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Abstract

This paper studies the impact of nonlinear distortions on linear system identification. It collects a number of previously published
methods in a fully integrated approach to measure and model these systems from experimental data. First a theoretical framework is
proposed that extends the linear system description to include the impact of nonlinear distortions: the nonlinear system is replaced by a
linear model plus a ‘nonlinear noise source’. The class of nonlinear systems covered by this approach is described and the properties of the
extended linear representation are studied. These results are used to design the experiments; to detect the level of the nonlinear distortions;
to measure efficiently the ‘best’ linear approximation; to reveal the even or odd nature of the nonlinearity; to identify a parametric linear
model; and to improve the model selection procedures in the presence of nonlinear distortions.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Identification of linear systems became a mature sci-
entific discipline over the last decades (Ljung, 1999;
Söderström & Stoica, 1989; Pintelon & Schoukens, 2001). It
is a very successful method and is applied on a large variety
of problems coming from a wide range of different fields.
The basic reason for this success is the appealing simplicity
of linear models. They give a lot of insight and are often used
as the basis for many design techniques. The price for this
‘simplicity’ is the need for a strong assumption: the system
is assumed to behave linearly. However, in practice many
systems are not linear. If the linear modelling approach is
maintained, the question arises if the whole framework is
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still valid, and if its results are still reliable. This leads to
the questions that are addressed in this paper:

• What is the validity of a linear model that is identified
in the presence of nonlinear distortions?

• Can we detect, qualify and quantify the presence of
nonlinear distortions?

• What is the best ‘engineering practice’ to obtain a linear
model under these conditions?

• Can the convergence results of the linear identification
framework be maintained under these conditions?

Very often the user is not aware of the presence of nonlinear
distortions because the classical linear identification frame-
work can be completely fooled: a nonlinear system driven
by random excitations can be modelled as a linear system
that passes all usual validation tests like a whiteness test of
the residuals, or a cross-correlation test between the input
and the residuals. This is a dangerous situation, because the
user will rely on an invalid model for the rest of his design
without being aware of it. In the best case this leads to a loss
in performance, but in the worst case it might even lead to
unstable control loops. For that reason we strongly advice
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to add to each identification experiment a nonlinearity test
to reveal the level of the distortions.

If nonlinear distortions are detected, the user can either
abandon the linear framework in favour of a nonlinear
model, or the user can decide to go on with linear approx-
imations. Both decisions might be valid as long as they
are the result of a conscious decision. In practice it is not
always an obvious choice to move from linear to nonlin-
ear modelling, because the required additional modelling
efforts are large while there is no guarantee for success.
With the approach proposed in this paper, the user will get
in advance an idea what is the validity of the linear model,
and how much might be gained by moving to nonlinear
models.

The results of this approximate linear modelling process
can be used in all applications where till now a classical
linear identification approach is used. The major difference
with the actual common practice is that the user gets addi-
tional bounds on its model that indicate the validity of the
linear assumptions. Since these will also depend upon the
actual applied excitation, all results are conditioned on the
class of excitation signals that was used during the exper-
iments. This might seem an enormous drawback, but the
reader should realize that nowadays this restriction exists
also, but most users are unaware of it. They live in peace,
ignorant and dangerous.

The paper consists of 3 parts. First the system setup will
be defined, followed by a precise definition of the class
of nonlinear systems that is considered. Next the impact
of nonlinear distortions on the linear identification frame-
work is analysed and an integrated approach is setup how to
differentiate between all the different contributions (linear,
nonlinear, process noise) to the output. Eventually, the lin-
ear identification in the presence of nonlinear distortions is
discussed.

2. Setup

Consider the time invariant, single-input, single-output
(SISO), continuous or discrete time nonlinear dynamic sys-
temgNL:

y0 = gNL(u0) (1)

and the discrete observations:

u0(t) andy(t)= y0(t)+ ny(t), t = 0,1, . . . , N, (2)

whereny(t) is zero mean noise. The inputu0(t) is assumed
to be known exactly. The sampling period is normalized
to Ts = 1.

Assumption 1. Output noise model. ny(t) is filtered white
noiseny(t)=H0(q)e0(t) wheree0(t) is a sequence of inde-
pendent random variables, with zero mean values, variances
�0, and bounded moments of order 4+ �, for some�>0.

H0(q) is a stable and inversely stable, monic filter (Ljung,
1999).

3. A formal framework to describe the nonlinear system

Describing nonlinear systems is a tedious job. Since there
does not exist a single model structure that covers all possible
nonlinear systems it is necessary to specify what subclassS

of nonlinear systems will be considered. The nonlinear sys-
tems that can be included inS will depend on: (i) The class
of excitation signals that will be allowed (for example single
sine excitations or random noise excitations, uniformly or
normally distributed noise); (ii) The model class that will be
used to describe the input–output relation (Volterra models,
neural nets, support vector machines, narmax models, etc.);
(iii) The convergence criterion that will be used to match
the model and the system output. These three choices are
specified below.

3.1. Class of excitation signalsE

3.1.1. Introduction
In this paper normally distributed random excitations with

a user defined power spectrumSu(f ) will be used. Below
we give the precise definitions of the considered excitation
signals followed by an illustration of each of these signals
in time- and frequency-domain, and some remarks. All ex-
citations are defined by a discrete time sequenceu(t). The

actual continuous time excitation signal
�
u(�) that is applied

to the physical system is obtained from this discrete time
signal by passing it through a hybrid reconstruction filter:
�
u(�)= ∑∞

t=−∞ u(t)l(� − t). The most popular reconstruc-
tion is to keep the signal constant between two successive
samples. This is called the zero-order-hold reconstruction
and it corresponds tol(�) = 1 if 0��<1, and zero else-
where. We do not further elaborate on these aspects in this
paper.

3.1.2. Definitions

Definition 2. Spectrum generating function.Su(f ) is a uni-
formly bounded real positive function with a countable num-
ber of discontinuities, andSu(0)= 0.

