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Abstract—This paper treats the identification of linear systems between the true output and output of the Volterra series) con-
in the presence of nonlinear distortions. It extends the theory de- verges everywhere to zero at the same rate as the number of
veloped in [1] for measurement setups where the input is exactly tarms in the series tends to infinity=(uniform convergence),
known and the output is observed with errors (output error frame- while here itis only required that the power of the approximation

work) to measurement setups where both the input and output are d L Th S
observed with errors (errors-in-variables framework). An appro-  €/TOr tends to zero< pointwise convergence). The pointwise

priate measurement strategy and identification algorithm are pre- Convergence (approximation in least squares sense) does not ex-

sented. clude that the approximation error remains large at a discrete set
Index Terms—Frequency domain, linear systems, nonlinear dis- of '_SOIate_d points (sm_nlar to a Fo_urler series apprOXImatI(_)n of
tortions, nonparametric noise models, system identification. a discontinuous function), which is not the case for the uniform

convergence. Nonlinear phenomena for which the theory does
not apply are bifurcations, chaos, and subharmonics.
. INTRODUCTION The goal of a linear identification experiment in the pres-

N LINEAR system identification, a complex (distributedence of nonlinear distortions can be the identification of the
I and/or nonlinear) process is approximated by a lineHHe underlying linear system or the best linear approximation of
(lumped) dynamic model. The validity (utility) of the linearthe overall system including the nonlinearities. The first case is
model is application dependent and should be establishedufieful for physical modeling and, if the system behaves linearly
practice. While the influence of random (measurement) errd® small inputs, then crest-factor-optimized excitation signals
on the identified linear models is well understood [2], [3], th@re most suited for the identification experiment [3], [6]. The
effect of nonlinear distortions has only recently been studié@cond case is useful if a linear input/output description is re-
[1], [4]-[6]. Most of the effort has been spent to ana|yzguired for a certain class of excitation signals. This paper han-
the impact (detection, qualification, and quantification) ofles the second case.
nonlinear distortions on frequency response function (nonpara-The paper is organized as follows. Section Il studies the re-
metric transfer function model) measurements [1], [4]-[6gPOnse of a nonlinear system to the class of random-phase mul-
The identification of parametric transfer function models iHSIiNe excitations. Section Il presents an appropriate measure-
the presence of nonlinear distortions has been treated in [1] fBgnt strategy and identification algorithm for the best linear ap-
measurement setups where the input is exactly known and Bigximation (also called related linear dynamic system) of the
output is observed with errors (output error framework). THaverall system. The theory is illustrated by a simulation (Sec-
contributions of this paper are i) generalization of the resultn 1V) and a real measurement example (Section V).
of [1] to measurement setups where both the input and output
are corrupted by errors (error-in-variables framework), and ii)  1l. STUDY OF THE INFLUENCE OF THENONLINEAR
development of an improved identification algorithm for the DISTORTIONS
best linear approximation c_)f a n_onlinear system. A. Class of Excitation Signals

The class of nonlinear distortions considered in this paper is ) ) ]

restricted to those nonlinear systems which can be approximated e response of the nonlinear system is studied for random-
arbitrarily well in a least squares sense by a Volterra series Bp@seé multisine excitations. This is a periodic signal with a
a given input domain [7]. This class allows describing strongfeterministic user-defined amplitude spectrum and a random-
nonlinear phenomena like saturation (e.g., amplifiers) and dRf?@se spectrum. Following the lines of [1], the results presented
continuities (e.g., relays, quantizers). This is not in contradictidf this section can easily be generalized to periodic Gaussian
with the well-known fact that a Volterra series is only suitablBoise (Rayleigh distributed amplitude and uniformly distributed
for describing weakly nonlinear systems. Indeed, in a classi¢4]ase spectrum) and to Gaussian noise excitations.

