)  

and the IRLM (a rational model).
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	 ,Y k G k U k T k N kG Y= + +^ ^ ^ ^ ^h h h h h �
	 .G k U k T k H k E k T kG H= + + +^ ^ ^ ^ ^ ^h h h h h h � (45)

The output noise is modeled as a filtered white noise source 
with power spectrum ( )H ke

2 2
v  and a transient term ( )T kH  

that models the leakage effects of the noise-shaping system 
,H  completely similar to the role of ( )T kG  for the plant 

model. In practice, both transients ( ), ( )T k T kG H  are added 
together in the local parametric methods. The power 
spectrum ( )H ke

2 2
v  is directly estimated as the mean 

square value of the residuals in the local frequency band B 
(see the previous section) [19], [77], corrected for the degrees 
of freedom in the least square problem that define the 
ILRM, LPM, and the RLM. Since these residuals are no 
longer disturbed by the leakage effect, they have a much 
higher quality than those directly obtained using the 
coherence method (44). In this case, the errors on ( )kY

2v  are 
of the same order of magnitude as those of the correspond-
ing local parametric method.

Spectral Noise Analysis: An Example
The output of a lowly damped, second-order system is dis-
turbed by filtered white noise. To visualize all the important 
aspects, the noise filter was chosen with a resonance and an 
antiresonance. The results are shown in Figure 15 for the 
LPM and the coherence method using a Hanning window. 
Since the spectral resolution is quite high (many frequen-

cies in the 3-dB bandwidth), the results with the LRM would 
be very similar. We note that the frequency resolution for 
the LPM method is 16 times higher than that of the coher-
ence method. A smoother estimate can be obtained by aver-
aging the results over neighboring frequencies in a sliding 
window.

Time-Domain Approach
This section studies the direct measurement of the IR. In a 
second step, it is possible to obtain the FRF by calculating 
the FFT of the estimated IR. The frequency resolution can 
be increased by increasing the length of the time record 
using zero padding. The discussion herein assumes that 
the input measurement is not disturbed by noise (Assump-
tion 5). The estimation of the IR function in the time domain 
is studied within a DT setting

	 .y t g t u t g k u t k g t k u k)= = - = -^^ ^ ^ ^ ^ ^hh h h h h h/ / � (46)

This restriction does not limit the generality of the discus-
sion and the proposed methods, provided that either a 
ZOH input is used, or that the sampling frequency fs  is 
chosen high enough with respect to the bandwidth of the 
system, as was discussed in the section “Measurement 
Setup.” Without loss of generality, the discussion is res
tricted to causal systems. The generalization to noncausal 
systems is straightforward.

Real-life systems have mostly an infinitely long IR 
t hat  will be approximated by f inite-length models 

( ), , , , ,g t t n0 1 2 f=u

	 .y t g k u t k
k

n

0
= -

=

u u ^^ ^hh h/ � (47)

In contrast to the FRF models, the model length n   needs to 
be specified. This seemingly increases the complexity of 
this approach (compared to the FRF methods), but in the 
latter case the frequency resolution f0  needs to be well 
selected with respect to the system dynamics, as explained 
in “Link Between the Data Length and the Frequency Reso-
lution of the Frequency Response Function Estimate,” lead-
ing to a very similar problem.

In general, it is not possible to estimate the individual 
entries ( )g t  in (47) independently from each other; all pa
rameters are estimated at once. The IR estimation methods 
are global nonparametric methods. It is shown below that 
for some special choices of the input signal, the problem can 
be reduced to a local nonparametric problem, where each 
entry ( )g tu  is estimated individually.

IR Estimation, a Linear Least-Squares Problem
The underlying idea of all the methods discussed below is 
to solve the overdetermined set of equation [22]
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Figure 15  The estimation of the output noise variance Y
2v  using 

the coherence method with (a) a Hanning window and (b) the local 
polynomial method (LPM). A data record with a total length of 
256 16#  is split into 16 subrecords for the coherence method, 
while it is processed as one long record for the LPM approach. 
The true value of the power spectrum is plotted in red. The blue 
dots show the estimated frequency response function, and the 
pink dots show the estimated power spectrum. For the coherence 
method, the system dynamics are visible in the estimated power 
spectrum due to the poor separation of the system dynamics and 
the disturbing output noise. Moreover, the antiresonance is com-
pletely lost. This is not the case for the LPM method where the true 
noise spectrum is well followed by the estimates.
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	 ,y Kg= u � (48)

with 

( ))n, ( ( ), ( ), ,g g g g0 1 f=( ))N 1- T( ), ,n y1 f+( ( ),y y n y T= u  
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by minimizing the following least-squares cost function 
with respect to ( ), , , , ,g k k n0 1 2 f=

	 ,V y t y t
t n

N
2= -

=

u^ ^ ^h hh/ �

	 .y t g t u t k
k

n

t n

N

0

2

= - -
==

u^ ^c ^h h hm// � (50)

The sum (50) starts at t n=  to avoid unknown past values 
of the input that appear in (48). Alternatively, the unknown 
past values could be estimated too, but that would double 
the number of unknown parameters. Moreover, the prod-
uct of the unknown parameters ( ) )g k ut 0# 1u  would turn the 
linear least-squares problem into a nonlinear one, and iter-
ative methods would be needed to solve it. These choices 
are the time-domain equivalent of the leakage handling in 
the frequency-domain solutions.

