
Evolving Optimal Neural Networks UsingGenetic Algorithms with Occam's Razor�Byoung-Tak ZhangHeinz M�uhlenbeinArti�cial Intelligence Research DivisionGerman National Research Center for Computer Science (GMD)Schloss Birlinghoven, D-53757 Sankt Augustin, Germanye-mail: zhang@gmd.de, muehlen@gmd.deAbstractGenetic algorithms have been used for neural networks in two mainways: to optimize the network architecture and to train the weightsof a �xed architecture. While most previous work focuses on onlyone of these two options, this paper investigates an alternative evo-lutionary approach called Breeder Genetic Programming (BGP) inwhich the architecture and the weights are optimized simultaneously.The genotype of each network is represented as a tree whose depthand width are dynamically adapted to the particular application byspeci�cally de�ned genetic operators. The weights are trained by anext-ascent hillclimbing search. A new �tness function is proposedthat quanti�es the principle of Occam's razor. It makes an optimaltrade-o� between the error �tting ability and the parsimony of thenetwork. Simulation results on two benchmark problems of di�eringcomplexity suggest that the method �nds minimal size networks onclean data. The experiments on noisy data show that using Occam'srazor not only improves the generalization performance, it also accel-erates the convergence speed of evolution.�Published in Complex Systems, 7(3): 199-220, 19931

Evolving Optimal Neural Networks 21 IntroductionConstructing multilayer neural networks involves di�cult optimization prob-lems, i.e. �nding a network architecture appropriate for the application athand and �nding an optimal set of weight values for the network to solvethe problem. Genetic algorithms [8, 5, 20] have been used for solving bothoptimization problems [36]. In weight optimization, the set of weights isrepresented as a chromosome and a genetic search is applied on the encodedrepresentation to �nd a set of weights that best �ts the training data. Someencouraging results have been reported which are comparable with conven-tional learning algorithms [17]. In architecture optimization, the topologyof the networks is encoded as a chromosome and some genetic operators areapplied to �nd an architecture which �ts best the speci�ed task according tosome explicit design criteria.Optimization of neural network architectures or �nding a minimal net-work for particular applications is important because the speed and accuracyof learning and performance are dependent on the network complexity, i.e.the type and number of units and connections, and the connectivity of units.For example, a network having a large number of adjustable connectionstends to converge fast, but it usually leads to over�tting of the training data.On the other hand, a small network will achieve a good generalization ifit converges, it needs, however, generally a large amount of training time[1, 32]. Therefore, the size of the network should be as small as possible, butsu�ciently large to ensure an accurate �tting of the training set.A general way of evolving genetic neural networks was suggested byM�uhlenbein and Kindermann in [24]. Recent works, however, have focusedon using genetic algorithms separately in each optimization problem, mainlyin optimizing the network topology. Harp et al. [7] and Miller [15] havedescribed representation schemes in which the anatomical properties of thenetwork structure are encoded as bit-strings. Similar representation has alsobeen used by Whitley et al. [36] to prune unnecessary connections. Ki-tano [11] and Gruau [6] have suggested encoding schemes in which a networkcon�guration is indirectly speci�ed by a graph generation grammar whichis evolved by genetic algorithms. All these methods use the backpropaga-tion algorithm [29], a gradient-descent method, to train the weights of thenetwork. Koza [12] provides an alternative approach to representing neuralnetworks, under the framework of so-called genetic programming, which en-

Evolving Optimal Neural Networks 3ables modi�cation not only of the weights but also of the architecture for aneural network. However, this method provides neither a general method forrepresenting an arbitrary feedforward network, nor a mechanism for �ndinga network of minimal complexity.In this paper we describe a new genetic programming method, calledbreeder genetic programming (BGP), that employs an Occam's razor in the�tness function. The method makes an optimal trade-o� between the error�tting ability and the parsimony of the network by preferring a simple net-work architecture to a complex one, given a choice of networks having thesame �tting errors. The weights are trained not by backpropagation, but bya next-ascent hillclimbing search.The organization of the paper is as follows. In Section 2, a grammar forrepresenting multilayer feedforward neural networks is presented. Section 3describes the genetic operators and the control algorithm for adapting thearchitectures and the weights. Section 4 derives the �tness function for thegenetic search of minimal complexity solutions. The experimental results aregiven in Section 5, which is followed by an analysis of �tness landscapes inSection 6, and discussions in Section 7.2 Representing neural networks as treesMultilayer feedforward neural networks or multilayer perceptrons [28, 16, 29]are networks of simple processing elements, called neurons or units, organizedin layers. The external inputs are presented to the input layer and are fed for-ward via one or more layers of hidden units to the output layer. There is noconnection between units in the same layer. A commonly adopted architec-ture involves full connectivity between neighboring layers only. We allow bothpartial connectivity and direct connections between non-neighboring layers,since this is important for �nding a parsimonious architecture. Speci�cally,this architecture allows for some of input units to be connected directly tooutput units. Figure 1 compares an usual multilayer perceptron and a moregeneral architecture adopted in this work. There are also many options in thetype of neural units. We will con�ne ourselves to McCulloch-Pitts neurons[14], although the method described below can be easily extended to employother types of neurons.