\olterra series expansion, the approximation error (differencePefinition 1: A signal u(¢) is a normalized random-phase
multisine excitation if
N
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with A(—f) = A(f) ( denotes the complex conjugate) anavhere
0 < JA(S)| £ C < . |A(f)| has a countable number of dis-

continuities in the banfD, fi,.x] with 0 < fma}f < fs/2, e}nd 1 () = cn Z Gt
A(f)y = 0for f = 0andf > fuax. ZA(f) is the realiza- B k Nn—1
tion of an independent uniformly distributed random process on bty oo ki1 =1

[0, 27). The frequencieg.,.. and f; are independent aV. [J
Note that the random-phase multisine (1) contains
I = N fiax/ fs sinewaves.

y (_Sk17 Skyy vvvy Sk, 1o Skn—lsk)

AUEDP - U (k-0

B. Class of the Nonlinear Systems with ¢, = 2°71(2n — 1)!!, and¥s(k) is the zero mean sto-

. hastic nonlinear contribution in (3), which is uncorrelated with
We assume that the output of the nonlinear system can tchg input spectrum

approximated arbitrarily well in least squares sense by a \olterra
series on a given input domain. Consider now the steady state
response(t) of such a system to a random-phase multisift¢

(1), and definelU/(k) andY (k) as the scaled DFT spectra of,
respectivelyN samples of the excitatiom(t) and the response The sum

E{Ys(HT(R)} = B¥sMIE (TR} =0. (1)

t
v Grlst) = Golsn) + C(sn) ®)
N-1
X(k) = N—L/2 Z a:(nTs)e_j%k"/N ) is called the related linear dynamic system. It clearly depends
o on the amplitude spectrum of the random-phase multisine, and

. . _ is independent of the even degree nonlinear distortions.
with X = U, Y, z = u, y, and1; the sampling period./ (k) Multiplying (5) by the complex conjugaf (k) of the input

andY'(k) are related by DFT spectrum, and taking the expected value, gives, using (7)
o E{Y(&)U(k)
Y(k) = Z Y™(k) 3) Gr(sk) = E{{T/%)P}} 9)
n=1

Equation (9) shows that within the class of random-phase mul-
tisines with a given amplitude spectrum it makes sense to de-
N scribe the input/output behavior of the overall system, including

- ” the nonlinearities, by the related linear dynamic sy Sk)-

Y(k) =N~ Z G (ks Sk 0 1) Similar results are valid for periodic Gaussian noiss([e[?r‘?d a?symp-

totically (N — o) valid for Gaussian noise if the expected

values in (9) are also taken w.r.t. to the random amplitudes of

the excitationu(¢) (see [1]). The related dynamic system then

with & = >0, ki, G™(sky, Skss -- -, Sk, ) the symmetrized pecomes

frequency domain representation of the Volterra kernel of de-

green [7], [8], and U(k) = A(kf./N). Note that the sym- Gr(sx) = Go(s) + E{Gr(s1)} (10)

metrized kernel is independent of the order of its arguments. ] .
where the expected value is taken w.r.t. the random amplitudes

C. Related Linear Dynamic System in (6). It can be shown that the related dynamic system (10) of

.. _ the (periodic) Gaussian noise is related to that (6) of the random-
For random-phase multisines (see Definition 1), we can d'?ﬁase multisine by
i-

tinguish between deterministic and zero mean stochastic con
butions in (3). Note that stochastic in this context means sto- ) )
chastic w.rt. the different realizations of the random phases lim E{Gr(si)} = lim Gr(sk)-
LA(kfs/N) of the excitationu(t). In [1], it has been shown
that (3) can be written as Since (9) is nothing else than the division of the cross-power by
the auto-power spectrum, the related dynamic system is also the
AN . . best linear approximation in a least squares sense. The advan-
Y (k) = (Golon) + Galse)UR) + Ya (k) ®) tage of using random-phase multisines over (periodic) Gaussian
noise to measuré&r(s;) is that additional averages over the
random amplitudes are avoided. The advantage of using peri-
odic Gaussian noise over Gaussian noise to meaSu(&;)
is that the leakage errors are avoided. For random-phase multi-
sines,|U(k)|? is deterministic and (9) can be simplified to

whereY ™ (k) stands for the nonlinear contribution of degree

N P T—
Uk )U(k2) - - Ulkn) (4)

11)

with Go(sx) = G*(si) the transfer function of the true under-
lying linear systemGz(s;) is the bias or deterministic non-
linear contribution in (3)

Gpsk) = 2:)2 G (se) ©) Gr(sk) = E{Y (k)/U(k)}. (12)
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D. Properties of the Stochastic Nonlinear Contributions Y o(k)
iolvi —iLUk) i
Multiplying (5) by e gives UG Y k) Yo
J LUKk J LUk Gp® +
Y (k)e I EV® = Gr(si)|U(k)] + Ys(k)e ™7V ® 0 (13) ~