No weighting function is added to the cost function, 
mainly because this would require prior noise information 
that is not available.

The minimizer of the cost function V (50) is obtained by 
solving [22]

	 ,K Kg K yT T=u � (51)
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and
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or

	 ,R g Ruu yu=t u t � (54)

with

	 ,R N n K K1 R( ) ( )
uu

T n n1 1!=
-

#+ +t �

	 .R N n K y1 R( )
yu

T n 1 1!=
-

#+t � (55)

The size of the normal equations (54) is significantly smaller 
than the size of the original set (48) .K R( ) ( )N n n 1! #- +  More-
over, the matrices can be directly obtained from the sample 
estimates of the auto and cross-correlation, without any 
need to form the large matrix ,K  for example,

	 ( ) .R N n y k u k1
yu

k n

N

x x=
-

-
=

t ^ ^h h/ � (56)

The solution of (54) will be discussed for different choices 
of the excitation signal. The latter choice strongly influ-
ences the complexity of the solution.

Remark 3
Instead of using delayed inputs, corresponding to z k-  as basis 
functions in the z-domain, it can be advantageous to use 

Link Between the Data Length and the 
Frequency Resolution of the Frequency 
Response Function Estimate

T he frequency resolution fd  of a frequency response 

function measurement is directly linked to the length of 

the subrecords Nsub

	 / / / ,f N Pf N P Tf s ssub measd = = = � (S21)

with P the number of subrecords, / ,N N Psub =  fs  the sam-

ple frequency, and Tmeas  the total measurement time. The 

choice of P  is a user choice set by the balance between the 

required frequency resolution and the total measurement 

time. A higher value of P  allows for more averages and a 

lower standard deviation at the cost of a reduced frequency 

resolution for a given measurement time. (See Figure S12.)

u (t )

u [1] u [2] u [p]

Figure S12  Splitting a long data record into P  shorter subre-
cords reduces the original record length N  to a subrecord 
length / .N P  The corresponding frequency resolution drops 
from /f Ns  to / .f P Ns
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more advanced basis functions. A first possibility is to use 
Laguerre functions [88]. It is possible to inject more knowl-
edge (if the user has some prior idea about the pole locations 
of the system) using generalized orthogonal functions [89]. 
The major advantage of these methods is the reduction of the 
number of unknown parameters to be estimated, which 
results in a reduced uncertainty. Of course, it remains a major 
challenge to obtain valuable prior knowledge.

Impulse Response Estimation  
Using Impulse Excitations
For a long time, impulse (or step) excitations were the only 
practical possibility to create a wideband excitation. At the 
same time, (54) is significantly simplified. For a perfect 
impulse excitation,

	 ,u t tuv d=^ ^h h � (57)

and

	 .Ruu u
2x v d x=^ ^h h � (58)

K KT  simplifies to
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and the normal equations (54) reduce to

	 , , , , ,g R y y y y n0 1 2u yu
T2 fv = =u t ^ ^ ^ ^ ^h h h hh � (60)

which give direct access to the IR gu  in the measured output. 
This approach was very popular prior to 1970 because no 

computers were needed. A paper recorder, combined with 
an impulse excitation, was enough to obtain a direct mea-
surement of the IR.

Modern Use of Impulse Excitations
Although the computational restrictions are completely 
removed today, the IR excitation is still popular in some 
application fields.

Mechanical Engineering
Mechanical engineers use special-instrumented hammer 
kits [18], [90]. The setup is struck by the hammer, and the IR 
is again directly measured (Figure 16). The major advan-
tage (and the reason that it is still used) is that no compli-
cated actuator connections need to be realized, and the 
excitation can be easily moved around the whole structure 
in a few minutes. The instrumented hammer kits also mea-
sure the actual applied force to compensate for variations 
in the excitation level. The duration of the pulse that sets 
the bandwidth of the excitation is controlled by a proper 
choice of the hammer tip [18].

Dynamic Calibration
During the development of primary standards for dynamic 
calibration problems, it is not possible to measure the input 
signal. Special setups have been built to create short impulses 
with controlled properties [91]–[94]. The main issue is to keep 
the duration of the impulse short enough, compared to the 
time constant of the sensor that needs to be calibrated.

Biomedicine
In the mathematical modeling of biomedical systems, the 
choice of input is usually very restricted, particularly when 
the subject is a human being. A single rapidly administer
ed dose (administered either intravenously or orally) is the 
most commonly used form. It is then assumed that the 
duration of the administration is rapid compared with the 
kinetics of the subject, so that the input can be approxi-
mated by ( ),Q td  where ( )td  is a delta function [95], [96]. For 
intravenous input, this form of input is usually referred to 
as a bolus dose. The only other form of input commonly 
used in such applications is a constant continuous infusion 
such as a step input [95], [96]. The unit step response is then 
the integral of the unit IR.

Averaging of Impulse Measurements
The direct IR measurement method works well only for 
measurements with high SNR because there is no averag-
ing in the simple procedure. Increasing the impulse level is 
often impossible for practical reasons. Under low SNR 
measurement conditions, the results can be averaged over 
repeated experiments, but then it is extremely important to 
align the successive measurements using a good trigger 
signal or advanced signal processing methods to avoid 
smearing effects in the averaging procedure [97].

