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Abstract—This paper treats the identification of linear systems
in the presence of nonlinear distortions. It extends the theory de-
veloped in [1] for measurement setups where the input is exactly
known and the output is observed with errors (output error frame-
work) to measurement setups where both the input and output are
observed with errors (errors-in-variables framework). An appro-
priate measurement strategy and identification algorithm are pre-
sented.

Index Terms—Frequency domain, linear systems, nonlinear dis-
tortions, nonparametric noise models, system identification.

I. INTRODUCTION

I N LINEAR system identification, a complex (distributed
and/or nonlinear) process is approximated by a linear

(lumped) dynamic model. The validity (utility) of the linear
model is application dependent and should be established in
practice. While the influence of random (measurement) errors
on the identified linear models is well understood [2], [3], the
effect of nonlinear distortions has only recently been studied
[1], [4]–[6]. Most of the effort has been spent to analyze
the impact (detection, qualification, and quantification) of
nonlinear distortions on frequency response function (nonpara-
metric transfer function model) measurements [1], [4]–[6].
The identification of parametric transfer function models in
the presence of nonlinear distortions has been treated in [1] for
measurement setups where the input is exactly known and the
output is observed with errors (output error framework). The
contributions of this paper are i) generalization of the results
of [1] to measurement setups where both the input and output
are corrupted by errors (error-in-variables framework), and ii)
development of an improved identification algorithm for the
best linear approximation of a nonlinear system.

The class of nonlinear distortions considered in this paper is
restricted to those nonlinear systems which can be approximated
arbitrarily well in a least squares sense by a Volterra series on
a given input domain [7]. This class allows describing strongly
nonlinear phenomena like saturation (e.g., amplifiers) and dis-
continuities (e.g., relays, quantizers). This is not in contradiction
with the well-known fact that a Volterra series is only suitable
for describing weakly nonlinear systems. Indeed, in a classical
Volterra series expansion, the approximation error (difference
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between the true output and output of the Volterra series) con-
verges everywhere to zero at the same rate as the number of
terms in the series tends to infinity (uniform convergence),
while here it is only required that the power of the approximation
error tends to zero ( pointwise convergence). The pointwise
convergence (approximation in least squares sense) does not ex-
clude that the approximation error remains large at a discrete set
of isolated points (similar to a Fourier series approximation of
a discontinuous function), which is not the case for the uniform
convergence. Nonlinear phenomena for which the theory does
not apply are bifurcations, chaos, and subharmonics.

The goal of a linear identification experiment in the pres-
ence of nonlinear distortions can be the identification of the
true underlying linear system or the best linear approximation of
the overall system including the nonlinearities. The first case is
useful for physical modeling and, if the system behaves linearly
for small inputs, then crest-factor-optimized excitation signals
are most suited for the identification experiment [3], [6]. The
second case is useful if a linear input/output description is re-
quired for a certain class of excitation signals. This paper han-
dles the second case.

The paper is organized as follows. Section II studies the re-
sponse of a nonlinear system to the class of random-phase mul-
tisine excitations. Section III presents an appropriate measure-
ment strategy and identification algorithm for the best linear ap-
proximation (also called related linear dynamic system) of the
overall system. The theory is illustrated by a simulation (Sec-
tion IV) and a real measurement example (Section V).

II. STUDY OF THE INFLUENCE OF THENONLINEAR

DISTORTIONS

A. Class of Excitation Signals

The response of the nonlinear system is studied for random-
phase multisine excitations. This is a periodic signal with a
deterministic user-defined amplitude spectrum and a random-
phase spectrum. Following the lines of [1], the results presented
in this section can easily be generalized to periodic Gaussian
noise (Rayleigh distributed amplitude and uniformly distributed
phase spectrum) and to Gaussian noise excitations.

Definition 1: A signal is a normalized random-phase
multisine excitation if

(1)

0018–9456/01$10.00 © 2001 IEEE

Authorized licensed use limited to: Rik Pintelon. Downloaded on December 1, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



856 IEEE TRANSACTIONS ON INSTRUMENT AND MEASUREMENT, VOL. 50, NO. 4, AUGUST 2001

with ( denotes the complex conjugate) and
. has a countable number of dis-

continuities in the band with , and
for and . is the realiza-

tion of an independent uniformly distributed random process on
. The frequencies and are independent of .