Written in this form, it is obvious tha‘t’s(k)c_le(k) isinde-  Fig. 1. Input/output behavior of a nonlinear system excited by a random-phase
pendent of the signal ter@r(sx)|U(k)|. The stochastic be- multisine.

havior of Ys(k)e~#2Y(*) has been studied in [1]. It turns out
that it has similar properties as the measurement noise; for €
ample, it has zero mean, is asymptoticdlly — oo) uncorre-

. ; : ) 4 ug(t) li
lated over the frequency, and is uncorrelated with the input Jnear v
signal. This analysis motivates the block diagram of Fig. 1. H(s) G
m,(f)
IIl. I DENTIFICATION IN THE PRESENCE OFNONLINEAR
DISTORTIONS
A. Noise and the System Model u(t)

In most identification experiments, both J_[he mmﬂt) and Fig. 2. Measurement of the best linear approximatibg(s) of a nonlinear
outputy(t) are observed and hence are subject to measurem@ice: u, (), v, (+) are the true input/output signalsi. (t), ., (t) are the

errors (see Fig_ 2)_ This leads to the following errors-in- varirput/output measurement errois;(t) is the zero mean stochastic nonlinear
ables stochastic framework contribution;r(t) is the reference signal (typically the waveform stored in the
arbitrary waveform generator).

!

—~
&

~
Il

Yo(k) + Ny (k) with Z7 = [27(1)Z%(2)--- ZT(N)] and
U(k) = Uo(k) + Nu (k) (14)

c(sn, 0, Z(K)) = Alsk, )Y (k) — Blsw, O)UK) (17)
with Y (k), U(k) the scaled input/output DFT spectra  o2(sy, 8) =|A(sk, 0)> 0% (k) + |B(sk, 0)*02 (k)
(2)I, Yo(k)sz (kc)iR(s%Uo((]/:)), U;(/zi)th; t(rll:)e (ur}\l}ntz\]iv?) — 2Re(A(sk, 0)B(sy, 0)ot (k)  (18)
values, an = CNp(k) = My
the additive erors. EunationJr(lfl) can bbe summeblrized as oF =var(Ny (k), ot (k) = var(NVu (),
Z(k) = Zo(k) + Ny(k) with ZT(k) = [Y(k)U(k)] and and

similarly for Zy(k) and Nz(k). The related linear dynamic 031 (k) = coval Ny (k), Ny (k). (19)
systemGg(si) is modeled by a rational transfer function in
the Laplace variable e(sk, 0, Z(k)) is the equation error of the model and
o2 (s, ) = var(e(sg, 0, Nz(k))) the variance of the equation
e ] error where the measurements are replaced by the noise on
B(s, 6) Z bys’ the measurements. The ML estimate (16) of the related linear
G(s, 0) = IR ’:0 (15) dynamic system has exactly the same properties of the ML
A(s, 0) Z as” estimate of a linear dynamic system [9] (proof: see Appendix I).

Note that the ML estimator (16) requires the knowledge of the
noise (co-)variances.

whered” = [aga; - - an,bobs - - - by, ] is the vector of the model ¢ pMeasurement Strategy
parameters, and(s, ¢), B(s, &) are, respectively, the denom- . . . . .
inator and numerator polynomials. SinGés, \8) = G(s, 6) An estimate of the noise (co-)variances (19) is obtained

for A # 0, there is a parameter ambiguity in (15) and, thereforf{irough the following measurement strategy:

the model parameters must be constrained, for exampte, 1, 1) Choose the amplitude spectrupa(kf;/N)| of the
b, = 1or|6|3 = 1. random-phase multisine (see Definition 1).
2) Make a random choice of the phaséd(kf,/N), k =
B. Maximum Likelihood Estimator 1,2, ..., I of the random-phase multisine (see Defini-

tion 1) and calculate the corresponding time sigr{a).
3) Apply the excitation to the device under test and measure
P > 1 periods of the steady state respon$g), y(¢).