Figure 16  Hammer excitation in a mechanical vibration analysis 
in the vibration labs of Siemens Industry Software Leuven, Bel-
gium. A force transducer is placed in the tip of the hammer that 
allows the impact force to be measured. Accelerometers are 
mounted on the mechanical structure to measure the response of 
the system. (Used with permission from Siemens.)
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Remark 4
It sometimes may be easier to measure the step response, 
which is the integral of the IR [98].

Impulse Response Estimation  
Using White Noise Excitation
Not only do impulse excitations result in an impulse-like 
autocorrelation, but all wideband excitations with a flat 
amplitude spectrum have a similar behavior. For that reason, 
white noise excitations became a popular alternative for the 
impulse excitation.

Random White Noise Excitation
For simplicity, only white random noise is considered 
here. The actual distribution (for example, Gaussian 
noise or uniform noise) is not important from a theoreti-
cal point of view because the autocorrelation depends 
only on the second-order properties. In practice, the dis-
tribution will set the peak value of the excitation for a 
given power. It is very desirable to keep this value as low 
as possible to not overload the system and improve the 
SNR. In that case,

	 ,limR E R
N

uu uu u
2x x v d x= =

"3

t t^ ^ ^h h h" , � (61)

and the same expressions as in the previous section are 
retrieved. However, the major difference with respect to 
the impulse excitation is that the system is persistently 
excited during the whole experiment. The variance on the 
estimate will drop as ( / ),O N1  so that even under low SNR 
conditions, good measurements can be obtained.

For finite-length records, the autocorrelation does not 
reach its expected value. It is a random variable of its own 
and eventually

	 ( ) ( )R R O
N
1

uu uux x= + ,t c m � (62)

leading to errors in the estimated IR of the same order 
of magnitude. These can be eliminated by solving the 
original normal equations (54) at a loss of the simplicity. 
Nevertheless, it is still advantageous to use white noise 
excitations because these are the optimal excitation sig-
nals from the disturbing noise rejection point of view 
(see the section “Variance Analysis of the Frequency 
Response Function Measurements in the Presence of 
Disturbing Noise”).

The cross-correlation is currently calculated using di
gital computers. These were previously unavailable, and 
analog correlators were built using tape recorders to delay 
the signals [99], [100] (see “Historical Note on Frequency 
Response Function and Impulse Response Measurements”).

Well-Designed Deterministic Signals
The finite-length effects discussed in the previous section 
are further reduced by replacing the random excitation by 

a well-designed period excitation. Periodic signals have a 
periodic autocorrelation function. This creates no problem 
as long as the period length is longer than the useful length 
of the IR, for example five or ten times the dominating time 
constant of the system (see “Truncation Error of Finite 
Impulse Response Models”).

A standard choice within this class of signals is well-
designed binary signals [27], [28], [101], among others, the 
maximum length binary signals (see “Design of Excita-
tion Signals”) that could be generated using dedicated 
hardware, as shown in Figure S2. These signals combine 
many advantages:

»» Removal of random finite length effects: The autocorrela-
tion function is (see “Design of Excitation Signals”)

	 ( ) ( ) .R R O N
1

uu uux x= +t ` j � (63)

	 The error term ( / )NO 1  converges much faster to zero 
for an increasing data length N  than the ( / )O N1  
term in (62) for white noise excitations. To fully 
retrieve these advantages, the clock frequency fc  
should be 2.5 times larger than the highest frequency 
of interest.

»» Binary correlation: Because the excitation signal is either 
1 or −1, a binary correlator can be used. If only limited 
computer power is available (or in time-critical appli-
cations), this is a significant advantage.

»» Periodic signal: All the advantages of periodic signals 
discussed in the section “Frequency Response Func-
tion Measurements Using Periodic Excitation” are also 
retrieved here, including simple averaging procedures 
and direct access to the noise power spectrum.

A disadvantage of the maximum length binary sequence 
(MLBS) (and the related sequences) is the high sensitivity to 
nonlinear distortions compared to randomized excitations 
like random noise or random phase multisines [16]. These 
create large spikes in the estimated IR [102]. Averaging over 
multiple realizations of the MLBS in combination with a 
median filter can largely remove these spikes [102], but this 
requires much longer measurement times. Another alter-
native is to use randomized periodic ternary signals that 
do not excite the multiples of the second and third har-
monic [103].

The advantages of correlation methods combined with 
PRBS excitations was previously recognized [14] and applied 
to industrial processes like gas chromatography [26], nuclear 
power plants [104], and oil refineries [105].

Impulse Response Estimation  
Using Arbitrary Excitations
The direct IR estimation method (54) can be combined with 
arbitrary excitations. Calculating the solution of (54) can be 
sped up by exploiting the underlying Toeplitz nature of the 
matrices [106].
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Variance Analysis of the  
Direct Impulse Response Method
The covariance matrix Cg  is directly available for the linear 
least-squares problem

	 ( ) ( ) .C K K K C K K Kg
T T

n
T1 1

y= - - � (64)

Asymptotic Frequency-Domain Expression
An asymptotic frequency-domain interpretation for the 
model order n " 3  of this result can be made [21]
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The subscript IR indicates that this result is obtained 
via the IR estimate. Equation (65) shows that the length 
of the estimated IR should be well balanced: as small as 
possible to reduce the variance, but long enough to 
keep the systematic errors (bias) small. From (65), it fol-
lows also that the standard deviation GIRv  drops again 
as .O N1^ h

Remark 5
More general variance expressions for (65) exist that are 
valid for finite-model orders [107]. The simple expression 
(65) will be further used because it will lead later to a very 
user-friendly rule of thumb.