Evolving Optimal Neural Networks 4
Figure 1: Architectures of multilayer perceptrons. While a commonly usedarchitecture adopts a full connectivity between neighboring layers only (left),the architecture used in this work allows local receptive �elds and directconnections between non-neighboring layers (right).The McCulloch-Pitts neuron is a binary device, i.e. it can be in onlyone of two possible states. Each neuron has a threshold. The neuron canreceive inputs from excitatory and/or from inhibitory synapses. Given aninput vector x, the net input of the ith unit, Ii, is computed byIi = Xj2R(i)wijxj (1)where wij is the connection weight from unit j to unit i and R(i) denotes thereceptive �eld of unit i.The neuron becomes active if the sum of weighted inputs exceeds itsthreshold. If it does not, the neuron is inactive. Formally, the units areactivated by the threshold activation function:fi(Ii) = (1 if Ii � �i0 otherwise (2)where �i denotes the threshold value for unit i. The �i is usually considered asa weight wi0 in (1) connected to an extra unit whose activation value is always1. Despite their simplicity, McCulloch-Pitts neurons are very powerful. Infact, it can be shown that any �nite logical expression can be realized bythem [14].For the case of a two layer (one hidden layer) architecture, the ith output

Evolving Optimal Neural Networks 5of the network, yi, is expressed as a function of inputs x and weights w:yi = fi0@ Xj2R(i)wijfj 0@ Xk2R(j)wjkxk1A1A (3)where i, j, and k label output, hidden and input units, respectively. Note thatR(i) can include input units as well as hidden units since direct connectionsbetween input and output units are possible, in which case the fj is anidentity function.For the genetic optimization, we represent a feedforward network as aset of m trees, each corresponding to one output unit. Figure 2 shows thegrammar for generating a feedforward network of n input and m outputunits. The nonterminal symbol Y is used to represent a neural unit (some ofwhich are output units) having a threshold of � and r weights. The integerr indicates the receptive �eld width of the unit. Each connection weight isrepresented as a nonterminal node W consisting of a symbol `W', a weightvalue w, followed by a nonterminal symbol indicating recursively anotherneural unit Y or an external input unit X. An external input is described bya symbol `X' followed by an integer i denoting the index of the input unit.In the simulations we used binary thresholds. McCulloch-Pitts neuronsallow integer thresholds. Networks with binary thresholds can realize net-works with integer thresholds by using additional neurons. Similarly, integerweights can also be realized by neurons using binary weights. The numberof weights and units is usually reduced if the genotype is transformed into anetwork of integer values. This is illustrated in Figure 3 in which u and kdenote the number of units and adjustable weights, respectively.Binary weights are useful, because they can be trained by a simple hill-climbing search, instead of an expensive gradient-based method. A possibledisadvantage of binary weight representation is that it requires a larger chro-mosome than a representation using integer weights directly. This does notmean, however, that the convergence will be accelerated automatically, be-cause the search space is not reduced by using integers instead of binaryweights. Another advantage of the binary over the integer weights is that itautomatically functions as a regularizing factor by avoiding arbitrary growingof chromosome size.

Evolving Optimal Neural Networks 6NN �! (Y1 Y2 ::: Ym)Y �! (`Y' r � W1 W2 ::: Wr)W �! (`W' w fY j Xg)X �! `X' i� �! �bin j �int�bin �! {1 j +1�int �! {r j ... j 0 j ... j +rw �!
bin j
int
bin �! {1 j +1
int �! 0 j �1 j �2 j �3 j ...r �! 1 j 2 j 3 j ...i �! 1 j 2 j 3 j ... j nFigure 2: Grammar for generating the genotype of a feedforward network ofMcCulloch-Pitts neurons. A network is represented as a set of m trees, eachhaving an arbitrary number of subtrees. Each leaf of the trees indexes oneof the n external input units.))Figure 3: Conversion of a tree into networks. The tree representation al-lows �ne-tuning of the network structure. Integer weights of a network arerepresented in a tree by means of multiple binary weights.