Note that the random-phase multisine (1) contains
sinewaves.

B. Class of the Nonlinear Systems

We assume that the output of the nonlinear system can be
approximated arbitrarily well in least squares sense by a Volterra
series on a given input domain. Consider now the steady state
response of such a system to a random-phase multisine
(1), and define and as the scaled DFT spectra of,
respectively, samples of the excitation and the response

(2)

with , , and the sampling period.
and are related by

(3)

where stands for the nonlinear contribution of degree

(4)

with , the symmetrized
frequency domain representation of the Volterra kernel of de-
gree [7], [8], and . Note that the sym-
metrized kernel is independent of the order of its arguments.

C. Related Linear Dynamic System

For random-phase multisines (see Definition 1), we can dis-
tinguish between deterministic and zero mean stochastic contri-
butions in (3). Note that stochastic in this context means sto-
chastic w.r.t. the different realizations of the random phases

of the excitation . In [1], it has been shown
that (3) can be written as

(5)

with the transfer function of the true under-
lying linear system. is the bias or deterministic non-
linear contribution in (3)

(6)

where

with , and is the zero mean sto-
chastic nonlinear contribution in (3), which is uncorrelated with
the input spectrum

(7)

The sum

(8)

is called the related linear dynamic system. It clearly depends
on the amplitude spectrum of the random-phase multisine, and
is independent of the even degree nonlinear distortions.

Multiplying (5) by the complex conjugate of the input
DFT spectrum, and taking the expected value, gives, using (7)

(9)

Equation (9) shows that within the class of random-phase mul-
tisines with a given amplitude spectrum it makes sense to de-
scribe the input/output behavior of the overall system, including
the nonlinearities, by the related linear dynamic system .
Similar results are valid for periodic Gaussian noise and asymp-
totically valid for Gaussian noise if the expected
values in (9) are also taken w.r.t. to the random amplitudes of
the excitation (see [1]). The related dynamic system then
becomes

(10)

where the expected value is taken w.r.t. the random amplitudes
in (6). It can be shown that the related dynamic system (10) of
the (periodic) Gaussian noise is related to that (6) of the random-
phase multisine by

(11)

Since (9) is nothing else than the division of the cross-power by
the auto-power spectrum, the related dynamic system is also the
best linear approximation in a least squares sense. The advan-
tage of using random-phase multisines over (periodic) Gaussian
noise to measure is that additional averages over the
random amplitudes are avoided. The advantage of using peri-
odic Gaussian noise over Gaussian noise to measure
is that the leakage errors are avoided. For random-phase multi-
sines, is deterministic and (9) can be simplified to

(12)
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D. Properties of the Stochastic Nonlinear Contributions

Multiplying (5) by gives

(13)

Written in this form, it is obvious that is inde-
pendent of the signal term . The stochastic be-
havior of has been studied in [1]. It turns out
that it has similar properties as the measurement noise; for ex-
ample, it has zero mean, is asymptotically uncorre-
lated over the frequency, and is uncorrelated with the input
signal. This analysis motivates the block diagram of Fig. 1.

III. I DENTIFICATION IN THE PRESENCE OFNONLINEAR

DISTORTIONS

A. Noise and the System Model

In most identification experiments, both the input and
output are observed and hence are subject to measurement
errors (see Fig. 2). This leads to the following errors-in- vari-
ables stochastic framework

(14)

with , the scaled input/output DFT spectra
(2), , the true (unknown)
values, and ,
the additive errors. Equation (14) can be summarized as

with and
similarly for and . The related linear dynamic
system is modeled by a rational transfer function in
the Laplace variable

(15)

where is the vector of the model
parameters, and , are, respectively, the denom-
inator and numerator polynomials. Since
for , there is a parameter ambiguity in (15) and, therefore,
the model parameters must be constrained, for example, ,

or .