Remark. Su(f ) will be used as the power spectrum for the
noise excitations. For periodic excitations it will be used to
set the amplitude of the discrete spectral components. The
DC valueSu(0) is set equal to zero, the system is described
and modelled around its operating point.

Definition 3. Gaussian noise excitation. A random sequence
u(t), t =0,1, . . . , N drawn from a zero mean normally dis-
tributed process with a user defined power spectrumSu(f ).
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Definition 4. Periodic noise. A signalu(t) is a periodic
noise excitation if

u(t +N)= u(t), ∀t, N is the period,andu(t),

t = 0, . . . , N − 1 is a Gaussian noise excitation. (3)

Remark. A periodic noise sequence can also be written as
a finite Fourier series:

u(t)=N−1/2
N/2∑

k=−N/2
Û

(
k

N

)
ej(2�k t

N
+�k), (4)

with �−k = −�k, Û (f )�0, N even, andÛ (f = 0) = 0 ·
Û (k/N) and�k are the realisations of independent (jointly,
and overk) random processes satisfying the following con-
dition: Û (f ) has bounded moments of any order(<∞),
andE{ej�k }=0, andE{Û (f )2}=Su(f ). This could be used
as an alternative for Definition 4.

Definition 5. Random (phase) multisine. A signalu(t) is a
random phase multisine (also called random multisine) if

u(t)=N−1/2
N/2∑

k=−N/2

√
Su

(
k

N

)
ej(2�k t

N
+�k), (5)

with �−k = −�k. The phases�k are the realisations of an
independent (overk) uniformly distributed random process
on [0,2�).

The set of excitation signals that is considered in this
paper is the union of the signals defined before.

Definition 6. Set of excitation signalsE: A signal u with
power spectrumSu(f ) belongs toE if u is either a Gaussian
noise excitation (Definition 3), a periodic noise (Definition
4), or a random phase multisine (Definition 5).

3.1.3. Illustration
In Fig. 1 an example for each of these signals is shown.

The Fourier spectrum of an infinite stationary (Gaussian)
noise sequence does not exist (only its power spectrum
Su(f ) which is the Fourier transform of the auto correlation
functionRu(�)=E{u(t)u(t−�)} is well defined). However,
for a finite recordu(k), k = 0,1, . . . , N − 1, we can still
calculate the discrete Fourier transform (DFT)U(k), k =
0,1, . . . , N/2 and plot|U | on top of the amplitude spectrum√
Su(k/N). This shows also that although the excitation has

a continuous spectrum, the resolution of the measurement
is still restricted to 1/N , which is the frequency resolution
of the DFT. It is also important to observe that the actual
realized amplitude spectrum differs strongly from the under-
lying amplitude spectrum

√
Su(k/N). This results at some

frequencies in a significant drop of the signal-to-noise ra-
tio (SNR). A periodically repeated Gaussian noise sequence
has a discrete frequency spectrum, but its behaviour is com-
pletely similar to that of Gaussian noise. A random phase
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Fig. 1. Illustration of a Gaussian noise, periodic noise and random mul-
tisine excitation. Top: time domain; bottom: frequency domain.

multisine eliminates the random variations of the amplitude
spectrum, the user gets full control over the actual realized
amplitude spectrum while the signal keeps still a random
behaviour due to its random phase choice.

3.1.4. Remarks

• The periodic signals (Definitions 4 and 5) are asymp-
totically (N → ∞) normally distributed in the time
domain.

• The phase condition in Definitions 4 and 5 can be
relaxed. The phases can be restricted to a discrete set
as long asE{ej�} is zero. This allows for example
to include orthogonal frequency domain modulation
(OFDM) where such random multisines are intensively
used (Vandersteen, Verbeeck, Rolain, & Schoukens,
2000).

• The period lengthN will be sometimes indicated ex-
plicitly by using the subscriptN , for exampleEN .

3.2. ClassS of nonlinear systems

In order to define the class of nonlinear systems that will
fit into the framework of this paper, we need first to select
the model class that will be used as a mathematical vehicle
during the proofs. Next also the convergence criterion that
will be used to match the model output to the system output
should be specified because it has a direct impact on what
systems are covered or not. Combination of both selections
sets eventually the class of systems that is considered in this
paper.
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Both choices are discussed below and eventually a short
overview is given about the properties of the approximation
as a function of the system assumptions (continuity, fading,
memory, etc.). It should be emphasized that we are not in-
terested at all in the identification of these models. They
are only used to allow for formal proofs of the claimed
results.

3.2.1. Nonlinear model
In this paper we focus on Volterra models. For many peo-

ple, these have a bad reputation because they seem to cover
only a very restricted class of systems, and they are diffi-
cult to parametrize and to identify. Since we do not intend
to identify the Volterra models, the last remarks are not an
issue. Moreover, it will turn out that the covered class of
systems can be significantly enlarged by selecting a proper
convergence criterion as will be shown below.

Definition 7. ClassM of nonlinear models:M is the set of
Volterra models

yQ(t)=
Q∑
n=1

yn(t),

with yn(t) =
∫ ∞

0
· · ·

∫ ∞

0
gn(�1, . . . , �n)u(t − �1)

. . . u(t − �n)d�1 . . .d�n, (6)

for continuous time systems and a similar expression for
discrete time systems (replacing the integrals by sums). Be-
cause there appears an infinite sum in this definition, it is
necessary to consider its convergence. This is discussed in
the next section.

3.2.2. Convergence criterion
Depending on the convergence criterion that is selected, a

wider or a smaller class of systems can be approximated by
the Volterra model. Also the properties of the approximation
will change: for example convergence of the model output
(and its derivatives) to the system output (and its derivatives),
convergence of the model to the system, convergence of the
derivatives of the model to the derivatives of the system.
In this paper we can only give a simplified discussion. For
a more thorough discussion, the reader is referred to the
literature mentioned below.