Evolving Optimal Neural Networks 73 Genetic breeding of neural networks3.1 Breeder genetic programming (BGP)For the evolution of optimal neural networks we use the concepts based onthe breeder genetic algorithm, BGA, of M�uhlenbein et al. [25]. While theusual genetic algorithms model a natural evolution, the BGA models a ra-tional selection performed by human breeders. The BGA can be consideredas a recombination between evolution strategies (ES) [27, 30] and geneticalgorithms (GA) [8, 5]. The BGA uses truncation selection as performed bybreeders. This selection scheme is similar to the (�; �){strategy in ES [30].The search process of the BGA is mainly driven by recombination,making theBGA a genetic algorithm. Our approach di�ers from the BGA in that we usevariable size of chromosomes, a characteristic of genetic programming (GP)[12]. Thus we call the method Breeder Genetic Programming (BGP). BGPalso di�ers from usual GP. While GP uses proportional selection combinedwith crossover as main operator, BGP uses truncation selection combinedwith crossover plus local hillclimbing. As will be shown later, ranking-basedselection makes it easier to balance the accuracy and parsimony of solutions.The BGP evolutionary learning algorithm is summarized in Figure 4.The algorithm maintains a population A consisting of M individuals Ai ofvariable size. Each individual represents a neural network. The networks ofthe initial population, A(0), are generated with a random number of layers.The receptive �eld of each neural unit and its width are also chosen randomly.The (g + 1)-st population, A(g + 1), is created from A(g) in three steps:selection, hillclimbing, and mating.In the selection step, the most �t �M individuals inA(g) are accepted intothe mating pool B(g). The parameter � determines the selection intensity andhas a value from the interval (0; 1]. A �tness function will be derived in thenext section which balances the error �tting ability and the parsimony of thenetworks. After selection, each individual in B(g) undergoes a hillclimbingsearch where the weights of the network are adapted by mutation. Thisresults in the revised mate set B(g). The mating phase repeatedly selects tworandom parent individuals in B(g) to mate and generate two o�spring in thenew population A(g+1) by applying crossover operators, until the populationsize amounts to M . Notice that not only the size of individuals in onepopulation may be di�erent, jAi(g)j 6= jAj(g)j; i 6= j and i; j 2 f1; :::;Mg,

Evolving Optimal Neural Networks 81. Generate initial population A(0) of M networks at random. Setcurrent generation g 0.2. Evaluate �tness values Fi(g) of networks using the training setof N examples.3. If the termination condition is satis�ed, then stop the evolution.Otherwise, continue with step 4.4. Select upper �M networks of gth population into the matingpool B(g).5. Each network in B(g) undergoes a local hillclimbing, resulting inrevised mating pool B(g).6. Create (g + 1)-st population A(t + 1) of size M by applyinggenetic operators to randomly chosen parent networks in B(g).7. Replace the worst �t network in A(t+ 1) by the best in A(t).8. Set g g + 1 and return to step 2.Figure 4: Summary of the BGP algorithmbut the size of same individual of subsequent population may also be di�erent,jAi(g + 1)j 6= jAi(g)j; i 2 f1; :::;Mg.A new population is generated repeatedly until an acceptable solution isfound or the variance of the �tness V (g) falls below a speci�ed limit valueVmin, i.e. the procedure terminates ifV (g) = 1M MXi=1 �Fi(g) � �F (g)�2 � Vmin (4)where �F (g) is the average �tness of the individuals in A(g). The algorithmalso stops if a speci�ed number of generations, gmax, is carried out.3.2 Genetic operatorsThe weights of a network are trained by applying a hillclimbing search toeach of the individuals accepted by truncation selection. Given a chromo-