Historical Note on Frequency Response Function and Impulse Response Measurements

Before the 1950s and 1960s, it was not possible to estimate 

the frequency response function (FRF) or impulse response 

(IR) from experimental data obtained during the normal opera-

tion of a system. Specific experiments were made to measure 

directly the IR or the FRF of the system. The IR was obtained 

using an impulse, while sine excitations were used to measure 

the FRF at a given frequency [37]. The main reason to use these 

simple methods was the lack of analog-to-digital converters, so 

that all calculations needed to be done with analog circuits or 

computers. The latter were very tedious to use, due to satura-

tion and drift problems. In a more advanced setting for mechan-

ical vibration measurements, a swept sine excitation was used 

in combination with a tracking filter tuned at the instantaneous 

sine frequency. The filter reduces (nonlinear) disturbances and 

noise [18]. In the late 1950s and the start of the 1960s, analog 

correlators were built to measure the IR using wideband ran-

dom excitations [99], generalizing the possibilities of sine corre-

lators [100]. These results were significantly improved by using 

pseudorandom binary sequence (PRBS) generators (see Fig-

ure S2). These were simple to build, including the generation 

of arbitrarily delayed copies, using the electronic components 

that were available at that time. In combination with the analog 

correlators, it became possible to obtain strongly improved IR 

estimates in a shorter time.

A shift toward digital signal processing was eventually 

made, and the analog correlators were replaced by digital sig-

nal processing algorithms. Much time and effort was spent edu-

cating the engineering community to understand the required 

signal theory, in particular correlation methods. Although the 

Fourier transform was known among radio engineers [39], it 

was not until the 1960s that it became a practical engineer-

ing tool. The fast Fourier transform (FFT) was first published 

in 1965 [60] (see also [41] and [42]), the same time that digital 

computers became widely available. This was the start of a new 

era in FRF measurements, using spectral estimation methods 

that were efficiently implemented to minimize the size of the 

required core memory of the computer [1]. The cost to calculate 

a 210-point Fourier transform dropped from a few dollars to hun-

dredths of a cent, while the calculation time was reduced from 

several minutes to tens of milliseconds [42]. This was the start 

of digital signal processing. These methods became the domi-

nant approach in most fields, and they are still the standard 

tools that are implemented in today’s commercial equipment 

[3], [4], [18]. A renewed interest in developing more advanced 

FRF and IR has recently been experienced. These new activi-

ties make maximum use of the greatly increased computing 

power, which allowed for a shift toward methods that no longer 

suffer from leakage and are less sensitive to disturbing noise.

To give a better idea of the problems that were faced at that 

time, the measurement of the FRF using a sine excitation and 

the measurement of the IR using PRBS signals and analog cor-

relators are discussed in more detail.

Measuring the Frequency Response  

Function Using Sine Excitations

This section is based on the methods reported in [37] and [40]. 

Detailed information on the historical methods can be found in 

[40]. Under steady-state conditions, the output of a linear dy-

namic system excited by ( ) ( )sinu t A ft2r z= +  is

	 ( ) ( ) ( ( )) .sinzy t A G f ft G f2 +r z= + + � (S22)

Graphical Method

The input and output are recorded on a plotter. Using visual 

inspection, the amplitude ( )G f  is obtained as the ratio of the 

measured amplitudes, while the phase is estimated from the 

phase difference of both signals. These methods can be re-

fined using Lissajous plots [37]. For poor signal-to-noise ratio 

(SNR), the results become very noise sensitive. For that rea-

son, correlation methods were developed that allow the signals 

to be averaged over time to improve the SNR.
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Comparison with the Spectral Analysis Methods
In (28), the variance on the FRF ( )G k  obtained with the 
spectral methods is given. In the absence of input noise 
( , ),0 0U YUv v= =  this expression simplifies to
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The subscript FRF indicates that this result is obtained 
via a direct FRF measurement. The length of the subre-
cords is / .N N Psub =  The additional gain for overlapping 
subrecords (up to a factor two) can be added to (66). The 
additional loss [up to a factor of 42  (see Figure 13)] is not 

considered for simplicity, and the leakage-induced vari-
ance is also disregarded.

From (65) and (66), it follows that
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with /N N Psub =  the length of a subrecord in the spectral 
analysis method and n the length of the estimated IR.

This result is very revealing because it compares the FRF 
and the IR-based methods, starting from their experiment 
design parameters. The choice of Nsub  and n is directly 

Correlation Method

Two analog correlation methods were used to measure the 

FRF at a given frequency. The first correlation technique, called 

quadrature components method [37], makes a double correla-

tion with the sin and .cos  This implementation typically requires 

a correlation time equal to five times the dominant time con-

stant of the system [40]. The second correlation method, called 

the phase null method, aligns the correlation signal first with 

the output signal (phase null) by manually tuning a potentiom-

eter meter, then beginning a two-step correlation. This method 

requires more time but results in more precise measurements.