The most general class of systems is retrieved if mean
square convergence of the system and model output is se-
lected: this paper considers SISO nonlinear time invariant
systems whose output can be approximated arbitrarily well
in least squares sense by a Volterra series (6) for the class of
excitationsE. This leads eventually to the formal definition
of the considered class of systems:

Definition 8. ClassS of nonlinear systems.S is the set of
nonlinear systems for which there exists a Volterra series
representationyQ(t) = ∑Q

n=1y
n(t) that converges in mean

squares sense with probability 1 toy(t) for all excitations
u ∈ E:

lim
Q→∞

1

N

N∑
t=1

E{|y(t)− yQ(t)|2} = 0, (7)

with N the experiment length. The expected valueE{ } is
the ensemble average over the considered class of random
inputsu.

For these systems (called Wiener systems, not to be con-
fused with the cascade of a linear dynamic system followed
by a static nonlinearity that is also called a Wiener system)
a number of statements can be made: (i) the influence of
the initial conditions vanishes asymptotically(N → ∞),
(ii) the steady state response to a periodic input is a peri-
odic signal with the same period as the input. Phenomena
such as bifurcation, chaos, and sub harmonics are excluded,
while strongly nonlinear phenomena such as saturation (e.g.
amplifiers) and discontinuities (e.g. relays) are allowed. (iii)
Only a point wise approximation of the output is obtained
(see the Wiener theory inSchetzen, 1980; Doyle, Pearson,
& Ogunnaike, 2001). Also the derivatives of the output con-
verge for band limited inputs (Su(f ) = 0 for |f |>fmax).
Hence, these models can be used to model for example the
output spectrum, but they should not be used to calculate
the derivative of model characteristics. (iv) The output of
the system at the discontinuities cannot be modelled.

3.2.3. Remarks
A stronger convergence result can be obtained if only fad-

ing memory systems are considered. StatingBoyd and Chua
(1985): ‘Intuitively, an operator has fading memory if two
input signals which are close in the recent past, but not nec-
essarily close in the remote past yield present outputs which
are close’. Discontinuous nonlinear systems are excluded but
hard saturating nonlinear systems can still be modelled. For
these systems uniform convergence of the model (output) to
the system (output) is shown, while the model derivatives are
still not guaranteed to converge. The approximation is valid
for bounded inputs, where the bounds can be set by the user.
The properties of fading memory systems (or approximately
finite memory systems) are extensively discussed inBoyd
and Chua (1985), Borys (2000)and the work ofSandberg
(1992, 1993, 2002).

Restricting the class of nonlinear systems even more, to
those systems having a Volterra series that converges uni-
formly around a given working point, similar to a convergent
Taylor series for a static nonlinear system, gives the strongest
convergence results. We call these systems Volterra systems.
For these systems uniform convergence of the model (out-
put) and the derivatives is guaranteed. Often these Volterra
series exist only in a restricted input domain that cannot be
freely chosen by the user. Consider for example the Taylor
series of arctanx that exists only for|x|<1.

The previous results are summarized inTable 1.
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Table 1
Convergence properties of the different nonlinear model classes

Model class Properties

Wiener system - Output convergences in mean square sense,
point wise convergence
- Discontinuities and saturation allowed
- Model valid for the set of Gaussian signals

Fading memory system - Output converges uniformly
- Saturation allowed
- Model valid for bounded inputs
(bound set by the user)

Volterra system - Output converges uniformly
- Derivatives model converge uniformly
- Saturation allowed
- Model valid for bounded inputs
(bound cannot be set by the user)

It should be emphasized once more that we are not inter-
ested in the identification of theVolterra kernels. TheVolterra
model is only used to allow for formal proofs of the claimed
results for a given class of inputsE and systemsS.

4. Impact of nonlinear distortions on the linear
framework

4.1. Why to use a linear model for a nonlinear system?

Linear models are very popular, even if it is well known
that in practice many systems are not perfectly linear, be-
cause they offer important advantages: (i) They result in use-
ful models that give the user a lot of intuitive insight in the
system behaviour; (ii) Many design techniques are valid for
linear models only; (iii) Nonlinear model building is often
difficult and time consuming, and often the user cannot af-
ford or is not prepared to make this huge effort; (iiii) No
general framework is available for nonlinear systems. Dedi-
cated models are needed, complicating the development/use
of general software packages.

For all these reasons, there exists a strong need to use
linear models even if it is known that they are erroneous.
To allow extension of the linear framework to systems with
a dominant linear behaviour, the nonlinear contributions are
considered to be a parasitic effect.

4.2. Non parametric linear framework

Although the discussion covers equally well time do-
main and frequency domain identification methods, we will
mostly use a frequency domain representation using the
DFT:

X(k)=N−1/2
N−1∑
t=0

x(t)e−j2�kt/N , (8)

Nonlinear system
random input

Linear system +

noise source

GR(jω)

YR(k)

YS(k)

Y(ω)

U(k)
Y(k)

random input

U(k)

⇓

Fig. 2. Representation of a nonlinear system by a linear system for a
random input.

whereN is the considered record length. For simplicity we
do not consider initial conditions and leakage effects be-
cause they have no fundamental impact on the interpreta-
tions that will be made. Leakage effects in the frequency
domain are equivalent to initial- and end-condition effects
in the time domain (Pintelon, Schoukens, & Vandersteen,
1997; Schoukens, Pintelon, & Rolain, 1999).

4.2.1. Major result: intuitive presentation
A nonlinear system belonging toS, excited with a random

excitationu ∈ E can be represented by a linear systemGR
plus an error termYS (seeFig. 2). ConsiderR experiments
U [r], Y [r], r = 1, . . . , R, each obtained with a different re-
alization of the random input. Then

Y [r](k)=GRN( j�k)U [r](k)+ Y [r]
S (k),

with

GRN( j�k)= arg min
G

M∑
r=1

|Y [r](k)−G( j�k)U [r](k)|2

= arg min
G

M∑
r=1

|Y [r]
S (k)|2. (9)

This is an exact representation of the nonlinear system, all
approximation errors are put into the second termYS . The
indexN in GRN indicates that the estimate is obtained from
experiments with a length ofN data points. It turns out that
forN growing to infinity,Ys(k) looks like complex Gaussian
noise. It changes from one realization of the input to the
other.GRN is called the best linear approximation. Both
terms are discussed a bit more in detail below.