Following the lines of [3], [9] the maximum likelihood (ML)
estimatordyr,(Z) can be constructed. Its cost function is given

by 4) Repeat steps 2. and B > 6 times!
F g — - . )
elsn. 0. Z(E)]|? M = 6 is the minimal number of experiments required to preserve the
Vui(8, Z2) = Z M (16) asymptotic(N — oc) properties of the maximum likelihood estimator (16)
= sk 0) (see [12]).
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5) Calculate the DFT spectra of the inpw(t), outputy(?),
and reference(t) signals for each experiment at the ex-
cited DFT frequencies. This givéd sets of the reference
RI™(k), noisy inputUl™I(k), and noisy output’[™I(k)
spectrak =1,2, ..., Fandm=1,2, ..., M.

6) Projectthe input and output spectra on the reference spt
trum

r()

Y (k) = YU (k) /R (R,
ULk = UM (k) /RI (k)

(20)

—_—>
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u(t)

nonlinear nonlinear ¥
actuator device L
H[.] Gl]
() nonlinear Y0
_— system —
T[.]

Fig. 3. Schematic representation of a nonlinear device loading the generator
nonlinearly: the input:(t) of the device is nonlinearly related to the reference

signalr(t). The overall system from the referencgt) to the output of the

and finally calculate the sample mean and samp?‘é
(co-)variances

Yy =1 S V),
A ) n;\;l
Utk =57 > Ur'(k) (21)
1rn=1 y A
L) = 571 > [T - YR )|
) rn];l A
() == 2 |0 - UF )|
oA A
63y (k) = ——= > (Y =Y w) ) (0 - Ul ()
m=1
(22)
Notes

» The stochastic nonlinear contributign(t) (Fig. 2) is a
periodic signal, which has the same periodicity as the cor-
responding reference signalt). Calculating the sample
(co-)variances over one experiment [one realization of
the phaseg A(k f. /N)] will hence only give information
about the measurement erroddy (k) and M (k) in
(14), but not about the stochastic nonlinear contributions
Ys(k). Different realizations of the phasesA(kf,/N
are required to get the contribution &f(k) into the
sample (co-)variances.

* Due to the random choice of the phagd(k f./N) over
the different realizations of the reference sign@l), the
phases of the true input/output spectra will be scattered in
the interval[0, 27). Therefore, in step 6. of the measure-
ment strategy, the input/output spectra must be projected
on the reference spectrum; otherwise, the sample means
would tend to zero ag/ increases to infinity (see Ap-
pendix ).

vice is denoted b¥'[.].

will not converge to the true valu&g (s ) asM increases
to infinity. The bias can be avoided by taking the ratio of
the sample means (21)

. Z vidr

rnl

LS vl

m=1

(24)

Indeed, using the strong law of large numbers [11],
it follows that (24) converges strongyd/ — oc) to
E{Yr(k)}/E{Ugr(k)}, which is exactlyGr(sy) (see
Appendix ).

e It may happen that the nonlinear device loads the

generator nonlinearly or that the actuator itself is
nonlinear, creating nonlinear distortions at the input.
Fig. 3 shows the corresponding block diagram. Ap-
plying the measurement strategy to this situation gives
an estimateG z(s,) Y (k)/U(k) which converges
strongly 0 E{Yr(k)}/E{Ur(K)} = Tr(st)/Ha(s1).
where Tr(s,) and Hg(s,) are the related linear dy-
namic systems of the nonlinear systerl§-] and
H[], respectively (see Appendix IIl). Note that
in general Tr(sx)/Hr(sk) # Gr(sg); however,

if the nonlinear distortions at the input are small,
varUs(k)) < |Hg(sk)R(K)|?, or if the best linear
approximation of the devic€r(sy) is not very sensitive
to (small) variations of the input power spectrum, then

D. Estimator Based on the Sample Mean and Sample
(Co-)Variances

when the inputl/(k) is disturbed by measurement noisgnhe ML cost function (16) defines a new estimator

[10]. This means that the estimate

(23)

Vamr(6, Z)
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with u(t) y(©)

— G fL] Gls)  f——

¢ (51, 6, Z(k)) = Alsw, OF (k) = B(sw, )0 (k) (26)

~2 _ 2,2 2.2
Ué(sk’ 9) o |A(Sk’ 9)| UY(k)j |B(Sk’ 9)| UU(k) Fig. 4. Wiener—Hammerstein system consisting of the cascade of a linear
— 2Re (A(Sk, 0)B(sy, 9)6§/L(k)) 27) dG}/n(aSniC blockG(s), a static nonlinear block[.], and a linear dynamic block
al8).