Evolving Optimal Neural Networks 9
Figure 5: Crossover operation. The �rst individual (parent 1) and the second(parent 2) mate by crossing-over and produce two new individuals (o�spring1 and o�spring 2). In this example, the �rst network shrank, while thesecond grew. Guided by an appropriate selection mechanism the networkarchitecture is adapted in this way to the speci�c application.some si of the network, the next-ascent hillclimbing procedure �nds a betterchromosome snewi by repeatedly applying the mutation operator until thereis no weight con�guration found having better �tness in each sweep throughthe individual. The sequence of mutation is de�ned as the depth-�rst searchorder.Each mutation operation is performed by replacing the value of a node,ui, of the tree by another, i.e. by �nding the class Uk of ui and replacingui by another member uj; j 6= i in the set Uk. Here the class Uk must �rstbe found because not every value (node) can be mutated to arbitrary values.For example, a weight value must be drawn from the set f+1;�1g. Thebiases are mutated the same way as the weights. The index for the inputunits can be mutated by another input index.Unlike the mutation, the crossover operator adapts the size and shapeof the network architecture. A crossover operation starts by choosing atrandom two parent individuals from the mating pool B(g). Actual crossoverof two individuals, i and j, is done on their genotypical representations si andsj. The nodes in the tree are numbered according to the depth-�rst search

Evolving Optimal Neural Networks 10order and crossover sites ci and cj are chosen at random with the followingconditions: 1 � ci � Size(si) and 1 � cj � Size(sj):Here, the length of an individual, Size(si), is de�ned as the total number ofunits and weights.Given the crossover points, the subtrees of two parent individuals, si andsj, are exchanged to form two o�spring s0i and s0j (Figure 5). The label ofthe nodes ci and cj must belong to the same class, i.e. either both Y -typeor both W -type nodes. The number of arguments of each operator playsno role because the syntactically correct subtree under the node ci and cj iscompletely replaced by another syntactically correct subtree.4 Fitness function with an Occam's razorOccam's razor states that unnecessarily complex models should not be pre-ferred to simpler ones [13, 33]. This section gives a quantitative Occam'srazor for constructing minimal complexity neural networks by genetic algo-rithms.In de�ning minimality, it is important that the network be able to ap-proximate at least the training set to a speci�ed performance level. A smallnetwork should be preferred to a large network only if both of them achievea comparable performance. Otherwise, the algorithm would not reduce theapproximation error, preferring smaller networks which can not be powerfulenough to solve the task. So the �rst term of the �tness function of an indi-vidual network should be the error function. The error function commonlyused for the data set D = f(xi; yi) j i = 1; :::; Ng of N examples is the sumof squared errors between the desired and actual outputs:E(DjW;A) = NXi=1E(yijxi;W;A) (5)with E(yijxi;W;A) = mXj=1 (yij � oj(xi;W;A))2 : (6)Here yij denotes the jth component of the ith desired output vector yi, andoj(xi;W;A) denotes the jth actual output of the network with the architec-ture A and the set of weights W for the ith training input vector xi.

Evolving Optimal Neural Networks 11The complexity of a neural network architecture is dependent on the taskto be learned and can be de�ned in various ways, depending on the appli-cation. In general the number of free parameters (or adjustable weights) ofthe network should be minimal, since this is one of the most important fac-tors determining the speed and accuracy of the learning. Additionally, largeweights should in general be penalized in the hope of achieving a smoother orsimpler mapping. This technique is called regularization [26, 13]. We de�nethe complexity, C, of a network asC(W jA) = KXk=1w2k (7)where K is the number of free parameters. Notice that K can be arbitrarilylarge, because we �t the architectures too. In the case of binary weights,C reduces to the number of synaptic connections. This complexity measuremight be extended by additional cost terms, such as the number of layerswhen the application requires a fast execution of the trained network.The combined �tness function which we try to minimize is de�ned asF (DjW;A) = �C(W jA) + �E(DjW;A) (8)where � and � are constants for the trade-o� between error �tting and com-plexity reduction. This �tness function has an elegant probabilistic interpre-tation for the learning process: according to the Bayesian framework, mini-mizing F is identical to �nding the most probable network with architectureA and weights W .To see this, let us de�ne the following. Let D be the training data set forthe function
 : X ! Y , i.e.D = f(x; y) j x 2 X; y 2 Y; y =
(x)g: (9)Then a model M of the function
 is an assignment to each possible pair(x; y) of a number P (yjx) representing the hypothetical probability of y givenx. That is, a network with speci�ed architecture A and weights W is viewedas a modelM = fA;Wg predicting the outputs y as a function of input xin accordance with the probability distribution [35]:P (yjx;W;A) = exp(��E(yjx;W;A))Z(�) (10)