Today, sine-based network analyzers are still popular in the 

microwave field, partly because it is still very expensive to gen-

erate arbitrary signals at very high frequencies (today, this is 

above 20–30 GHz), and the SNR is much higher because nar-

row band filters can be applied.

Measuring the impulse response using 

pseudorandom binary sequence signals and 

dedicated generation/correlation hardware

Measuring the FRF using sine excitations is very time consum-

ing, especially at low frequencies and for systems with long 

time constants. Only one frequency is probed at a time, and 

after each frequency change, the system should reach steady-

state conditions before the next measurement can be made. 

Using white noise excitations, all dynamics of the system are 

excited at once, but correlation methods are needed to retrieve 

the IR from these measurements. In practice, the random white 

noise excitation is replaced by a PRBS signal (see “Design of 

Excitation Signals”) that has a deterministic and almost flat am-

plitude spectrum. Special hardware was developed [13], and 

combinations of PRBS generators and analog correlators (as 

shown in Figure S13) were commercialized [38], [99]. A few 

years later, when FFT’s could be implemented on microproces-

sors, dedicated displays were built that could show the FRF on 

their screen in amplitude and phase [43]. This became the first 

generation of dynamic signal analyzers, which were replaced 

in the mid-1970s by single-box instruments that were based 

on spectral analysis methods (see the section “FRF Measure-

ments Using Random Excitations”) [58], [59].

(a)

(b)

Figure S13  The combination of a (a) pseudorandom binary 
signal generator and (b) correlator from the 1960s. Besides 
the original signal ( ),u t  a copy with a user adjustable delay 

( )u t x-  was also generated. This allowed the correlation 
( ) ( )y t u t x-  to be measured using the analog correlator in (b), 

giving a direct measurement of the impulse response. In the 
early 1970s, the fast Fourier transform of the impulse response 
was calculated and shown on a “Spectrum Display” The com-
bination of the generator, correlator, and spectral display 
resulted in the first dedicated frequency response function 
measurement setups [38], [43], [99]. (Courtesy of Kenneth 
Kuhn, http://www.hpmemoryproject.org.)
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linked to practical user choices. Using the results in “Link 
Between the Data Length and the Frequency Resolution of 
the Frequency Response Function Estimate,” the following 
remarks can be made.

Choice of n
The length of the estimated IR should be long enough such 
that the truncation bias is small, as discussed in “Truncation 
Error of Finite Impulse Response Models.” The relative 
mean-squared error (MSE) due to the truncation-induced 
model errors is .e /n2 x-  Truncating the IR at n  equals 

, ,2 5 7x x x  results, respectively, in an RMS error below 10%, 
1%, and 0.1%.

Selecting the Subrecord Length :Nsub

The frequency resolution of the spectral method is / .N1f sub9 =  
In “Characterizing a Resonance by Its 3-dB Bandwidth,” it 
is explained that the required resolution depends on the 
3-dB bandwidth of the system. This is /B 13dB rx=  for a 
resonating system. Hence, the relative frequency resolution 
of GFRF  is / / ,B N2f 3dB sub9 x=  and the number of measured 
frequencies in the 3-dB band is

	 .F N
3dB

sub

rx
= � (68)

Substituting both results in (67), shows that for the 1% error 
level ( ),n 5x=  the following ratios hold
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It is concluded that for a very low frequency resolution 
(four frequencies in the 3-dB bandwidth) and 1% RMS bias 
error, both the GFRF  and GIR  require about the same experi-
ment length. For more noisy data (higher errors can be toler-
ated, and so n can be reduced to 2x ) or for higher-frequency 
resolutions, the IR approach becomes more attractive if the 
calculation time and the size of the computer memory are 
not an issue.

Variance Reduction by Combining Data and  
Prior Knowledge: Regularization
The linear least-squares estimate (54) is the maximum like-
lihood estimate for white Gaussian disturbing noise .ny  
Under these conditions (and noting the problem is linear-in-
the-parameters), it is well known that this estimator reaches 
the Cramer–Rao lower bound [16], [21], [22], even for finite 
sample lengths. It is impossible to find another unbiased 
estimator that will have a smaller uncertainty (covariance 
matrix) [16], [21], [22]. However, it is also well known that the 
variance can be further reduced by allowing a (small) bias 
[15] (see “Bias and Variance Tradeoff of Estimators”). This 
observation is at the start of the regularization methods [15]. 
The cost function (50) is extended with an additional regu-
larization term g P gT 1c -u u

	 ,V y t y t g P gT

t n

N
2 1c= - + -

=

u u u^ ^ ^h hh/ �

	 .y t g k u t k g P g
k

n
T

t n

N
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2
1c= - - +

=
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=

u u u^ ^c ^h h hm// � (70)

The regularization term pulls the estimates toward zero, 
resulting in a reduced output variance at a cost of an 
increasing bias .b  For some value of ,c  the mean squared 
error b 2 2v+  will reach a minimum, as shown in Figure S7. 
From practical experience, a large variance reduction can be 
obtained for a small increase in the bias.

The success of this approach strongly depends on a 
proper choice of the regularization matrix .P  This choice can 
be guided by putting the regularized cost function (70) in a 
Bayesian framework. A comprehensive introduction to this 
approach is given in [15]. The Bayesian framework allows the 
regularization matrix P  to be connected to the prior knowl-
edge of the user. For the IR estimation problem, very valu-
able prior information is stability and smoothness, both of 
which are discussed below.