5% (k) =63 (k)/M, 62 (k) = &4 (k)/M,
and 2ot
6% (k) =063 (k) /M. (28) 10-

B)

The minimizer§5h,1L(Z) of (25) has exactly the same asymp-
totic (N — oo) properties as in [12]; for example, if the model
ordern;, overn, is sufficiently high, then the estimated transfer
function modelG(s, 6syr.(Z)) converges strongly to the re-
lated linear dynamic systefg (s ) (proof: see Appendix 1V). 30 B —
0 500 1000 1500 2000
IV. SIMULATION EXAMPLE f (Hz)

magnitude (d
3

As a simulation example we take a Wiener—Hammerstety. 5. Signal-to-noise ratios (SNRs) of the simulations calculated using the
system (see Fig. 4) with measurement strategy of S&_action n-c yvit(t) = uo(t),P =1 _andM =

400: (a) output SNR of the simulation without measurement noise; (b) and (c),

respectively, the input and output SNR of the simulation with measurement

_ 1 _ noise.
Gi(s) = 82/w3 T 5/(Quo) + 1’ J = tanh,
and tion Ys(k) in (5). The measurement strategy of Section llI-C is
Cals) = 1 (29) @pplied withr(t) = uo(t), P = 1, andM = 4. This increases
s/wzap +1 the SNRs of the data with a factor of 2 (6 dB). One thousand

data sets (21) and (22) are generated for the case with and the
(see Table I for the values ¢, @, andf3 4g). The input signal case without measurement noise.
u(t) is arandom-phase multisine (1) with = 50 KHz, fiax = Fig. 6 shows the frequency response function (24) of one such
2 kHz, N = 12500, |[A(kf,/N| = /N/(2F), andF = dataset. Atransfer function model (15) with = 3 andn;, = 0
N fmax/ fs the number of sinewaves. For this choice of the pgs estimated for each data set. The results are shown in Fig. 7
rametersu(t) containst’ = 500 sinewaves and has an rmsand Table I. From Fig. 7, it follows that the estimated transfer
value of 1.V input/output samples of the steady state responfighction models for the case with and the case without mea-
are calculated at the sampling rgte In [1], it has been shown syrement noise coincide. From Table |, it follows that the esti-
that the best linear approximation of the Wiener—-Hammersteitated model parameters in the case without measurement noise
system equals are quite close but not equal to their asymptotic values. This
is due to the finite value of" (and V). Increasingl” (and V)
Gr(s) = KG1(s)Ga(s) (30) ' makes the differences decrease to zer@@E 1) as predicted
by the theory [1]. The estimated model parameters, except the
QCr%-factor, for the cases with and without measurement noise co-
|gcide.

for N, and hence alsé’, sufficiently large.K depends on the
static nonlinearity and the power spectrum of the excitati
signal, but is independent of the frequency. Since (30)
only asymptotically(Z' — o) valid, the errors-in-variables
approach of Section Il is validated by comparing the esti-
mates with the case where no measurement noise is presefithe device under test (DUT) is a Wiener—Hammerstein
[My(k) = 0, My(k) = 0]. Therefore, two data sets aresystem (Fig. 4) consisting of the cascade of a third order
generated: one with and one without measurement noise.Ghebyshev filter (passband ripple of 0.5 dB and cut off fre-
the data set with measurement noise, the noisedg&s input quency of 4.4 kHz), a static nonlinear system (see Fig. 8), and
yo(t) output signals are disturbed by white Gaussian noigsethird order inverse Chebyshev filter (stopband attenuation of
with zero mean and standard deviatiQ\N/(2F) = 3.5 40 dB starting at 5 kHz). The input and output of the active
and0.15\/N/(2F) = 0.53, respectively. Note that the inputfilters are voltage buffered. Asymptotically [the number of
measurement noise is 3.5 times larger that the noiseless infpeuencies in the random-phase multisine (1) goes to infinity],
signal. the best linear approximation of the nonlinear system is given
The corresponding signal-to-noise ratios (SNRs) per spectogl

line of one period of the steady state response are shown in ,

Fig. 5. It follows that the input SNR per spectral line is 1 (0 dB). _ , _ bo+bis+bas

The output SNR of the simulation without measurement noing(S) =KGo(s) with  Go(s) = ag+ais+ -+ agst
is ameasure of the variance of the stochastic nonlinear contribu- (31)

V. REAL MEASUREMENT EXAMPLE
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magnitude (dB) magnitude (dB)
10+ 10—
-10 -10+
-30 -30+
'50""\""\""1""I ’50""I""I""I"'7
0 500 1000 1500 2000 (s} 500 1000 1500 2000
f (Hz) f (Hz)

(@) (b)

Fig. 6. Frequency response functié}h(sk) (24), calculated using/ = 4 independent repeated experiments. (a) Without measurement noise, (b) with
measurement noise.