Evolving Optimal Neural Networks 12where � is a positive constant which determines the sensitivity of the prob-ability to the error value andZ(�) = Z exp(��E(yjx;W;A))dy (11)is a normalizing constant. Under the assumption of the Gaussian error model,i.e. if the true output is expected to include additive Gaussian noise withstandard deviation �, we haveP (yjx;W;A) = 1p2�� exp �E(yjx;W;A)2�2 ! (12)with � = 12�2 and Z(�) = p2��.A prior probability is assigned to alternative network model written inthe form: P (W jA) = exp(��C(W jA))Z(�) (13)where Z(�) = Z exp(��C(W jA))dKW (14)is a measure of the characteristic network complexity. The posterior proba-bility of the network model is then:P (W jD;A) = exp(��C(W jA)� �E(DjW;A))Z(�; �) (15)with Z(�; �) = Z exp(��C(W jA)� �E(DjW;A))dKW: (16)Now let �I(M) be the log of the prior probability of the modelM, i.e.I(M) = �logP (W jA): (17)Let �I(DjM) be the log probability of D according toM:I(DjM) = � NXi=1 logP (yjx;W;A): (18)

Evolving Optimal Neural Networks 13Then the probability that bothM is true and D occurs isp(M) = exp(�I(D;M)) (19)where I(D;M) = I(M) + I(DjM): (20)It is well known this p results as the posterior probability ofM, and the modelwhich maximizes p(M) would be the best �t. For most real applications,I(D;M) can not be computed exactly because the involved probabilities arenot known. But it is easily seen that minimization of the �tness function (8)approximates maximization of p(M) under the assumption (12).5 Simulation resultsThe convergence and generalization properties of the BGP method were stud-ied on two classes of problems with di�erent complexity: majority and parity.The majority function of n inputs (n odd) returns a 1 if more than half of theinput units have a 1, otherwise it returns a 0. The parity function outputsa 1 if the number of 1's in the input pattern of size n is odd, otherwise itoutputs a 0. These tasks were chosen because they have often been usedto test neural net learning algorithms and the results can be compared withthe standard solutions. It is important to observe that the genetic search isperformed in a variable d-dimensional space, and the minimal d is usuallymuch larger than the input size n, depending on the task.In the experiments, we used the �tness functionF (DjW;A) = E 0(DjW;A) + 1NC 0(W jA) (21)where E 0 is a normalized version of equation (5)E 0(DjW;A) = E(DjW;A)m �N (22)with m the number of output units and N the size of the training set. Noticethat the error term satis�es 0 � E 0(DjW;A) � 1. C 0 is a revised measure ofnetwork complexity, de�ned asC 0(W jA) = C(W jA) + L(A) + U(A)Cmax (23)

Evolving Optimal Neural Networks 14where L(A) and U(A) denote the number of layers and units, respectively.Cmax is a normalization factor used for the complexity term to satisfy 0 <C 0(W jA) � 1.In all experiments we set Cmax = 1000, assuming that the problems canbe solved by C(W jA) + L(A) + U(A) � 1000. The L(A) term penalizes adeep architecture which requires a large execution time after training. TheU(A) term penalizes a large number of units whose realization is more ex-pensive than weights. The normalization of the functions does not hinder theprobabilistic interpretation of the network learning, because we are using aranking-based selection strategy, not proportionate selection: for the survivalonly the ranking is of importance. Notice in Eqn. (21) that the complexityterm C 0(W jA) is divided by N , the number of training examples, to havethe error term play a major role in determining the total �tness value of thenetwork. This ensures a small network be preferred to a large network onlyif both of them achieve a comparable performance.We performed two kinds of experiments separately. In the �rst, we areinterested in whether the BGP method is able to �nd minimal or subminimalsolutions at all and, if yes, how the method scales with problems of increasingcomplexity. In these experiments, the entire set of N = 2n examples was usedto evaluate the �tness of the individual networks. The examples were noise-free. For the second series of experiments, we tested the performance ofBGP on noisy data. The generalization performance and the learning speedof di�erent strategies are compared to study the e�ect of Occam's razor.The results for the �rst experiments are summarized in Table 1. It showsthe complexity of discovered minimal solutions and the required time in gen-erations. The number of weights given in the table is in terms of the numberof connections and thresholds with binary values. For all experiments the top20% of the population was selected for mating. The most �t individual wasalways retained in the new generation (truncation selection with an eliteststrategy). For most of the solutions, their network counterpart was found tobe minimal or subminimal in comparison to the known standard solutions.This is illustrated in Figure 6 which depicts a solution for the 4-input parityproblem found by the method.For comparison, the minimal solution for this problem is also depicted.Whereas the �tness value of the minimal solution is Fmin = E 0+(Weights+Layers+ Units)=(24 � 1000) = 0:0024, that of the found solution is Ffound =0:0026. Note that the standard minimal solution is shown for illustration