Discussion ofGRN : the best linear approximation

Define,

lim
N→∞ GRN( j�)=GR( j�), (10)

then we have that

E{GRN( j�)} =GR( j�)+O(N−1), (11)
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where the expected valueE{ } is taken with respect to the
random input phases (averaging over different realizations
of the input), andO(N−1) indicates a uniform convergence
over�. For that reason the dependency onN will be mostly
dropped in the notationGRN .

For Gaussian distributed excitations,GR( j�) de-
pends solely on the power spectrumSu of the excitation
(Schoukens, Dobrowiecki, & Pintelon, 1998; Pintelon &
Schoukens, 2002b; Evans, Rees, & Jones, 1994b), and not
on its actual random phase realization. Note that the central
limit theorem implies that a random multisine has asymp-
totically a Gaussian amplitude distribution.YR consist of
the sum of all those output contributions that are ‘coherent’
with the input and can be written as

YR(k)=GR( j�k)U(k). (12)

To illustrate a typical nonlinear contribution toYR(k), the
third degree nonlinear kernelgn(�1, �2, �3) with transfer
functionG3( j�1, j�2, j�3) is considered. The contribution
of such a kernel to the output appears at�1 + �2 + �3
and equalsG3( j�1, j�2, j�3)U(k1)U(k2)U(k3). For �1 =
�l ,�2 = −�l , and�3 = �k the contribution to the output
at � = �k is given by

G3( j�l ,−j�l , j�k)U(l)U(−l)U(k)
= {G3( j�l ,−j�l , j�k)|U(l)|2}U(k). (13)

Note that only the phase�k = phase(U(k)) of thekth input
component comes into the outputYR(k), all the other input
phases(�l , l �= k) are cancelled in these contributions by
making combinations likeU(l)U(−l)=|U(l)|2. This results
in a nonlinear contribution to the best linear approximation
GR( j�k) given by

{G3( j�l ,−j�l , j�k)|U(l)|2}U(k)
U(k)

=G3( j�l ,−j�l , j�k)|U(l)|2. (14)

Such combinations can only be found for odd degree non-
linearitiesG2�+1, it is impossible to get such a result for
G2� if U(0)= 0 (see Definition 4).

The reader should be aware that these results are only
valid for inputs belonging toE. Replacing for example a
Gaussian excitation by a binary noise source with the same
power spectrum can result in a completely different linear
approximation.

Discussion ofYS , the ‘nonlinear noise source’

A typical nonlinear contribution toYS(k) is for example

G3( j�k1, j�k2, j�k−k1−k2)U(k1)U(k1)U(k − k1 − k2),
with k1 + k2 �= 0. (15)

This is a stochastic contribution because the phase of (15) is
not within a constant equal to�k, it depends explicitly on the
input phases at other frequencies. The stochastic contribu-
tionsYS(k) contain all those output contributions for which

U(k1)U(k1) . . . U(k − k1 − · · · − kn−1)

= �ej�ej�k

�= |U(k1)U(k1) · · ·U(k − k1 − · · · − kn−1)|ej�k . (16)

Hence it is impossible to write this output asYS(k) =
GR( j�k)U(k) without GR depending on the actual input
phases (Pintelon & Schoukens, 2001; Evans & Rees, 2000).
For that reason these terms do not fit in the linear system
representation (12). Due to the remaining phase dependency
� and the random phase choices of the input, these terms
also have a random phase. As such these contributions look
very similar to noise, and it is hard to distinguish them
from process noise. Most linear validation procedures of
the classical linear identification framework do not recog-
nize the presence of these nonlinear contributions, they just
classify them as ‘regular’ noise. For that reason we prefer
to call these terms ‘the nonlinear noise contributions’, al-
though formally spoken it are deterministic signals once the
input signal is drawn. Their properties will be characterized
below in the formal description.

The contributionsYS(k)/U(k) are calledGS( j�k).

4.2.2. Major result: formal presentation
In this section the formal statements of the previous results

are made. The proofs are outside the scope of this paper, they
can be found in the bookPintelon and Schoukens (2001),
or in the references given below the theorem. The basic
idea is to count the number of possible systematic (13) and
stochastic (16) contributions to the output.

Theorem 1. A nonlinear system represented by its best lin-
ear approximation and an error term:
The nonlinear system: The output of the nonlinear system

belonging toS excited withu ∈ E can be written as

Y (k)=GR( j�k)U(k)+ YS(k), (17)

with GR the linear approximation andYS the error term:

GR( j�k)= arg min
G

E{|Y (k)−GU(k)|2}, or

GR( j�k)= E{Y (k)U(k)}
E{U(k)U(k)} = Syu(k)/Su(k). (18)

The nonlinear noise source: The nonlinear noise sourceYS
has the following properties forS andu ∈ E:

(1) Zero mean: E{YS(k)} = 0.
(2) Uncorrelated with the inputE{YS(k)U(k)} = 0.
(3) YS(k) is asymptotically independent fromU(l),∀k, l.
(4) YS(k) is asymptotically circular complex normally dis-

tributed and mixing of arbitrarily order.
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(5) The even moments do not disappear:

E{N |YS(k)|2} = 	2
YS
(k)=O(N0)=O(1);

E{N2(|YS(k)|2 − 	2
YS
(k))(|YS(l)|2 − 	2

YS
(l))}

=O(N−1) if k �= l, and an O(1) if k = l.
(6) The odd moments converge to zero(k �= l):

E{NYS(l)Y S(k)} =O(N−1),

E{N3/2YS(l)|YS(k)|2} =O(N−1),

E{N2(|YS(k)|2 − 	2
YS
(k))(|YS(l)|2 − 	2

YS
(l))}

=O(N−1).

The expected valueE{ } has to be taken over different
realizations of the excitation.