Truncation Error of Finite Impulse 
Response Models

Most physical stable systems have an impulse response 

(IR) that decays exponentially to zero. In theory, such 

an impulse response is infinitely long. In practice, it can be 

arbitrarily well approximated by a finite impulse response 

(FIR) model. This is very attractive from a modeling point of 

view. The length of the FIR that is needed to keep the trun-

cation error below a given level can be normalized on the 

time constant of the system. For a first-order system with 

an IR ( )g t e /ta= x-  excited by white noise and truncated at 

time ,T  the relative root mean square truncation error is 

.e e /T
RMS =

x-  This error is shown in Figure S14 as a function 

of the truncation time. Truncating the impulse response at 

T equal to , ,2 5 7andx x x  results respectively in a relative 

RMS error below 10, 1, and 0.1%.
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Figure S14  The relative root mean square (RMS) error in
duced by truncating the impulse response of a first-order 
system with time constant .x
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»» Stability: If it is known that the unknown system is 
stable, it follows that the impulse response should 
decay exponentially to zero for lumped systems [108].

»» Smoothness: Most IRs of physical systems have an 
intrinsic smoothness. This can be expressed by re
quiring that neighboring points are correlated to 
each other.

Both aspects can be translated in a proper choice of the 
regularization matrix .P  A standard choice is the tuned or 
correlated kernel

	 .P ,
( , )max

k j
k jma= � (71)

The hyperparameters ,a m  are tuned on the data [15]. In 
[109], it is shown that this regularization can be interpreted 

Frequency Response Function Measurements for MIMO Systems
ll the results for single-input, single-output (SISO) fre-

quency response function (FRF) measurements also 

hold for the measurement of the multiple-input, multiple-

output (MIMO) frequency response matrix (FRM) at each 

frequency k

	 ( ) ,kG Cn ny u! # � (S23)

with nu  and ny  the number of inputs and output of the system. 

The major change with respect to the SISO setup is the need 

to separate the effect of the multiple inputs on a given output. 

The number of outputs does not add to the complexity of the 

problem. Consider, without loss of generality, a system with 

n 3u =  inputs and n 1y =  output

	 ( ) ( ) ( ) ( )
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= ^ fh p � (S24)

The FRM (S24) cannot be identified from one experiment un-

less constraints are imposed on either the excitation signals 

, ,U U U1 2 3  or the smoothness of the system. For uncorrelat-

ed inputs, it is possible to consider two unmeasured inputs 

as a disturbance, but this will increase the uncertainty [4]. 

Alternatively, three or more experiments can be combined 

to resolve the problem. Each of these options is briefly dis-

cussed below.

Frequency response matrix measurements 

using a single experiment

Zippered Multisines

A first possibility to separate the different input channels 

would be to excite one input at a time. This results in a drop 

of the signal-to-noise ratio because the other inputs are set 

to zero. An alternative implementation of this idea is to real-

ize the separation in the frequency domain by assigning each 

excitation frequency to only one input. This leads to zippered 

multisines. The pth input up  is exciting only the frequencies  

,k p n nu)= +  with .n N!  This choice decouples the inputs 

in (S24) over the frequency, and at the selected frequencies 

the SISO methods can be applied. The cost is a reduction of 

the frequency resolution with a factor .nu  The method also 

requires complete control over the excitation signal; input dis-

tortions that disturb the zeros in the spectra also destroy the 

decoupling properties [5].

Local Parametric Methods

Using the local parametric methods (generalized to MIMO sys-

tems) is an alternative to separate the different inputs [20], [77]. 

If the input is sufficiently rich (for example, random phases), the 

local parameterized models can still be identified from a single 

experiment by combining the neighboring frequencies in one set 

of equations. This is a very attractive and robust alternative to the 

other approaches that are discussed in this sidebar. The prop-

erties of this approach remain the same as those discussed in 

the section “Improved Frequency Response Function Measure-

ments Using Local Parametric Methods.” A detailed analysis is 

made in [20]. The more inputs that are considered, the larger the 

local bandwidth B that is used in the local parametric methods.

Frequency response matrix measurements 

using multiple experiments

In this approach, n ne u$  experiments are made, and the spec-

tra of the input and output at a given frequency k  are stored 

as the columns of the matrices U Cn nu c! #  and .Y Cn ny u! #  The 

FRM at frequency k  is then retrieved as the least-squares 

solution [6]

	 ( ) .YU U UG H H 1= -t � (S25)

The condition number Ul  of ( )U UH  has a direct impact on the 

covariance matrix of ,Gt  which grows rapidly with the number 

of inputs nu  [6]. For (white) noise excitations, the conditioning 

can be improved by collecting more experiments ,ne  but this 

comes at a cost of an increased measurement time. For that 

reason, alternative experimental procedures were proposed. 

The first group works for n 2u
n=  and is based on the use 

of repeated inputs with well-selected sign switches that are 

generated using Hadamard matrices [7], [8]. These results 

were further generalized to an arbitrary number of inputs 

[6]. Alternatively, well-designed binary signals can be used 

[9]. All of these methods result in a condition number ,1Ul =  

which leads to very strong reductions of the uncertainty for 

systems with a large number of inputs. For example, the stan-

dard deviation is reduced by a factor of ten for a system with 

ten inputs.