Evolving Optimal Neural Networks 15n popsize layers units weights generationsmajority 3 100 1 1 4 25 100 2 2 15 87 500 2 4 21 119 1000 2 6 31 13parity 2 100 2 3 9 24 1000 2 6 49 96 1000 3 12 105 318 1000 3 15 136 83Table 1: Network complexities for discovered minimal solutions in the num-ber of layers, units, and weights. Also shown is the number of generationsto obtain the solution. An elitest selection strategy with top 20% truncationwas used.
Figure 6: Solutions for the 4-input parity problem. Compared with theknown minimal solution (left), the typical solution found by the geneticmethod (right) contains one more unit, u, and three additional connectionweights, k. In terms of binary-valued connections, b, the discovered solutionhas two more connections than the minimal solution.

Evolving Optimal Neural Networks 16purposes. No general learning methods are yet known to �nd such a solution(architecture plus weight values). Most existing search methods, includingiterated hillclimbing methods [4, 18, 31], simulated annealing [10], Backprop-agation [29] and even other genetic algorithms [2], work on a search spaceof �xed size, while our search space is of variable size. This di�erence ofability combined with di�erent parameters used in each algorithm make thecomparison of learning speed di�cult.The �tness function worked well in balancing the ability to solve theproblem and the parsimony of the solution. A typical evolution of networkcomplexity is shown in Figure 7. Globally the complexity of the networkgrows during evolution, while locally growth and pruning is repeated to �terrors on one hand and to minimize the complexity of the network on theother hand. The corresponding evolution of the �tness values of the bestindividuals in each generation is depicted in Figure 8. It is interesting tonotice that the global behavior of this optimization method is comparablewith the group method of data handling (GMDH) in which additional termsare incrementally added to the existing polynomial approximator to achievea minimal description length model of a complex system [9, 34].The performance of the BGP method on noisy data was tested with themajority problem of 9 inputs. Unlike in the previous experiments where allpossible examples are used without noise insertion, we used in each run atraining set of 256 examples with 5% noise. This means, on average, 12 or 13examples out of 256 have false output value. Population size was 1000 andupper 20% best individuals were selected to mate. Figure 9 shows a typicalevolution of the �tness value of best individuals until the 50th generation. Forcomparison we also depict the generalization performance on the completetest set consisting of 512 noise-free examples. Notice that although the testset was not used for selection, the training error and the generalization errorcorrespond well.The performance of the BGP method using the �tness function (21) wascompared with a method that uses just the error term as the �tness mea-sure, i.e. F (DjW;A) = E 0(DjW;A). Both mothods used the same noisydata of the 9-majority problem. For each method, 10 runs were executeduntil the 50th generation to observe the training and generalization perfor-mance of the solutions. Table 2 shows the average network size found atthe 50th generation. The corresponding performance and learning time areshown in Table 3. The learning time is measured in millions of evaluations

Evolving Optimal Neural Networks 17
0

50

100

150

200

0 5 10 15 20 25 30 35

generation

ne
tw

or
k

co
m

pl
ex

ity

num weights
num layers x 10
num units

Figure 7: The evolution of network complexity in terms of the number ofweights, layers, and units for the best individual in each generation. Growthand pruning is repeated to �nd an optimal complexity which is parsimoniousbut large enough to solve the problem.
0.00

0.05

0.10

0.15

0.20

0.25

0 5 10 15 20 25 30 35

generation

fit
ne

ss

combined fitness
error
complexity

Figure 8: The evolution of the network �tness F decomposed into the nor-malized error E 0 and the extended complexity C 0. In spite of a �xed Occamfactor, the relative importance of the complexity term increases as evolutionproceeds.

Evolving Optimal Neural Networks 18
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0 5 10 15 20 25 30 35 40 45 50

generation

m
is

cl
as

si
fic

at
io

n
ra

te
learning error
generalization error

Figure 9: The evolution of the network performance for noisy data of the9-input majority function. Also shown is the generalization performance onthe complete test set of noise-free examples.method layers units weightsF = E 9.7 � 1.9 153.0 � 76.4 1026.0 � 526.1F = E + C 3.7 � 0.3 19.7 � 1.1 123.1 � 10.3Table 2: Network complexity with and without Occam's razormethod learning generalization learning timeF = E 95.2 � 0.7 % 92.4 � 1.4 % 20294.7 � 3019.4F = E + C 92.9 � 2.1 % 92.7 � 1.6 % 5607.2 � 67.2Table 3: Comparison of performance with and without Occam's razor