B. Maximum Likelihood Estimator

Following the lines of [3], [9] the maximum likelihood (ML)
estimator can be constructed. Its cost function is given
by

(16)

Fig. 1. Input/output behavior of a nonlinear system excited by a random-phase
multisine.

Fig. 2. Measurement of the best linear approximationG (s) of a nonlinear
device:u (t), y (t) are the true input/output signals;m (t); m (t) are the
input/output measurement errors;y (t) is the zero mean stochastic nonlinear
contribution;r(t) is the reference signal (typically the waveform stored in the
arbitrary waveform generator).

with and

(17)

Re (18)

var var

and

covar (19)

is the equation error of the model and
var the variance of the equation

error where the measurements are replaced by the noise on
the measurements. The ML estimate (16) of the related linear
dynamic system has exactly the same properties of the ML
estimate of a linear dynamic system [9] (proof: see Appendix I).
Note that the ML estimator (16) requires the knowledge of the
noise (co-)variances.

C. Measurement Strategy

An estimate of the noise (co-)variances (19) is obtained
through the following measurement strategy:

1) Choose the amplitude spectrum of the
random-phase multisine (see Definition 1).

2) Make a random choice of the phases ,
of the random-phase multisine (see Defini-

tion 1) and calculate the corresponding time signal.
3) Apply the excitation to the device under test and measure

periods of the steady state response , .
4) Repeat steps 2. and 3. times.1

1M = 6 is the minimal number of experiments required to preserve the
asymptotic(N ! 1) properties of the maximum likelihood estimator (16)
(see [12]).
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5) Calculate the DFT spectra of the input , output ,
and reference signals for each experiment at the ex-
cited DFT frequencies. This gives sets of the reference

, noisy input , and noisy output
spectra, and .

6) Project the input and output spectra on the reference spec-
trum

(20)

and finally calculate the sample mean and sample
(co-)variances

(21)

(22)

Notes

• The stochastic nonlinear contribution (Fig. 2) is a
periodic signal, which has the same periodicity as the cor-
responding reference signal . Calculating the sample
(co-)variances over one experiment [one realization of
the phases ] will hence only give information
about the measurement errors and in
(14), but not about the stochastic nonlinear contributions

. Different realizations of the phases
are required to get the contribution of into the
sample (co-)variances.

• Due to the random choice of the phase over
the different realizations of the reference signal , the
phases of the true input/output spectra will be scattered in
the interval . Therefore, in step 6. of the measure-
ment strategy, the input/output spectra must be projected
on the reference spectrum; otherwise, the sample means
would tend to zero as increases to infinity (see Ap-
pendix II).

• It is well known that (12) will introduce a (small) bias
when the input is disturbed by measurement noise
[10]. This means that the estimate

(23)

Fig. 3. Schematic representation of a nonlinear device loading the generator
nonlinearly: the inputu(t) of the device is nonlinearly related to the reference
signalr(t). The overall system from the referencer(t) to the output of the
device is denoted byT [:].

will not converge to the true value as increases
to infinity. The bias can be avoided by taking the ratio of
the sample means (21)

(24)

Indeed, using the strong law of large numbers [11],
it follows that (24) converges strongly to

, which is exactly (see
Appendix II).

• It may happen that the nonlinear device loads the
generator nonlinearly or that the actuator itself is
nonlinear, creating nonlinear distortions at the input.
Fig. 3 shows the corresponding block diagram. Ap-
plying the measurement strategy to this situation gives
an estimate which converges
strongly to ,
where and are the related linear dy-
namic systems of the nonlinear systems and

, respectively (see Appendix III). Note that
in general ; however,
if the nonlinear distortions at the input are small,
var , or if the best linear
approximation of the device is not very sensitive
to (small) variations of the input power spectrum, then

.

D. Estimator Based on the Sample Mean and Sample
(Co-)Variances

Putting the sample mean (21) and sample variances (22) in
the ML cost function (16) defines a new estimator

(25)
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with

(26)

Re (27)

and

(28)

The minimizer of (25) has exactly the same asymp-
totic properties as in [12]; for example, if the model
order over is sufficiently high, then the estimated transfer
function model converges strongly to the re-
lated linear dynamic system (proof: see Appendix IV).