TABLE | 1 kQ

RESULT OF THEMONTE-CARLO SIMULATION (1000 RUNS). MEAN VALUE OF
THE ESTIMATED MODEL PARAMETERS WITH AND WITHOUT MEASUREMENT o O
NOISE TOGETHERWITH THEIR 95% CGONFIDENCE BOUND

asymptotic estimate without estimate with 10 kQ 1 N 4148
value (N - o) measurement noise  measurement noise
fo H 1000 999.930 + 0.070 1000.27 +0.32
Q 10 10.033 £0.019 10.155  0.070 5 -
faqp (H2) 300 300.94 £0.70 301.7 2.0
K - 0.27068 + 0.00056 0.2721 £ 0.0015 Fig. 8. Static nonlinear system consisting of two resistors and one diode.
o signal FRFGR(s;) is much “noisier” than the small signal
] FRF Go(sy). This is entirely due to the stochastic nonlinear
. -20- contributionsYs (k) and not to the measurement errdis; (k)
”39, 1 andMy (k). Fig. 9(a) suggests that both FRFs are equal within
§ '40‘_ /i a frequency-independent gain factor. To verify this, the residual
£ g0 N
5 | s N . L
I 80 \\ GR(Sk) — KGo(Sk) (32)
100 is calculated, wher& is the mean gain between both FRFs in

SIS
0 500 1f0(?_|oz) 1500 2000 the passband of the DUT,

Fig. 7. Result of the Monte-Carlo simulation (1000 runs). Mean value of the

R
: . . ; . : N 1 o o
estimated transfer function models with and without measurement noise (solid g — — Grls)/Golsz with R = 200. 33
line), difference between the mean values (dash-dot line), and 95% confidence R ; | R( k)/ 0( k)| ( )

bound of the mean value with measurement noise (dashed line).

] _ i Fig. 9(b) shows the residual (32) and its 95% uncertainty bound.
whereK is a frequency-independent constant depending on ti&51ows thatGr(si) = K Go(sy,) within the measurement un-

static nonlinear system and the power spectrum of the iNRUYainty, which experimentally confirms (31). Using the large
signal, and7(s) is the cascade of the two linear parts. S

) - > i':?nal measurements (400 mV rms), the sample maximum like-
‘The DUT is measured using random-phase multisines (})oq4 (SML) estimatdsyi.(Z) (25) of transfer function model
with 7' = 500, fmax = 10 kHz, f; = 20 MHz/64 (N =

) _ (31) is calculated. In the absence of model errors, the 95% con-
15625), and|A(kfs/N)| = ¢, k = 1,2, ..., F with ¢ in-

- fidence interval of the minimum of the cost function equals
dependent ok. The signals are generated (HP model E1445A)

and measured (HP model E1437A) at the sampling frequency
fs, which is derived from a common 20 MHz mother clock ne) M-1 jE2\/ (M —1)3

F ~530.9£25.7

Following the strategy of Section IlI-C with/ = P = 16, the 2/ M-2 (M —2)2(M — 3)

small (rms value of 25 mV) and large (rms value of 400 mV) (34)

signal response of the DUT are measured. (see [12]). Comparing (34) to the actual value
Fig. 9(a) shows the corresponding frequency responB’g\qL(és]\qL(Z), Z) = 5573, it can be concluded that

functions (FRFs) calculated using (24). Note that the larggmost no model errors can be detected [14]. Fig. 10 shows
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Fig. 9. Frequency response function (FRF) measurement of the Wiener—Hammerstein system. (a) Comparison between the smalfﬂga,a) kiRished
line) and the large signal FRF z (s ) (solid line). (b) The residudl z (s, ) — K Go (k) (32) (dots), its 95% uncertainty bound (bold line), and the FRF (1)
(dashed line).

the ditference between the identifiedAIarge signal mod 0q......
G(sk, Osmr(Z)) and the small signal FRE(sy,) |

G(Sk, éSML (Z)) — f(éo(sk) (35)

whereK is calculated as

amplitude (dB)
o)
?