Evolving Optimal Neural Networks 19of arithmetic operations associated with calculating activation values of neu-ral units. The results show that using Occam's razor leads to decreasedperformance on the training set, but eventually results in an improved gen-eralization performance. This is supposed to be the e�ect of Occam's razorfor avoiding over�tting to noisy data. Another advantage of using Occam'srazor is the accelerated convergence. In the above experiments, the proposed�tness function decreased the network size by an order of magnitude and thespeed-up factor of learning was approximately four.In general, the method evolved a subminimal architecture which is inmost cases an optimal solution in terms of the parameters chosen for bal-ancing the error �tting ability and the complexity of the solution. For someclasses of large problems, however, the convergence was very slow. A simpleoptimization method does not exist which performs better than any otheroptimization method for a reasonable large class of binary functions of sizen. To be e�ective, every sophisticated optimization method has to be tunedto the application [22]. In order to assess the complexity of an optimizationproblem and to speed up the genetic search further, an investigation of its�tness landscapes is necessary.6 Analysis of �tness landscapesFitness landscapes have been analyzed for Boolean N -K networks by Kau�-man [3], for random traveling salesman (tsp) problems by Kirkpatrick etal. [10], and for Euclidean tsp problems by M�uhlenbein [21]. The generalcharacterization of a �tness landscape is very di�cult. The number of localoptima, their distribution and the basins of attraction are some of the im-portant parameters which describe a �tness landscape. For the evaluation ofsearch strategies more speci�c questions have to be answered:� What is the distribution of local optima if only the error term in the�tness function is used?� How does the distribution of local optima change if the search space isenlarged?These two questions are �rst steps towards the general problem

Evolving Optimal Neural Networks 20� Does the �tness function (21) make the �tness landscape simpler ormore complex compared to an error-based �tness function with a �xedminimal network architecture?The questions have been studied in the context of two problems: xor andor function of two inputs. For each problem we analyzed two search spacesof di�erent dimension. One was a feedforward network of 2-2-1 architecturewhich has 9 free parameters (6 binary weights plus 3 binary thresholds).The other search space was a 2-3-1 architecture having 13 free parameters (9binary weights plus 4 binary thresholds). In describing the landscapes, wehave to focus on the statistical characteristics of them because the spaces aretoo large to list all the details. For the analysis, the �tness function consistedof the error term only; the coe�cient � in (8) was set to zero and � = 1.The �tness distributions are shown in Figure 10 as bargraphs. Noticethat each of the xor and or networks has two binary inputs, resulting infour input-output pairs. Hence a speci�c network can have only one of �ve�tness values (0 in case of all four examples are classi�ed correctly, 1 if oneexample is classi�ed incorrectly, and so on). The analysis shows that the xor-9 network has only two (0.4%) isolated global optima, while the or-9 net has�fteen (2.9%) optima. Growth of the dimension from 9 to 13 increases theproportion of optima of xor by 0.2%, but reduced that of or by 0.2%. Thebargraphs also shows that the �tness of or-9 is more uniformly distributedthan that of xor-9, suggesting that a search step in the or network spacewould get more information than a step in the xor space.To see how the local optima vary, we computed the probability of anindividual i �nding a better, same, and worse �t neighbor n by a singlemutation, respectively (Figure 11 and 12). Here, a better �t neighbor nof i means Fn is smaller than Fi, since we attempt to minimize the �tnessfunction. The shows, for instance, that for xor-9 the probability of �ndinga better neighbor is only 8.4% if the �tness of the individual is 0.5. Foror, the corresponding probability is 36.0%. A very important result can beconcluded from the bargraphs for the �tness value 0 in Figures 11 and 12.For xor with a minimal network architecture (d = 9) all global minima areisolated; no neighbors are a global optimum. But for the enlarged searchspace (d = 13), there is a chance of 19.2% that another global optimum canbe reached by one bit mutation. The same behavior can be observed for theor problem. This analysis suggests that the increase of the dimensionality