Proof. SeePintelon and Schoukens (2001)andSchoukens
et al. (1998) for random multisines, andPintelon and
Schoukens (2002a)for the generalization to periodic noise
and Gaussian noise.

Remarks.

• In the rest of this paper, we simplify the statement
‘Nonlinear system represented by its best linear ap-
proximation and an error term’ to ‘Linear representa-
tion of a nonlinear system’, not only because it is sim-
pler in daily use, but also because it reflects very well
what is almost systematically done in practice: a non-
linear reality is modelled with a linear model. Also the
‘nonlinear noise source’ will be used instead of ‘error
term’, again because it corresponds to the daily practice
where the nonlinear errors are often not recognized as
such, but modelled by a filtered white noise source.

• Note that (18) is the classical result for frequency re-
sponse function (FRF) measurements of linear systems
(Bendat & Piersol, 1980). It is also connected to the
early results ofBussgang (1952)and the work reported
in Brillinger (1981).

• These observations are in agreement with the classical
result, showing that the output of a nonlinear system
can be split in two parts (Bendat 1990, 1998; Forsell
& Ljung, 2000): a first part that is linearly related with
the input (in our case leading toGR), and a second part
that is uncorrelated with the input (leading toYS).

• The independency claims in the frequency domain
(YS(k), U(l)) are not in conflict with the obvious de-
pendency ofyS(t) on u(t) (yS(t) is a periodic signal
with the same period asu(t)). These asymptotic results
are valid on a frequency by frequency basis. How-
ever, if arbitrary large numbers of such components
are combined (as for the inverse Fourier transform to
calculate the time domain signals), the independency
is not necessarily maintained.

-20

0

20

0 100 150 200

A
m

pl
itu

de
 (

dB
)

Frequency (Hz)

Small

Large

50

Fig. 3. Evolution of the FRF for growing excitation levels: 34, 54, 127,
253, and 507 mVRMS.

• All these properties can be transferred toGS by replac-
ing

√
NYS by GS in the theorem.

• A detailed interpretation of statement 4 is given in
Pintelon and Schoukens (2001), p. 437.

4.2.3. Experimental illustration
In Fig. 3 the previously discussed aspects are illustrated

by experimental results on a nonlinear circuit (Pintelon &
Schoukens, 2001). The FRF ofGR of a nonlinear circuit
is measured for different levels of the excitation signal (a
random multisine). As the amplitude grows, it is seen that
the FRF shifts due to the growing systematic contributions
like (13), and at the same time it looks more noisy due to
the growing nonlinear noise source contributions like (15).
Since the small amplitude measurements are smooth, and the
disturbing noise conditions do not change with the excitation
level, it is clear that the dominant ‘noise’ effects are due to
the nonlinearity.

4.3. Best engineering practice for FRF measurements:
reduction of the nonlinear noise source level.

In this section we show that a good choice of the exci-
tation signal can significantly reduce the disturbances that
come from the nonlinear noise source. In the beginning of
the paper, we mentioned that all signals in the setE re-
sult in the same best linear approximationGR (Pintelon &
Schoukens, 2002a). This is formulated below more formally,
next we select within the classE the best signals for FRF
measurements. Once it is known that all these signals are
equivalent, the question rises if one class of excitations out
of all possible choices has a better behaviour than the oth-
ers? Can a good choice reduce the effect of the nonlinear
noise source on the measurement ofGR? To answer this
question, we need to introduce even/odd nonlinearities, and
odd excitations.
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Even/odd nonlinearities: Each static or dynamic nonlin-
earity can be written as the sum of an even nonlinear system

NL(u)=NLeven(u)+NLodd(u), (19)

with NLeven(−u) = NLeven(u) an even nonlinearity, and
NLodd(−u)= −NLodd(u) an odd nonlinearity.

Even nonlinearities do not contribute to the best linear
approximationGR because it is impossible to make com-
binations of the form given in (13) that contain always an
odd number of input spectral components, while an even
nonlinearity combines an even number of spectral compo-
nents. Hence they only contribute to the nonlinear noiseYS
which acts as an disturbance during the measurement ofGR
(Pintelon & Schoukens, 2001).
Odd excitationsare periodic signals that excite only the

odd frequencies 2k+ 1, the amplitudes of the even frequen-
cies 2k are put to zero(U(2k)=0). Such a signal can be sim-
ply generated as an inverse repeated noise excitation[u−u],
with u a Gaussian noise excitation, or by puttingU(2k)= 0
(Definition 5 of the random multisine). Other possibilities
are discussed inGodfrey (1993).

An even nonlinearity transfers all the power of an odd
excitation to the even frequencies. BecauseGR is only
measured at the excited frequencies (the odd frequencies),
the measurements will be no longer disturbed by the even
nonlinearity, and the uncertainty onGR drops. These possi-
bilities are extensively studied (Dobrowiecki & Schoukens,
2001b; Pintelon & Schoukens, 2001) where a number of
possibilities are proposed to create such odd excitation
signals.

4.3.1. Formal result
The indexN is put here explicitly inGR,N because the

convergence ofGR is discussed.

Theorem 2. Equivalencies of the excitation signals: Con-
sider Gaussian random noise, periodic noise and the ran-
dom multisine(Definitions3–5) with power spectrumSu.
For these three classes of excitation signals and for a non-
linear system belonging to the classS (see Definition8) we
have that:

• GR,N( j�), converges(N → ∞) at the rateO(N−1)

to the same limit valueGR( j�).
• GR( j�) depends only on the odd nonlinear contribu-

tions, the best linear approximation of an even nonlin-
ear distortion is zero.

• The variancesvar(
√
NYS,N(k)) of the stochastic non-

linear distortions converge(N → ∞) at the rate
O(N−1) to the same limit value	2

S(f ).• The scaled moments specified in Theorem1, point 6,
converge(N → ∞) at the rateO(N−1) to the same
limit value.

• GR( j�) is a continuous function of� with continuous
higher order derivatives if the approximating Volterra
system and its derivatives are continuous.
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Proof. Pintelon and Schoukens (2002a).

