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Leakage Reduction in Frequency-Response
Function Measurements

Johan Schoukens, Yves Rolain, and Rik Pintelon

Abstract—This paper analyzes how to reduce leakage errors in
frequency-response function (FRF) measurements. First, the na-
ture of leakage errors is revealed; next, windowing methods are
analyzed, and a new default window is proposed. Finally, a supe-
rior Taylor-series-based method is proposed.

Index Terms—Frequency-response function (FRF) methods,
leakage, windows.

1. INTRODUCTION

REQUENCY-RESPONSE FUNCTION (FRF) measure-

ments of transfer functions are a basic tool in many
engineering fields. For random excitations, these measurements
are disturbed by leakage and disturbing noise errors. For these
reasons, we strongly advise applying periodic excitation signals
whenever it is possible [8]. However, in many applications,
for psychological or technological reasons, the users prefer
to apply random noise excitations. It is well known that for
random noise excitations, the FRF measurements are disturbed
by leakage (windowing) errors that are induced by the finite
length of the measurement window. This paper uses new
insights in the nature of these errors to propose improved
FRF-measurement techniques.

The classical approach to reduce the leakage errors is based
on the use of windows. In the literature, a large number of
windows is defined and their properties are intensively studied,
keeping essentially spectral analysis applications in mind [2],
[6]. In this paper, these properties are analyzed again keeping
FRF measurements in mind which leads to new insights, and
eventually to the definition of a new window. This allows a
reduction of the “leakage errors” on the FRF measurements,
while the noise sensitivity is not increased. In the next step,
an alternative Taylor-based method is proposed. In its simplest
version it reduces to the Hanning window, but with more
advanced settings a superior method is found.

II. HIDDEN NATURE OF LEAKAGE ERRORS

Let us consider a stable, causal, discrete- or continuous-time,
single-input—single-output linear, time-invariant system with im-
pulse response go(t) that is excited with a random input u ()

y(t) = go(t) uo(t) + v(t) = yo(t) + (1) (1)
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with x* the convolution, ug(t), yo(t) the exact input and output
signal, and v(t) disturbing noise. N samples of the input and
output are measured at t = kT = k/fs. For notational sim-
plicity, we note these measurements as

Those results of measurements are used for estimation of the
FRF Gq(l) at frequency f; = [fs/N,l = 0,..., N/2. The dis-
crete Fourier transform (DFT) Uy (1), Y (1) of the input—output
signal [3] is

N —1. 2)

N-1

X(l) = % S a(k)ei ¥4, 3)
k=0

The following remarkably simple relation holds between the
DFT spectra for yo(t) = go(¢)*uo(t) [81, [7]

Yo(l) = Go(D)Up(1) + To(l) 4)

with Gy and T}, smooth rational functions of the frequency. 1
can be interpreted as a generalized “transient” term. Some of
these ideas were already reported in [5]. Due to the DFT defini-
tion (3), Up(1), Yo(1), and Y (I) are of order O(N~'/?), and the

transient Ty(/) is of order O(N~1) [8].
In the absence of disturbing noise v(¢) = 0, the FRF estimate

is given by
) = Yo(l) To(l)
Uo(1) Uo(1)

It is the last term in (5) that causes the leakage in the FRF mea-
surements. The ratio To(1)/Uy(l) has a random behavior and
looks like noise in FRF measurements because Uy (1) is random.
However, this hides the highly structured nature that is described
by the smooth function 7. Windowing methods exploit this
smoothness to reduce the leakage errors.

It is common practice to average G () over multiple
measurements [1]

= Go(l) + = Go(l) + O(N7'/?).(5)

S yiooim )
M Mo

where X [™I(]) is the spectrum of the signal in the mith realiza-
tion of the experiment. This estimate converges for M — oo to
the solution corresponding to v(¢) = 0 if the output noise v(¥)
is not correlated with the input g ()

limps oo S0 YII()TE (1)
limy o0 izy US(OTE™ (1)

Due to the leakage effects, this limit is still biased as it will be
shown later.