R
N 1 . R .
K=+ Z |G(sk, Osmr(Z))/Go(sk)] with R = 200. 100 1
- (36) 0 5000 10000

It can be ConCI,uqed thaﬁ(‘?k’ 95]\’”‘(Z)), = KGo(s) from Fig. 10. Comparison between the small signal FiRf s,.) and the modeled
dc to 4 kHz. This is approximately true in the band 6 kHz to 1Qge signal FRFG (s, fsu(2)): the residualGx(si, Osuw(Z)) —
kHz (the residuals are larger than their uncertainty). This is COR€(s..) (35) (solid line), its 95% uncertainty bound (bold line), and the FRF
firmed by modeling the small signal (25 mV rms) experimenty Go(sx) (dashed line).

where it turns out that a rational transfer function of order 6/6

is needed to explain the measurements (the two additional zer 0+
in this model lie outside the 10 kHz band).

Two additional measurements have been performed: ot
with a Schroeder phase multisine [(1) withA(kf,/N) =
—7nk(k — 1)/F], and one with periodic Gaussian noise [eq.
(1) with circular complex Gaussian distributet{ % f;/N)].
Both signals have the same power spectrum (and rms valu €
as the large signal random-phase multisines of the previol ®
experiments (rms value of 400 mV). Fig. 11 compares th
Schroeder FRF with the large (400 mV rms) and small (25 m\ -10
rms) signal FRFs obtained with the random-phase multisines
(measurement strategy of Section IlI-C with = 16 and Fig 11, Frequency response function (FRF) measurement of the passband
M = 1). Clearly, the behavior of the Schroeder multisine isf the Wiener-Hammerstein system using: (a) a small signal (25 mV rms)

i - o . dom-phase multisine (dashed line), (b) a large signal (400 mV rms)
completely different from the random phase multisines: tlJﬁ%dom-phase multisine (dots), and (c) a large signal (400 mV rms) Schroeder

Schroeder FRF is smooth fand wrongly suggests the preseﬂ%e multisine (solid line). For each experiment the measurement strategy of
of a large number of poles in the passband of the DUT, whif&ction 11I-C is followed with? = 16 andM = 1.

the large signal (random-phase multisine) FRF is rather noisy.

It c_IearIy il!ustrates that the theor_y p_rese_nted in this paper\jith 1/(k) the measured input DFT spectrum of the peri-

valid, only if the phases of the excitation signal are random. odic noise experiment and IDFT the inverse discrete Fourier
To illustrate the power (and limitation) of the best linear apransform. Fig. 12 compares the predicted outpat) to

proximation of a nonlinear device, the respopgg of one pe- the measured outpu(¢). It can be seen that the prediction

riod of the periodic noise experiment has been predicted usiggor j() — y(¢) is about ten times smaller thay(t). This

the previously identified mode¥(s, fsnr.(Z)). The prediction error is entirely due to the stochastic nonlinear distortions

f (Hz)

plitude (dB)
i

‘ ‘ = f(Hz)
1000 2000

g(t) is calculated as ys(t) = IDFT(Ys(k)) and not to the measurement errors
X my(t) andm,(t). Therefore, using a linear model, it is im-
§(t) = IDFT(G(sk, Osmr(Z))U(k)) (37) possible to reduce the prediction error below the level of the
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Fig. 12. Prediction of one period of the steady state response of the Wiener—-Hammerstein system to a periodic Gaussian noise excitation (40€hrthérms) wi
same power spectrum as the large signal (400 mV rms) random-phase multisines. (a) Predicte{Qutpalid line) and measured outputt) (dashed line).
(b) Differenceg(t) — y(t).

stochastic nonlinear contributiong(¢). Note that the 10% APPENDIX Il
error level in Fig. 12(b) corresponds to the 1 dB fluctuations
(rms value) of the FRF measurement with the large signg}l1
random-phase multisine in Fig. 11. Note also that, although
y(t) — y(t) in Fig. 12(b) has a random-like behavior, it is a

periodic signal with the same periodicity a&). Y(k) = Gr(sr)H(sk)R(k) + Ny (k)

U(k) = H(si) R(k) + No (k). (39)

Relating the true input and output spectra in (14) to the refer-
ce spectrum gives