4.3.2. Experimental illustration
The equivalency between the excitation signals with re-

spect to the measurement of the FRF, and the possibility to
reduce the uncertainty due to the stochastic nonlinear dis-
tortions is illustrated inFig. 4 on a hair dryer device. The
temperature at the outlet is measured as a function of the set
point variations at the input. The heating of the hair dryer is
controlled by a thyristor with an important even nonlinear
contribution in its characteristic. The measured FRF and its
uncertainty are shown for different kinds of excitation sig-
nals (Németh & Vargha, 1999). From the previous section
it turns out that it should be possible to reduce the uncer-
tainty on the FRF measurement without changing its ex-
pected value by using odd excitations. In this experiment
three excitation signals were used. The first is a periodic
noise excitation. It gives very poor results due to the drops in
its actual realized power spectrum (see Section 3.1). Better
results are obtained by using random multisines. The ‘full’
multisine excites all frequencies, including the even, while
the odd and special odd multisines only excite the odd fre-
quencies. As could be expected from the previous discus-
sion, the expected value of the FRFs does not depend on the
specific class of excitations (upper traces inFig. 4), while
the uncertainties are significantly different (lower traces).
In this case the uncertainty is reduced with 20 dB or more,
which corresponds to a reduction in measurement of a fac-
tor 100 or more! This illustrates nicely that a good under-
standing of the nonlinear behaviour can result in enormous
reductions of measurement time or disturbances levels.

4.4. Detection, qualification and quantification of
nonlinear distortions

The level of the nonlinear distortions provides valuable
information for the user, even in a linear modelling frame-
work, because it will give natural bounds on the validity
of the linear models. However, to be useful, not too much
time should be lost to get this information, most of the time
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⇓
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Fig. 5. Representation of a nonlinear system by a linear system for a
random input in the presence of process noise.

...

Tw

R

transient
M

T T

Fig. 6. Applying R realizations of the excitation, and measuring each
timeM periods after a waiting timeTW .

should be spent on the ultimate goal which is to obtain a
(linear) model.

In the full problem, two distortions are faced at the same
time: the measurement/process noiseNY and the nonlinear
noise sourceYS (seeFig. 5) should be separated from each
other. At the same time the FRF ofGR should be measured.

A large number of methods are developed to detect the
presence of nonlinear distortions. An extensive overview is
given in (Vanhoenacker, Schoukens, Swevers, &Vaes, 2002).
Many of these are very time consuming and require dedi-
cated experiments. Only few give detailed information about
the distortion levels. Here we present two simple methods
that allow to measure explicitly the nonlinear and the dis-
turbing noise levels using periodic excitation signals (peri-
odic random or random multisines) while most of the exper-
iment time is still used to measure the FRF. The first method
allows to detect the level of the nonlinear distortions, the
second not only detects the level but also qualifies the non-
linearity as even or odd.

4.4.1. Detection of the level of the stochastic nonlinearities
(Schoukens, Swevers, Pintelon, & Van der Auweraer, 2002a)

The basic idea is to applyR realizations of a periodic
signal and to measure the response to each input overM�2
periods once the transients disappeared as shown inFig.
6. Two variances,	2

G,p(k) and	2
G,r (k), are calculated. The

first is the sample variance of the FRF measured over the
successive periods for a single realization of the input, the
other is the variance measured over the different realizations.
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DefineG[r,m] as the FRF measured in periodm of realization
r : G[r,m]( j�k)=Y [r,m](k)/U [r,m](k), withU [r,m], Y [r,m] the
DFT spectra of the corresponding input/output data blocks.
Then

	2
G,p(k)=

1

R(M − 1)

R∑
r=1

M∑
m=1

|G[r,m] −G[r]
m |2,

with G[r]
m = 1

M

M∑
m=1

G[r,m] (20)

and

	2
G,r (k)=

1

RM − 1

R∑
r=1

M∑
m=1

|G[r,m] −Gm|2,

with Gm = 1

RM

R∑
r=1

M∑
m=1

G[r,m]. (21)

Since we consider systems for which a periodic input results
in a periodic output with the same period, it is clear that
	2
G,p(k) depends only on the variations from one period to

the other which are due to the disturbing noiseny. 	2
G,r (k) is

calculated over the different input realizations and so it de-
pends on both noise sources. Comparing	2

Y,p(k) and	2
Y,r (k)

gives immediately an idea about the disturbing noise and the
nonlinear noise levels (seeSchoukens et al., 2002afor the
details, andD’Haene, Pintelon, Schoukens, & Van Gheem,
2004for an extended version).

Example. In Fig. 7, the method is applied on a car body in
white (only the metal frame of the car, without seats, shock
absorbers, motor, wheels, etc.) with the following settings:
R= 8,M = 15. The structure is excited with random multi-
sines up to 400 Hz. The impact of the different noise sources
is clearly visible. The reader should be aware that the non-
linearities might not only be due to a nonlinear behaviour
of the car, also nonlinearities in the measurement setup will
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be accounted for (Peeters, Van der Auweraer, Schoukens, &
Pintelon, 2003).

4.4.2. Separation of the even and the odd stochastic
nonlinearities

A second possibility to detect nonlinear distortions makes
explicitly use of the flexibility of random multisines: only
a selected set of harmonics (called measurement lines) is
excited and the nonlinearities at the output are detected
by measuring the output levels at the non excited frequen-
cies (called detection lines). This idea was already sug-
gested byEvans, Rees, and Jones (1994a)andMcCormack,
Godfrey, and Flower (1994)and is further elaborated in
(Vanhoenacker & Schoukens, 2001;Schoukens, Pintelon,
& Dobrowiecki, 2002b) where the choice of the excitation
and detection frequencies is studied. Consider for example a
random multisine that excites the system at the frequencies
k/N, k=1,3,9,11,17,19, . . . ,4p+1,4p+3, . . . , p ∈ N

(such a signal is called special odd). In that case the even
nonlinearities are detected at the even lines in the output
spectrumy(2l), l = 1, . . . , N/2, and the odd nonlinearities
at the non excited odd linesY (l), l=5,7, . . . ,4p+5,4p+
7, . . . , p ∈ N.
Discussion: In practice some additional problems can

occur during this test.