IV. SIMULATION EXAMPLE

As a simulation example we take a Wiener–Hammerstein
system (see Fig. 4) with

and

(29)

(see Table I for the values of , , and . The input signal
is a random-phase multisine (1) with kHz,

kHz, , , and
the number of sinewaves. For this choice of the pa-

rameters, contains sinewaves and has an rms
value of 1. input/output samples of the steady state response
are calculated at the sampling rate. In [1], it has been shown
that the best linear approximation of the Wiener–Hammerstein
system equals

(30)

for , and hence also , sufficiently large. depends on the
static nonlinearity and the power spectrum of the excitation
signal, but is independent of the frequency. Since (30) is
only asymptotically valid, the errors-in-variables
approach of Section III is validated by comparing the esti-
mates with the case where no measurement noise is present

. Therefore, two data sets are
generated: one with and one without measurement noise. In
the data set with measurement noise, the noiseless input

output signals are disturbed by white Gaussian noise
with zero mean and standard deviation
and , respectively. Note that the input
measurement noise is 3.5 times larger that the noiseless input
signal.

The corresponding signal-to-noise ratios (SNRs) per spectral
line of one period of the steady state response are shown in
Fig. 5. It follows that the input SNR per spectral line is 1 (0 dB).
The output SNR of the simulation without measurement noise
is a measure of the variance of the stochastic nonlinear contribu-

Fig. 4. Wiener–Hammerstein system consisting of the cascade of a linear
dynamic blockG (s), a static nonlinear blockf [:], and a linear dynamic block
G (s).

Fig. 5. Signal-to-noise ratios (SNRs) of the simulations calculated using the
measurement strategy of Section III-C withr(t) = u (t), P = 1 andM =
400: (a) output SNR of the simulation without measurement noise; (b) and (c),
respectively, the input and output SNR of the simulation with measurement
noise.

tion in (5). The measurement strategy of Section III-C is
applied with , and . This increases
the SNRs of the data with a factor of 2 (6 dB). One thousand
data sets (21) and (22) are generated for the case with and the
case without measurement noise.

Fig. 6 shows the frequency response function (24) of one such
data set. A transfer function model (15) with and
is estimated for each data set. The results are shown in Fig. 7
and Table I. From Fig. 7, it follows that the estimated transfer
function models for the case with and the case without mea-
surement noise coincide. From Table I, it follows that the esti-
mated model parameters in the case without measurement noise
are quite close but not equal to their asymptotic values. This
is due to the finite value of (and ). Increasing (and )
makes the differences decrease to zero as as predicted
by the theory [1]. The estimated model parameters, except the

-factor, for the cases with and without measurement noise co-
incide.

V. REAL MEASUREMENTEXAMPLE

The device under test (DUT) is a Wiener–Hammerstein
system (Fig. 4) consisting of the cascade of a third order
Chebyshev filter (passband ripple of 0.5 dB and cut off fre-
quency of 4.4 kHz), a static nonlinear system (see Fig. 8), and
a third order inverse Chebyshev filter (stopband attenuation of
40 dB starting at 5 kHz). The input and output of the active
filters are voltage buffered. Asymptotically [the number of
frequencies in the random-phase multisine (1) goes to infinity],
the best linear approximation of the nonlinear system is given
by

with

(31)
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(a) (b)

Fig. 6. Frequency response function̂G (s ) (24), calculated usingM = 4 independent repeated experiments. (a) Without measurement noise, (b) with
measurement noise.

TABLE I
RESULT OF THEMONTE-CARLO SIMULATION (1000 RUNS). MEAN VALUE OF

THE ESTIMATED MODEL PARAMETERS WITH AND WITHOUT MEASUREMENT

NOISE TOGETHERWITH THEIR 95% CONFIDENCEBOUND

Fig. 7. Result of the Monte-Carlo simulation (1000 runs). Mean value of the
estimated transfer function models with and without measurement noise (solid
line), difference between the mean values (dash-dot line), and 95% confidence
bound of the mean value with measurement noise (dashed line).

where is a frequency-independent constant depending on the
static nonlinear system and the power spectrum of the input
signal, and is the cascade of the two linear parts.