VI. CONCLUSION

In this paper, the identification of linear systems in the predaking the expected value of (39) w.rt. the measurement
ence of nonlinear distortions is discussed. A related linear djQise and the random-phaget(kf./IV) of (k) shows that
namic system (best linear approximation) of the overall systefri ¥ ()} = 0 and E{U(k)} = 0. Dividing both sides of (39)
is introduced, which is valid for a general class of excitatiopy £(¥) gives
signals, and a general class of (strongly) nonlinear systems. This

best linear approximation can be identified using a general mea- Yr(k) = Gr(sp)H (s1) + Ny, (k)

surement setup where both the input and output are disturbed by

measurement errors. Using the best linear approximation, the re- Ur(k) = H(sr) + Nug (k) (40)
sponse of the nonlinear system can be predicted within an error

that is bounded below by the stochastic nonlinear contributioRgith Xgr(k) = X(k)/R(K), and Nx,(k) = Nx(k)/

R(k), X = Y andl/. Note that the noise (co-)variances
of Ny, (k) and Ny, (k) equal those ofNy (k) and Ny (k)
divided by |R(k)|?. Taking the expected value of (40) w.r.t.

Multiplying the errors-in-variables model (14) ky?<%®)  the measurement noise and the random-phiasgs f, /NV) of
gives R(k) givesE{Yr(k)}/E{Ur(k)} = Gr(sk).

APPENDIX |

Y(k)cfjlb’g(k) :GR(Sk)|UO(k)| _’_Ny(k)cfjlb’g(k) APPENDIX |l

Applying (5) to the nonlinear operato#d.] and H[.] gives,

—iLUg(k) _ . N =3 LU (k). . ;
U(k)e™ %W = Uy (k)| + Ny (k)™ 20 ® (38)  taking into account the measurement ertbfs (k), My (k),
Note that this phase shift does not change the cost function Y (k) =Tr(si)R(k) + Ny (k)
(16). The noisy partN(k)e=i<Uo(®) of (38) is indepen-
dent of the signal parfUy(k)|. In [1], it has been shown U(k) = Hr(si)R(k) + Nu (k) (41)

that Ys(k)/Uop(k) has the same stochastic properties as the

measurement errordfy; (k) and My (k). Since the phase of with Ny (k) = Ys(k)+My (k), Np (k) = Us(k)+My;(k), and
Ys(k)e£U0®) equals the phase afs(k)/Us(k), this is also  Ys(k), Us(k) the zero mean nonlinear distortions which are un-
valid for Ys(k)e=i4V®) We conclude thalv;(k)e=7<t®)  correlated with the referend@(k). Dividing both sides of (41)
has the same properties as the measurement errors. The bglyz(k) and taking the expected value w.r.t. to the measure-
difference with the identification of a linear dynamic systerment noise and the random-pha&é(k f, /N) of R(k) shows
Go(s) is that the linear dynamic system is replaced by thbat E{Yr(k)}/E{Ur(k)} = Tr(sk)/Hr(sk), whereYr(k),
related linear dynamic syste6ig(s). Ug(k) are defined as in Appendix II.
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APPENDIX IV [14] R.Pintelon,J. Schoukens, and G. Vandersteen, “Model selection through
. . . a statistical analysis of the global minimum of a weighted nonlinear
In [12], the properties of the SML estimator for linear dy- least squares cost functionEE Trans. Signal Processingol. 45, pp.

namic systems has been studied assuming that the frequency 686-693, Mar. 1997.
domain errors are independent (over the frequency) and nor-
mally distributed. It makes sense to study the properties of (25)
under these idealized assumptions if they are met asymptoti-
cally (F — oo). First note that the nois& ;(k)e =<V has
the same stochastic properties as the measurementidpise)
andMy (k) (see Appendix ). Next, it is sufficient to prove that
Ys(k)e—i£Uo®) is asymptotically normally distributed. From
[1], it follows thatYs (k) consists of the sum d@P(F") indepen-
dent random variables with bounded moments of order thr B ;

. . . russels, Belgium.
Hence,Ys(k) is asymptotically normally distributed at the rat He is presently a Professor in the Electrical Mea-

O(F*l/Q) (proof: see [13, Th. 9.1.3)). o surement Department (ELEC), VUB. His main re-
search interests are in the field of parameter estimation/system identification,
and signal processing.
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