GM(1) = (6)

lim GM(Z) =

M — o0

(N
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III. WINDOW-BASED METHODS

A. Hanning Window and Its Spectral Interpretation

The Fourier transform of a discrete-time signal z(t) is an in-
finite sum y_,- ___ x(t)e 7**. This infinite sum is restricted to
a finite one in the DFT by considering only a finite number of
samples. It is calculated on the “windowed” signal

2 (t) = w(t)z(t) ®

with w(t) = 0 if ¢ is outside the interval [0, N — 1]. A large
number of different windows is proposed in the literature [6];
here, we focus on the rectangular and the Hanning windows as
follows:
1) rectangular (Dirichlet) window (within a proper scaling
factor)

w(t) =1, for t=0,1,...,N —1; ©)

2) Hanning window (within a proper scaling factor)

w(t) = 0.5 — 0.5cos(27t/N). (10)

There exists a simple relation between the DFT spectra ob-
tained with the Hanning window (Xpann) and the rectangular
window (Xgect)

2XRect(!) = XRect (! = 1) — XReet (I + 1
K (1) = 2Rl = Freel L2 D) = X1

Y

which is proportional to the second-order difference of the spec-
trum XRect.
B. Analysis of the Leakage Errors on the FRF Measurement

1) Rectangular Window: For a rectangular window [1], [3],
it is found immediately that in the noiseless case

A Go(Uo(1) | To(l)
GRect(l) =
=00 000
= Go(l) + O(N1/2). (12)
The averaged estimate is
1 M 7m] [m]
(1) = Go(D) + I T U OT)

R D o 10 1))

a) Systematic errors: The error term in (13) goes not to
zero for M — oo. T(Em] is the sum of two transient contribu-
tions at the beginning and the end of the window. Each of these
contributions depend on the input signal (u(t),t < 0 for the
begin transient; u(/N — t),t > 0 for the end transient). Hence,
a weak correlation between 73")(1) and U™ will exist. It is
shown [9] that this results eventually in a systematic error con-

tribution that can be bounded by

o p{am)
lim G%&ct = W
E {UO b} }

M — o0

=OWNTh) (4
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at all excited frequencies (E{U™ (1) T™ (1)} # 0) and

lim G (1) = Go(l) + O(N ). (15)

I — o0
b) Random errors: In the absence of disturbing noise, the
variance of the error term is bounded by an O(M~1N~1) [9]
and, hence, the random errors dominate the systematic errors for
a wide range of choices of M and N.
2) Hanning Window: The errors for the rectangular window
are completely due to the leakage term Ty (1)/Uy(l). Applying
a Hanning window results eventually in

Cortomn(l) = 2Yo(l) = Yo(l+1) = Yo(l - 1)
Hanl) = oU6(1) = Up(l + 1) — Up(I — 1)

(16)

As noted previously, the Hanning window can be considered as
a second-order difference that reduces the impact of the transient
since T is a smooth function of the frequency.

Define A = f,/N. Using the smoothness of G and T}, we
have

AQ
Go(l+£1)=Go+GPA+ G62)7 +O(N?)

A2
To(l+1) = To £ TVA + T0<2>7

+O(N*O(N™Y) (17)

with X (™ the nth derivative of X (I). The last O(N ') is be-
cause Té?’) isan O(N 1) [see also (4)]. Substituting (17) in (16)
results in

GHanIl(l) = GO(Z) +e1 Hann(l) + ez Hann(l) + O(Nig)
(18)

with ey the leakage and e, the interpolation error as follows.
1) Leakage error e;: This is the term that remains after double
differentiation of the transient

—TP (1) A2

T 20o(l) = Ue(l+1) — Up(I - 1)
= O(N°/?).