• The nonlinear interaction between generator and plant
can also generate unwanted excitation lines at the detec-
tion frequencies which should remain zero in the ideal
situation. Under these conditions it is no longer clear
what part of the output should be assigned to the linear
behaviour, and what part is due to the nonlinear distor-
tions. A first order correction can be made to reduce the
problem (Vanhoenacker & Schoukens, 2003), but this
method is less robust compared to the previous method
(Section A) where such interaction is not disturbing at
all the results.

• It turns out that the level of the nonlinear noise source
measured at the non excited odd frequencies underesti-
mates the level of the nonlinear noise source contribu-
tions at the measurement lines if periodic grids of ex-
cited and unexcited spectral lines are used (Dobrowiecki
& Schoukens, 2001a; Vanhoenacker, Dobrowiecki, &
Schoukens, 2001). If the detection lines are randomly
chosen, the extrapolation factor is 1.

• Another price to be paid is the loss in frequency resolu-
tion caused by the non-excited lines which increases the
required measurement time if a given resolution should
be respected.

Example. This method is illustrated on the hair dryer using
a special odd multisine (Németh & Vargha, 1999). In Fig. 8,
the output amplitude spectrum is shown. Notice again that
not only the level of the nonlinearities is detected, also the
process noise levels are available from the periodic repeti-
tions. In this example it is clear that the even nonlinearities
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are the dominating distortion. For this reason odd excitations
will reduce	GR significantly, as was observed inFig. 4.

Conclusion: This test provides more information than the
previous one, but an experienced user is needed to perform
it well. Moreover, the test is less robust with respect to the
experimental setup and heuristic extrapolation factors are
needed during the interpretation of the results.

4.4.3. Estimating the level of the nonlinear contributions
to GR

There is no direct access possible to the nonlinear contri-
butions toGR. These contributions cannot be separated from
the rest of the signal as was done for the nonlinear noise
source contributionsYS . It is tempting to use the levels of
YS also to bound the nonlinear contributions toGR. There is
yet no formal theoretical framework available to support this
idea, although some insights are available (Dobrowiecki &
Schoukens, 2001a). UsingYS as an indication of the nonlin-
ear contributions toGR is an extrapolation. The bias is usu-
ally under estimated and the level depends upon the choice of
the excitation and the system. Depending upon the situation
extrapolation factors of±3 dB up to±20 dB are observed
in the examples. The latter appear if only a small fraction of
the total excitation power is in the pass band of the system.

The reader might be a bit disappointed about these ‘loose’
results, but she/he should realize that it is better to get at
least a rough idea about the possible errors, than being even
not aware about their existence.

4.5. Impact on the linear identification practice:
parametric linear models

In this section we study the impact of nonlinear distor-
tions on the parametric identification of linear models. Two
approaches are considered. The first one is the classical pre-
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diction error approach (Söderström & Stoica, 1989; Ljung,
1999) where a parametric plant and noise model are simul-
taneously estimated. In the second approach a non para-
metric noise model is identified during the preprocessing
of the raw data. Next a parametric plant model is identified
using the previous noise model as a weighting function
(Schoukens, Pintelon, Vandersteen, & Guillaume, 1997;
Pintelon & Schoukens, 2001; Pintelon & Schoukens, 2002b).

4.5.1. Combined identification of plant and noise model
In the ‘classical’ identification approach, a linear model

G0(q, 
) is estimated together with a noise modelH0(q, 
)

y(t)=G0(q, 
)u0(t)+H0(q, 
)e(t)+ TG(
). (22)

TG(
) models the plant transients. Nowadays,TG(
) is usu-
ally estimated together with the plant model (estimate the
initial conditions).

The model parameters
 are estimated by minimizing the
prediction error, leading to the following definition for the
estimates:

Definition 9. The prediction error estimates (estimated plant
and noise model) are given by


̂PE(N)= arg min



1

N

N∑
k=1

|H−1(q, 
)(y(t)−G(q, 
)u(t)

− TG(
))|2. (23)

Because we deal here with identification in the presence of
model errors, consistency should be replaced by convergence
to the model (parameters) that would be obtained on the
“exact” dataGR.

Definition 10. Best linear parametric approximation:


̂∗(N)= arg min



2

N

N/2∑
k=1

∣∣∣∣GR
(

j2�
k

N

)
−G(ej2� k

N , 
(N))

∣∣∣∣
2

	2
YS
(k)+	2

Yn
(k)

.

(24)

Because Theorem 1 guarantees thatGR and	2
YS
(k) are

smooth functions, these can be approximated arbitrary well
by a rational form if the order of the models is large enough.
Hence it is always possible to balance the model errors
and the noise errors using a classical model selection tool
like the AIC or MDL criterion (Ljung, 1999; Akaike, 1974;
Rissanen, 1978). For such a well selected model order and
under the classical identifiability assumptions (Ljung, 1999;
persistent excitation, existence of a unique minimum), the
following result is obtained:

Theorem 3. Consider a system belonging to the set S, ex-
cited with an excitationuN ∈ E. If the noise Assumption1
is met, 
̂PE(N) converges in probability tô
 ∗ (N):
plim
N→∞

(
̂PE(N)− 
̂ ∗ (N))= 0. (25)

Proof. SeeSchoukens et al. (1998), Pintelon and Schoukens
(2001).