The DUT is measured using random-phase multisines (1)
with , kHz, MHz/64

, and , with in-
dependent of . The signals are generated (HP model E1445A)
and measured (HP model E1437A) at the sampling frequency

, which is derived from a common 20 MHz mother clock.
Following the strategy of Section III-C with , the
small (rms value of 25 mV) and large (rms value of 400 mV)
signal response of the DUT are measured.

Fig. 9(a) shows the corresponding frequency response
functions (FRFs) calculated using (24). Note that the large

Fig. 8. Static nonlinear system consisting of two resistors and one diode.

signal FRF is much “noisier” than the small signal
FRF . This is entirely due to the stochastic nonlinear
contributions and not to the measurement errors
and . Fig. 9(a) suggests that both FRFs are equal within
a frequency-independent gain factor. To verify this, the residual

(32)

is calculated, where is the mean gain between both FRFs in
the passband of the DUT,

with (33)

Fig. 9(b) shows the residual (32) and its 95% uncertainty bound.
It follows that within the measurement un-
certainty, which experimentally confirms (31). Using the large
signal measurements (400 mV rms), the sample maximum like-
lihood (SML) estimate (25) of transfer function model
(31) is calculated. In the absence of model errors, the 95% con-
fidence interval of the minimum of the cost function equals

(34)
(see [12]). Comparing (34) to the actual value

, it can be concluded that
almost no model errors can be detected [14]. Fig. 10 shows

Authorized licensed use limited to: Rik Pintelon. Downloaded on December 1, 2008 at 09:42 from IEEE Xplore.  Restrictions apply.



PINTELON et al.: IDENTIFICATION OF LINEAR SYSTEMS IN THE PRESENCE OF NONLINEAR DISTORTIONS 861

(a) (b)

Fig. 9. Frequency response function (FRF) measurement of the Wiener–Hammerstein system. (a) Comparison between the small signal FRFĜ (s ) (dashed
line) and the large signal FRF̂G (s ) (solid line). (b) The residual̂G (s )�K̂Ĝ (s ) (32) (dots), its 95% uncertainty bound (bold line), and the FRFK̂Ĝ (s )
(dashed line).

the difference between the identified large signal model
and the small signal FRF

(35)

where is calculated as

with

(36)
It can be concluded that from
dc to 4 kHz. This is approximately true in the band 6 kHz to 10
kHz (the residuals are larger than their uncertainty). This is con-
firmed by modeling the small signal (25 mV rms) experiment,
where it turns out that a rational transfer function of order 6/6
is needed to explain the measurements (the two additional zeros
in this model lie outside the 10 kHz band).

Two additional measurements have been performed: one
with a Schroeder phase multisine [(1) with

], and one with periodic Gaussian noise [eq.
(1) with circular complex Gaussian distributed ].
Both signals have the same power spectrum (and rms value)
as the large signal random-phase multisines of the previous
experiments (rms value of 400 mV). Fig. 11 compares the
Schroeder FRF with the large (400 mV rms) and small (25 mV
rms) signal FRFs obtained with the random-phase multisines
(measurement strategy of Section III-C with and

). Clearly, the behavior of the Schroeder multisine is
completely different from the random-phase multisines: the
Schroeder FRF is smooth and wrongly suggests the presence
of a large number of poles in the passband of the DUT, while
the large signal (random-phase multisine) FRF is rather noisy.
It clearly illustrates that the theory presented in this paper is
valid, only if the phases of the excitation signal are random.

To illustrate the power (and limitation) of the best linear ap-
proximation of a nonlinear device, the response of one pe-
riod of the periodic noise experiment has been predicted using
the previously identified model . The prediction

is calculated as

IDFT (37)

Fig. 10. Comparison between the small signal FRFĜ (s ) and the modeled
large signal FRFG (s ; �̂ (Z)): the residualG (s ; �̂ (Z)) �
K̂Ĝ (s ) (35) (solid line), its 95% uncertainty bound (bold line), and the FRF
K̂Ĝ (s ) (dashed line).