€1 Hann(l)

19)

2) Interpolation error es: The double difference combines
neighboring lines which leads to an “interpolation error”
on G

Ug(l+1) = Up(l - 1)
20p(1) = Up(l+1) = Up(l - 1)
n A Up(l+1) +Up(l=1)
2 2U(1) = Up(I+1) = Up(l — 1)
=O(N™") + O(N?). (20)

€2 Hann(l) = _C';((()l)A

—G((]

From (19) and (20), it turns out that the leakage error €1 fann
is reduced to an O(N~5/2), but compared with the rectangular
window a new ‘interpolation’ term es gan, appears which is
O(N~1). Hence the Hann window reduces the error from an
O(N~'/?)toan O(N~'), and it switches the nature of the dom-
inant error from ‘leakage’ errors to ‘interpolation’ errors.
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Averaging: Again, an averaging procedure is often used
M m m

Z Y()[HLnn(l)U(g H]ann(l)
M m m

Zm:l U(E H]ann (l) U(E H]ann (l)

leading to the following systematic and random errors.
a) Systematic contributions: It is shown [9] that

GHann(l) = (21)

(1) A2
uouo Az (2)
6Py G0’

= Go(l) + O(N7?)

lim GM. (1) = Go(l) + 2G5V

M — o0

(22)

with Pyyu, = E{|Uo(1)]?}.
Compared to the rectangular window, the systematic errors
are reduced from O(N~1) to O(N~2).
b) Random error: The variance of GHarm(l ) is dominated
by the first term in (20) and equals [9]

[ERUIN

_ —1a7—2
L = O(MTIN 7).

var (GHann(l)) = (23)

C. New Default Window: The Diff Window

The Hanning window reduces the leakage effects on the FRF
measurements to O(N ~1). This error reduction is obtained due
to a shift of the nature of the errors from “leakage” (ey) errors to
“interpolation” (ez) errors. The latter one grow with the width of
the interpolation interval which is two bins (three lines) for the
Hanning window. An alternative window with a smaller width
should allow for a better balancing between the leakage and
interpolation errors. This idea is elaborated in Section III-C1.

1) New Window: An alternative for the three-lines second-
order difference of the Hanning window is to make only a first-
order difference of the spectra that combines only two lines

A 1 Yo(l +
Gpigll+=| =
fo(-i- > Uo(l+

2
W (1+3) = St Yopte (DUl ()
2 ZJ” U(grlg]lff (Z)U(EWDL]lff (l)

Applying again the Taylor-series representation (17), but this
time around [ + (1/2), results in

R 1 1 1
Gpig (l+ 5) =Gy <l+§> + €1 Diff <l+ 5)

1
+ e2 pifr (l + 5) (25)

1) -Yo(l)
1) —Uo(l)

Yopiar (1)
Uo i ()

and

(24)

with leakage error

. 1\ _ o 1 1
ellef(l+2>—T0 <l+2>AU0(l+1)—

= O(N—%/2)

Us(1)
(26)
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Fig. 1. Real and imaginary part of the complex window corresponding to the
first-order difference operation.

and interpolation error

oo (1) Up(l+1)+Uo(l) A
2Dif <l+ ) “ (” ) To([+1) — Uo(l) 2
2
+GY (l-l— 2) AS
=O(N~")+O(N~?). (27)

es pift 1s reduced with respect to €3 frann by working around the
middle frequency ! + (1/2). In that case, an approximation is
made over only half a bin to the left and to the right instead of a
full bin for the Hanning window. The leakage error increased to
O(N~3/2), but this is not important because it is not the domi-
nating error for N sufficiently large.

a) Systematic error: It is shown that [9]

hm GMe (l + %) =Gy (l + %) +O(N?)  (28)

which is of the same order as the Hanning window.
b) Random error: The variance becomes [9]
2
|66 1+ 3) 4|

ot 103)) -5

=O(M~'N7?).

(29)

The variance is slightly reduced (—1.25 dB) compared to the
Hanning window [see (23)]. This allows to reduce the measure-
ment time with 25% for the same level of variance of the leakage
error on the measured FRF.

2) Time-Domain Interpretation: Making the difference over
two neighboring frequencies can be interpreted as applying a
complex window in the time domain (Fig. 1)

o

w(k) = el %
w(k)

for0<k<N-1
(30)

—1=2jel~k —k
je smN

0, elsewhere.