A
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as a restriction on the variability of the low-pass filtered IR  
that is forced exponentially to zero.

This simple idea is very powerful. The additional informa-
tion that is added by the prior knowledge of the data is very 
significant, and it results in a strong reduction of the uncer-
tainty of the simulated system output at a cost of a (small) bias 
on the estimated IR. Overall, the MSE on the output is mini-
mized by these methods. However, this bias is focused at the 
(dominant) resonance, as shown in Figure 17, leading to an 
underestimation of the damping at those resonances. This is 
unacceptable in applications where a precise damping esti-
mate is an important design input. This conflicting observa-
tion is mainly due to the different objective of regularization 
methods (the objective is to minimize the MSE of the modeled 
system output) and FRF measurements (the objective is a reli-
able FRF measurement at all frequencies of interest).

Comparison of the Hanning, Least-Squares,  
and Regularized Least-Squares Method
This section estimates the FRF using the Hanning method 
with an overlap of 2/3, and the results are compared with 
the FRF obtained from the estimated IR using the least-
squares and the regularized least-squares.

Simulation 1: A Resonating System
The system is excited with filtered white noise up to . .f0 4 s  
The output is disturbed with white noise so that the global 
SNR is 6 dB (noise power at 25% of the signal power at the 
output). The RMS error is obtained from 200 repeated  

simulations. The results are shown and discussed in Fig-
ure 17. From these results, it follows that the nonregular-
ized least-squares (LS) gives the best in-band results if no 
(local) bias is tolerated around the dominant resonance fre-
quency. If that is no problem, the regularized least-squares 
is the best. The errors grow very fast at high frequencies 
because the excitation power drops to zero, resulting in a 
very low SNR of the measurements. In this band, the regu-
larized method reduces the error by 20 dB or more.

Simulation 2: A First-Order System with Delay
The system is excited with filtered white noise up to . .f0 4 s  
The output is disturbed with white noise so that the SNR in 
the passband of the system is 10 dB. The RMS error is obtained 
from 1000 repeated simulations. The results are shown and 
discussed in Figure 18. From these results, it follows that the 
regularized LS gives the best results, followed by GLS  with 
the IR length fixed to .n 8 40x= =  Tuning the IR length by 
minimizing the error on a validation set increased the in-
band error with 2 dB. This shows again that, from the FRF 
point of view, it is not obvious how to select the optimal IR 
length. The errors of the Hanning method are ten times 
larger while its spectral resolution is reduced by a factor of 
eight, because the original record was split in eight subre-
cords. This shows that, for systems with slowly varying 
dynamics, a huge gain can be made by replacing the classical 
methods with the recently developed tools. In this case, the 
spectral methods would need 100 times more measurements 
to realize a similar quality as the (regularized) LS methods.
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Figure 17  A comparison of three frequency response function 
(FRF)-measuring methods. The true FRF (black), and the observed 
root mean square (RMS) error Bias variance2+^ h of the Hanning 
(blue), IRLS  (red), and regularized IRreg  (green) methods are shown. 
The true system consists of the sum of two resonating systems 
having respectively a time constant 71x =  and .662x =  The 
Hanning method uses subrecord lengths of ,N 2048sub =  and the 
total data length is .N16 sub#  An overlap of 2/3 is used, resulting in 
an additional reduction of the variance with a factor two. For the 

,IRLS  the impulse response length was set to .n 7 4622# x= =  
Overall, the RMS error of IRreg  is the smallest, especially at large 
frequencies where the signal-to-noise ratio becomes very low due 
to the filtered input. This comes with a large bias around the second 
(dominant) resonance [see also the zoom in (b)]. The RMS error of 
the Hanning method is the largest, and this method also has a 
significant bias around the second resonance. The impulse response 
method shows no bias and has a smaller RMS error than the 
Hanning method.
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Figure 18  A comparison of three frequency response function 
(FRF)-measuring methods. The true FRF (black), and the ob
served root mean square (RMS) error Bias variance2+^ h of the 
Hanning (blue), IRLS  (red), and regularized IRreg  (green) methods 
are shown. The true system mimics a process consisting of a first-
order system with a time constant 5x =  and a delay of .2x  The 
Hanning method uses subrecord lengths of ,N 512sub =  and the 
total data length is  .N8 sub#  An overlap of 2/3 is used, resulting 
in an additional reduction of the variance with a factor of two. 
For the IRLS  and ,IRreg  the impulse response length was set to 

.n 8 402# x= =  It can be seen that, overall, the RMS error of IRreg  
is the smallest with a gain of 1 dB with respect to IRLS  and approx-
imately 20 dB with respect to the Hanning method. At the high 
frequencies (where the signal-to-noise ratio is very low due to fil-
tered input), the gain is even larger. The frequency resolution is 
eight times higher for the least-squares methods than the Hann
ing method.
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Remark 6
The method is not changed to account for the delay. It will be 
accommodated automatically in the IR estimate: ( ) ,g k 0.t  

( ) ,g k k delay0. #t  at the start of the estimated IR.

User Guidelines
»» Direct estimation of the IR: This method leads to high-
quality estimates with a high noise rejection and low 
bias errors, provided that the selected IR length is 
long enough.