Fig. 11. Frequency response function (FRF) measurement of the passband
of the Wiener–Hammerstein system using: (a) a small signal (25 mV rms)
random-phase multisine (dashed line), (b) a large signal (400 mV rms)
random-phase multisine (dots), and (c) a large signal (400 mV rms) Schroeder
phase multisine (solid line). For each experiment the measurement strategy of
Section III-C is followed withP = 16 andM = 1.

with the measured input DFT spectrum of the peri-
odic noise experiment and IDFT the inverse discrete Fourier
transform. Fig. 12 compares the predicted output to
the measured output . It can be seen that the prediction
error is about ten times smaller than . This
error is entirely due to the stochastic nonlinear distortions

IDFT and not to the measurement errors
and . Therefore, using a linear model, it is im-

possible to reduce the prediction error below the level of the
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Fig. 12. Prediction of one period of the steady state response of the Wiener–Hammerstein system to a periodic Gaussian noise excitation (400 mV rms) with the
same power spectrum as the large signal (400 mV rms) random-phase multisines. (a) Predicted outputŷ(t) (solid line) and measured outputy(t) (dashed line).
(b) Differenceŷ(t) � y(t).

stochastic nonlinear contributions . Note that the 10%
error level in Fig. 12(b) corresponds to the 1 dB fluctuations
(rms value) of the FRF measurement with the large signal
random-phase multisine in Fig. 11. Note also that, although

in Fig. 12(b) has a random-like behavior, it is a
periodic signal with the same periodicity as .

VI. CONCLUSION

In this paper, the identification of linear systems in the pres-
ence of nonlinear distortions is discussed. A related linear dy-
namic system (best linear approximation) of the overall system
is introduced, which is valid for a general class of excitation
signals, and a general class of (strongly) nonlinear systems. This
best linear approximation can be identified using a general mea-
surement setup where both the input and output are disturbed by
measurement errors. Using the best linear approximation, the re-
sponse of the nonlinear system can be predicted within an error
that is bounded below by the stochastic nonlinear contributions.

APPENDIX I

Multiplying the errors-in-variables model (14) by
gives

(38)

Note that this phase shift does not change the cost function
(16). The noisy part of (38) is indepen-
dent of the signal part . In [1], it has been shown
that has the same stochastic properties as the
measurement errors and . Since the phase of

equals the phase of , this is also
valid for . We conclude that
has the same properties as the measurement errors. The only
difference with the identification of a linear dynamic system

is that the linear dynamic system is replaced by the
related linear dynamic system .

APPENDIX II

Relating the true input and output spectra in (14) to the refer-
ence spectrum gives

(39)

Taking the expected value of (39) w.r.t. the measurement
noise and the random-phase of shows that

and . Dividing both sides of (39)
by gives

(40)

with , and
and . Note that the noise (co-)variances

of and equal those of and
divided by . Taking the expected value of (40) w.r.t.
the measurement noise and the random-phase of

gives .

APPENDIX III

Applying (5) to the nonlinear operators and gives,
taking into account the measurement errors , ,

(41)

with , , and
, the zero mean nonlinear distortions which are un-

correlated with the reference . Dividing both sides of (41)
by and taking the expected value w.r.t. to the measure-
ment noise and the random-phase of shows
that , where ,

are defined as in Appendix II.
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APPENDIX IV

In [12], the properties of the SML estimator for linear dy-
namic systems has been studied assuming that the frequency
domain errors are independent (over the frequency) and nor-
mally distributed. It makes sense to study the properties of (25)
under these idealized assumptions if they are met asymptoti-
cally . First note that the noise has
the same stochastic properties as the measurement noise
and (see Appendix I). Next, it is sufficient to prove that

is asymptotically normally distributed. From
[1], it follows that consists of the sum of indepen-
dent random variables with bounded moments of order three.
Hence, is asymptotically normally distributed at the rate

(proof: see [13, Th. 9.1.3]).
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