From (30), it follows immediately that the spectrum of the diff
window equals the spectrum of a half-sine window within a fre-
quency shift of half a bin. It is this frequency shift that allows
for the very simple expression of the window in the frequency
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TABLE 1
COMPARISON OF THE RECTANGULAR, HANNING, AND DIFF WINDOW
leak. . syst.
window error ei_rrléirg' error variance
e, 2 (M)

WRect o172y 0 ON1 OM~'N1
WHann O(Nis/z) O(Nil) O(Niz) O(Mfl N’z)
Woitr ON32) ON1  ON? O(M 'N-2)

domain (making the difference over two neighboring frequen-
cies of the DFT spectrum obtained with a rectangular window).
It can also be noted that the properties of the diff window and
the half-sine window will be the same, but the numerical calcu-
lation/interpretation in the frequency domain is simplified. This
also allows the interested reader to position the alternative diff
window against other windows that are studied in the literature.

D. Conclusion

In Table I, all the results of the previous discussions are
collected. It is seen that for FRF measurements, the Hanning
window is superior to the rectangular window, while the diff
window even does a little bit better on all aspects studied. The
diff window can replace the Hanning window as default choice
in FRF measurements.

IV. ALTERNATIVE INTERPRETATION OF THE HANNING
WINDOW: A TAYLOR-SERIES APPROACH

Consider the Taylor approximation in (17), with order O for
Gy, and order 1 for T at frequencies k — 1, k, k + 1

Yo(k) = Go(k)Uo(k) + T'(k)
Yo(k — 1) ~ Go(k)Uo(k — 1) + T(k) — Ap.  (31)
Solving (31) for Go(k) leads to
G < b = Yolk + ) = Yok —1)

2Uo(k) — Uo(k + 1) — Up(k—)

which is nothing than the estimate G'rany (k) found by applying
the Hanning window. This clearly indicates that the Hanning
window is a nonoptimal choice. It puts to much emphasis on the
elimination of the transient. To eliminate this unbalance, also G
should be expanded to the first order, leading to

Go(l+ A) = Go(I) + 1A + g2 A% + O(A®)

To(l+A) =To(l) + 1A+ O(N~HO(A?%).  (33)

Substituting this result in

Yo(l) = Go()Uo(1) + T'(1),

for l=k—-2k-—1kk+1,k+2 (34)
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would lead to a set of five complex equations with five com-
plex unknowns. However, the additional gain would be lost be-
cause now five lines have to be combined. The alternative is
to consider again only three lines [ = k& — 1,k,k + 1, but
this for M > 4 realizations. This leads to 3 + 2M unknowns
(Go(k), g1(k), g2(k) and M times To(k), t1(k)). The set of 3M
equations with 2M + 3 unknowns is solved in least-squares
sense. This leads eventually to

Grayi(k) = Go(k) + O(N™°/2). (35)

V. NOISE SENSITIVITY

The analysis in the previous sections was made assuming that
the disturbing noise equals zero. The three windows (rectan-
gular, Hanning, diff) resulted eventually in the same type of es-
timates

Z  Zy+ Nz

G:Yo_ Xo

(36)
where Z and X are defined in (12), (16), and (24). For multiple
measurements, Z ! and X([]l],l = 1,..., M are available, and
the H; averaging technique is used [1]

M M
GM =3 7'X§ [ Y XX, (37)
m=1 m=1

- AM AM AM
The variance for Gg,.,Gpy, and G

Hann 18 approximately
given by

2
O'NZ

ME{XPY .

oG =

This shows that the noise sensitivity of all these estimators is the
same and the variance due to the disturbing noise is

2
Oy

_— 39
ME{U0F) 59

0% =

with F{ } the expected value taken over the successive realiza-
tions of the input signal.

For small M, (1/M) Zf\il |U(El] (k)|? can be significantly dif-
ferent from E{|Uy|?}. At some frequencies, large drops in the
realized power spectrum appear, jeopardizing the FRF measure-
ment completely. Therefore, it is advised to choose M large
enough to avoid these dips [8].

Also, for G'ray1, an explicit noise analysis can be made using
the classical results of least-squares estimates. However, the
reader should be aware that the number of unknown parameters
grows with the number M of averaged experiments because for
each experiment additional transient parameters are estimated.
This leads eventually to an inefficiency term, such that

Oy = 06 + g(M) (40)
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Loss in efficiency (dB)

10’ 10
Number of experiments

Fig. 2. Efficiency loss of the Taylor method as a function of the number of
averaged experiments. The limit value for M — oo is 1.24 dB.

with o2 the variance of the windowing methods. Analytically,
it is found that (Appendix 1)

lim g(M) = o%/3.