»» Selection of the IR length: 1) For systems with fast-varying 
dynamics like resonating systems, classical model com-
plexity selection methods Akaike’s information criterion 
and Bayesian information criterion [21], [22] cannot be 
used for the purpose of FRF estimation because these 
methods balance variance versus bias. This bias is concen-
trated around the dominant resonance frequencies, lead-
ing to an over estimation of the damping. 2) For systems 
with slowly varying dynamics, the regularized LS meth-
ods can further improve the results of the LS method.

»» Tuning the bias error: The user can set the lowest damp-
ing level that should be estimated without bias. On 
the basis of that result, the length of the IR n ax=  in 
the least-squares method can be set; see “Truncation 
Error of Finite Impulse Response Models.”

»» Regularization: In the frequency bands with a low 
SNR, the results can be significantly improved using 
the regularization approach. This may bias those fre-
quencies where the dynamics vary rapidly.

Publicly Available Software
Most of the results can be reproduced using (free) pub
lic software.

»» The book [73] provides an exercise-based introduction 
to system identification, dealing, among others, with the 
generation and analysis of excitation signals (Chapter 2) 
and FRF measurements (Chapter 3). The Matlab solu-
tions of the exercises are available on the book support 
site booksupport.wiley.com. The software to generate 
the following figures (or similar figures) can be down-
loaded from this website: Figure 7 and 8 (Exercise 37), 
Figure 9 (Exercise 29), Figure 11 (Exercise 30), and Figure 
14 and 15 (Exercises 51 and 52).

»» The results in Figure 17 and 18 on IR estimation were 
obtained using the Matlab system identification tool-
box, using the routine “arxRegul.” This toolbox has 
also a routine “etfe” to calculate the ETFE.

»» The freely available frequency domain identification 
toolbox FDIDENT can be used to generate the advanced 
excitation signals that are discussed in this article 
(Figure S5), and to create the nonparametric noise anal-
ysis using periodic excitations (Figure 6)

»» Code to generate special (binary and multi-level) sig-
nals is available at https://www2.warwick.ac.uk/fac/
sci/eng/research/systems/bbsl/signal_design [28].

Conclusion
This article provides a tutorial overview of IR and FRF esti-
mation methods. The historical approaches are discussed, 
together with recently developed methods. It is shown that 
the available computer resources strongly influence the 
choice of the best-suited algorithm to solve the problem. 
The classical spectral analysis methods still dominate the 
field, although it is possible to perform significantly better 
with the recently developed local parametric methods or 
direct IR estimation methods. Using these methods, shorter 
experiments can be used to obtain a similar or even better 
quality of the results.

The discussion of the spectral methods is not the same 
as the classical textbooks. The authors preferred to provide 
a new interpretation of the properties of these methods, 
starting from the recent insights in the structured nature of 
leakage errors.

A short historical overview is included, showing that IR 
and FRF measurements have been completed for a long time. 
There was a strong evolution driven by the major changes in 
the available technology, starting with graphical methods 
and including analog correlation methods, to be eventually 
driven by digital signal processing methods. Too many engi-
neers and scientists are not aware of the new possibilities 
that are available today, which leads to a waste of efforts and 
resources. This article aims to fill this gap.

A final set of user guidelines is formulated, directing 
the user to the best choice based on the available comput-
ing facilities.

»» Store the reference signal together with the data: When-
ever the external reference signal is available, it is 
strongly advised to store it together with the data. 
This will be very useful whenever there are closed 
loops in the system to be tested, including interac-
tions between the generator and the setup.

»» Use periodic excitations whenever it is possible: Periodic 
excitations give access to a full nonparametric noise 
model, even under closed-loop experimental conditions. 

The classical spectral analysis methods still dominate the field, although 

it is possible perform significantly better with the recently developed local 

parametric methods or direct IR estimation methods.
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Combination with the local parametric methods or 
the IR method allows the user to eliminate transient 
effects if needed (high computational cost). Other-
wise, a direct division of the output/input spectra can 
be made (lowest computational cost).

»» Use the direct IR estimation for systems with rapidly vary-
ing dynamics and low SNR measurements: The direct IR 
method gives the best noise and leakage rejection. 
Care should be taken that the IR length n is well 
tuned (such as five to ten dominant time constants of 
the system, depending upon the required precision). 
The calculation effort grows with n as ( )O n3  without 
special numerical implementations.

»» Use the regularized IR estimation for systems with slowly 
varying dynamics and low SNR measurements: The reg-
ularized IR reduces the mean square error of the 
direct IR method. Moreover, this method protects 
intrinsically against overmodeling, so that the choice 
of the IR length becomes less critical.

»» Use the local parametric methods for high SNR measure-
ments: If the SNR of the data is (very) high, the local 
parametric methods are a very attractive alternative for 
the direct IR methods. High-quality results are pro-
duced without needing to solve large sets of equations.

»» Real-time applications: The local polynomial method is 
well suited for real-time applications. For a fixed 
input signal, all the matrix inverses can be precalcu-
lated and stored.

»» Windowing methods: These methods require the least 
computer resources of all the methods. For FRF mea-
surements, the combination of a sine window with a 
66% overlap is the best combination. These methods 
have the highest sensitivity to leakage errors. It is 
advised to use these methods as a last resort if the 
calculation time is very critical and the LPM methods 
are still too demanding.
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