From Theorem 3 it follows that the ‘model errors’
|GR( j2�k/N) − G(ej2�k/N , 
̂(N))| can be made arbi-
trarily small compared to the disturbing noise and the
stochastic nonlinear contributions. Similar, the noise
model H(ej2�k/N , 
̂(N)) can follow arbitrarily well
	2
YS
(k)+	2

Yn
(k). As a consequence this estimated plant/noise

model will pass all 2nd order moment based validation
tests. This is an unwanted and dangerous situation because
the user gets no warning at all that a serious problem is
hidden in the data. For example the uncertainty bounds that
are calculated from this model are not valid. These bounds
decrease to zero as anO(N−1/2), while it is clear that this
is not true for the nonlinear distortions and their induced
errors (Pintelon & Schoukens, 2001).

The basic reason for this failure is that the noise model
H is shaped to whiten the sum of the disturbing noise and
the stochastic nonlinearities, while the variance� of the
driving white noise source is scaled to match the observed
levels. This situation changes completely if the noise model
is obtained from a prior analysis of the data as is discussed
in the next section.

4.5.2. Separated identification of the noise models
If periodic excitations are used, it is known from Section

4.4 that the disturbing noise variances	2
Y (k) can be obtained

separately from the variance of the stochastic nonlinear dis-
turbances even before the identification process starts. Using
this non parametric noise model	2

YS
(k)+ 	2

Yn
(k) or 	2

Yn
(k)

as weighting function, the following frequency domain iden-
tification scheme can be defined:

VSML(
, U, Y )= 2

N

N/2∑
k=1

|Y (k)−G( j2�k/N, 
)U(k)|2
	̂2
YS
(k)+ 	̂2

Yn
(k)

or

VSML(
, U, Y )= 2

N

N/2∑
k=1

|Y (k)−G( j2�k/N, 
)U(k)|2
	̂2
Yn
(k)

.

(26)

In the first case, the estimate is weighted with respect to all
distortions (if their variance is available), in the second case
only the process noise is considered.

There is a full equivalence with the time domain identifi-
cation framework (Schoukens et al., 1999). Remark that in
(26) the exact noise variances	2

YS
(k),	2

Yn
(k) are replaced by

the estimated onê	2
YS
(k), 	̂2

Yn
(k) obtained from measuring

M successive periods of the input/output signals. The prop-
erties of this estimator, the sample maximum likelihood es-
timator (sample MLE) are known (Schoukens et al., 1997).
The estimator remains consistent (convergence to the noise-
less solution in case of model errors) ifM�4. However, a
small loss in efficiency appears: the covariance matrix on the
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Table 2
Recommendations for the model selection process forVSML with a weighting	2

Yn
(k)

White residuals Coloured residuals
→ best linear → still unmodelled
approximation dynamics (model errors)

The cost function is too large Nonlinear distortions present Increase the model order
It makes no sense to increase the model order

The cost function is not significantly different from the expected value This is the ideal situation Increase the model order
Best linear model check the noise analysis
No model errors detectable

The cost function is too small Check the noise analysis Increase the model order
Check the noise analysis

parameters increases with((M−2)/(M−3)) (M�6). The
parameters are asymptotical normally distributed ifM�7
(Pintelon & Schoukens, 2002a).

Although both estimation procedures (prediction error,
sample MLE) converge to the same limit model, the be-
haviour of the model validation process is completely dif-
ferent. In the latter case, the cost function can be absolutely
interpreted since the noise model is fixed. Consider the sit-
uation where the weighting in (26) iŝ	2

Yn
(k) (the non para-

metric noise model is extracted from a number of succes-
sive periods only, no averaging over different realizations of
the excitation is made). In the absence of model errors, the
expected value of the cost function is

E{VSML(
, U, Y )} = M − 1

M − 2

(
1 − n


N

)
, (27)

with n
 the number of free parameters. A cost function that
is too large compared to (27) indicates errors that are not ex-
plained by the observed noise levels. If these errors are white,
the best linear approximation is found. Correlated residu-
als point to unmodelled dynamics, hence it makes sense to
increase the model order. This leads to the model selec-
tion/validation process given inTable 2. If the full weighting
	̂2
YS
(k)+ 	̂2

Yn
(k) is used, the classical rules apply again (the

nonlinearities are in that case detected from the procedure
described in Section 4.4).

There exist a number of tools like the AIC and MDL crite-
ria that are used to choose between different models (Akaike,
1974; Rissanen, 1978). These rules should be adapted to
the situation of a fixed/estimated noise model. For a fixed
noise model, the criterion should be reformulated to include
the effect of model errors. For the standard prediction error
identification methods this is done implicitly during the es-
timation of the noise variance� starting from the residuals
(Söderström & Stoica, 1989; Ljung, 1999). For the sample
MLE, a modified criterion is needed. In the end the same
criterion is found for both situations (Schoukens, Rolain, &
Pintelon, 2002c):

VN(
, Z)
(
1 + 2

n


N

)
, (28)

with VN(
, Z) equal toVPE(
, Z) or VSML(
, Z).

5. Conclusions

In this overview paper we proposed a framework to ex-
tend the linear system identification framework to nonlinear
systems with a dominant linear behaviour. The focus is com-
pletely on the concepts and not on the mathematical details
that can be found in the references. Nonlinear distortions
are explicitly included into the framework and three major
results are presented.

A first result is that a nonlinear system can be replaced
by a linear system plus a nonlinear noise source. The prop-
erties of this representation are studied for randomized ex-
citations. It turns out that the linear system is the best linear
approximation, while the nonlinear noise source behaves as
normally distributed disturbing noise.

In a second step, these insights are used to line out a best
engineering practice to measure the FRF of the best linear
approximation.

The last major result is a better understanding of the be-
haviour of the classic identification schemes, for example
the prediction error framework and the frequency domain
identification schemes. It turns out that the properties of
these identification schemes are maintained, but the vali-
dation process is strongly affected by the presence of the
nonlinear distortions. If a parametric noise model is iden-
tified simultaneously with the plant model, the presence of
the nonlinear distortions can be completely missed using the
classical whiteness and cross-correlation tests. The user gets
no indication at all that something is going seriously wrong.
If a non parametric noise model is extracted from a prior
analysis, making use of periodic excitations, an alternative
model selection and validation procedure is formulated that
reveals the presence of nonlinear distortions.
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