41
M —o00 ( )
For finite values of M, it can be obtained through simulations,
and it is plotted in Fig. 2. As can be seen, the loss is about 6 dB
for M = 4. Hence, the Taylor method can only be used if the
leakage errors dominate the disturbing noise errors.

VI. ILLUSTRATION

A discrete-time system is excited with white Gaussian noise.
M = 64 experiments of 8192 points are processed, such that
1024 frequency points in the frequency band of interest are
available. First, a noise-free simulation is repeated 1000 times.
No disturbing noise is added (v(¢) = 0) in order to be able to
emphasize the effects that are described in this paper. The mean
and the standard deviation for the three FRF estimators are cal-
culated and the results are shown in Fig. 3. For all cases, the
random errors dominate. Note that the new “diff” window does
slightly better than the Hanning window as was expected from
the theory. It can also be noted that the “Taylor” method has a
superior behavior.

Next 100 simulations with M = 16 are made with white
disturbing noise added to the output. The results are shown in
Fig. 4. In this figure, it is clearly seen that at the resonances,
where the leakage error dominates, the Taylor method is still
superior. Outside these frequency bands, it can be seen that the
errors for the window methods become about 2 dB smaller than
for the Taylor method, which is due to a lower noise sensitivity
as explained previously.

VII. CONCLUSION

In this paper, an analysis of the windowing/leakage effects
on FRF measurements is made. It turns out that the leakage
errors in FRF measurements have a highly structured nature
that can be used to reduce their impact. The arguments used in
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Fig. 3. Comparison of the standard deviation of the errors on four FRF estima-
tors: G'aann, Gpitrs Grect, and Grrayi, together with the exact valueG of the
FRF. Top: global view. Bottom: zoom around the first resonance frequency.
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Fig. 4. Comparison of the standard deviation of the errors on four FRF-
estimators: Gyann, Goifr, Grect, and Gray1, together with the exact value of
the FRF.

window analysis for spectral analysis applications cannot be un-
altered transferred to FRF measurements. Replacing the rectan-
gular window by a Hanning shifts the nature of the error from
leakage to interpolation. It turns out that an alternative “diff”
window can be proposed with slightly better properties. It allows
a reduction of the measurement time with 25% if leakage er-
rors dominate. If the output noise is the dominating error source,
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both windows have the same disturbing noise sensitivity. Even-
tually, a Taylor-series interpretation of the Hanning window is
made. This leads to an improved FRF estimate with significantly
smaller errors.

APPENDIX
NOISE ANALYSIS OF THE TAYLOR METHOD

To calculate the covariance matrix starting from a group of M
repeated experiments, the set of (31) is written in matrix form.
Define

Vi = [V -1, Y W), YUk + 1),
YW%k—UJWWw)YWHk+U} 42)
with X7 the transpose of X, and
Z50 = [G(R), 91(k), ga(k), TH (), 81 B) ..
Tk, )] @3)
Then, (31) becomes

Yan = K Zau, with K € CSMX(3+2M). 44)

The covariance matrix of the least-squares solution of (44) is
given by

C = ot (k)(KTK)™ (45)

because after a DFT, for N sufficiently large, the noise is asymp-
totically uncorrelated distributed, and varies only slowly over
the frequencies if the noise spectrum is smooth.

The matrix inversion in (45) can be calculated by considering

dy2 ]
da

with ¢1; € C3X37612 € Cssz, and coo € C*MX2M  The
result of interest is in

KHK — [C}} C12] (KTE)™ = [d}}
Cl2  C22 dia

(46)

(47)

_ -1 -1 -1 -1
d11 = C1q + C11 C12C99 C12Cqq -

01202_21012 and c1; become asymptotically for M — oo

2 0 5/3
M|Us(E)*| 0 5/3 0
5/3 0 5/3

and

M|Uy(k)|?

N O W
o N O
N O N
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co2 converges to a diagonal matrix with a repetition of 3, 2
on its main diagonal. Combining all these results leads to (40)
and (41).
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