Evolving Optimal Neural Networks 21
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1 0 1 2 3 4 5

fitness (number of misclassified examples)

pr
ob

ab
ili

ty

XOR

0.004 0.006

0.125 0.121

0.805

0.767

0.002

0.097

0.004 0.009

d = 9

d = 13

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1 0 1 2 3 4 5

fitness (number of misclassified examples)

pr
ob

ab
ili

ty

OR

0.029 0.027

0.301
0.281

0.140
0.165

0.512 0.501

0.018 0.026

d = 9

d = 13

Figure 10: Fitness distribution
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1 0 1 2 3 4 5

fitness (number of misclassified examples)

pr
ob

ab
ili

ty

d = 9

0.0000.000

1.000

0.024

0.431

0.545

0.084

0.860

0.056

0.708

0.264

0.028

1.000

0.0000.000

Fn < Fi

Fn = Fi

Fn > Fi

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1 0 1 2 3 4 5

fitness (number of misclassified examples)

pr
ob

ab
ili

ty

d = 13

0.000

0.192

0.808

0.028

0.4880.484

0.075

0.853

0.072

0.559

0.397

0.044

0.000

0.820

0.180

Fn < Fi

Fn = Fi

Fn > Fi

Figure 11: Fitness distribution of neighbors for each �tness value (XOR)
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1 0 1 2 3 4 5

fitness (number of misclassified examples)

pr
ob

ab
ili

ty

d = 9

0.000

0.296

0.704

0.035

0.290

0.350 0.360

0.290

0.350

0.170

0.812

0.018
0.000

0.802

0.198

Fn < Fi

Fn = Fi

Fn > Fi

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

-1 0 1 2 3 4 5

fitness (number of misclassified examples)

pr
ob

ab
ili

ty

d = 13

0.000

0.380

0.620

0.034

0.718

0.248
0.282

0.402

0.316

0.155

0.822

0.023
0.000

0.650

0.350

Fn < Fi

Fn = Fi

Fn > Fi

Figure 12: Fitness distribution of neighbors for each �tness value (OR)

Evolving Optimal Neural Networks 22of the search space from 9 to 13 leads to a change in the �tness distributionsand landscapes, which in turn can make it easier to train the weights.We also computed the probability of a con�guration �nding a better �tneighbor by steepest-descent hillclimbing, i.e. by looking at all its neighborsat Hamming distance 1. Not surprisingly for this kind of landscape, one hasfor xor a less than 50% chance of �nding a better con�guration. For or, theprobability is about 70%. This means steepest-descent hillclimbing would bee�ective for or, but not for xor. This explains in part why our experimentsshowed a good scaling property for the majority function (a kind of or) incomparison to the parity problem (whose smallest size is xor).7 Discussion and ConclusionsWe have presented an evolutionary method called breeder genetic program-ming (BGP) for learning both the network architecture and the weights atthe same time. The method uses trees to represent a feedforward networkwhose size and topology are dynamically adapted by genetic operators. Anew �tness function with an Occam's razor has been proposed which provedto work well for the class of problems studied. Simulation results indicatethat, given enough resources, the method �nds minimal complexity networks.The experiments on noisy data show that using Occam's razor not only im-proves the generalization performance, but it accelerates the convergence ofgenetic programming as well. Extensions and re�nements are expected inthe following areas.The information about the �tness landscape can be used to speed upconvergence. As was shown, the �tness landscapes are characterized by largeplateaus. The basin of attraction of the global optimum is fairly small. Wehave also seen that the �tness landscapes are changed by modifying thearchitectures. It is expected that �tness landscapes will generally have largeplateaus as the network complexity approaches a minimum, which makesit di�cult for a hillclimber to reach the minimum. A possible method ofaccelerating the convergence speed would be to start with larger networks(than are supposed to be minimal) and to let the network be pruned by theOccam factor. This is supported by the results of the landscape analysis; theincrease of the dimensionality of the search space leads to a larger chance of�nding better solutions in the near of global optima.

Evolving Optimal Neural Networks 23Another future work concerns the study of other factors, for instance thee�ect of training set, on convergence speed and generalization performance ofthe algorithm. The genetic programming involves a time-consuming processof evaluating training examples. The �tness evaluation time can be savedenormously, if we have an e�cient method for selecting examples critical tospeci�c tasks [38, 37, 40]. The integration of active data selection to thegenetic programming should improve the e�ciency and scaling property ofthe method described above.While we have used a simple next-ascent hillclimbing for adjustment ofdiscrete weights, other traditional search methods might as well have beenused for this purpose. Examples include iterated hillclimbing proceduresdeveloped in symbolic arti�cial intelligence [4, 18, 31]. The discrete-valuedweights may be extended to more general real-valued weights. In this ex-tension, it will be necessary to modify or replace the discrete hillclimbingsearch by a continuous parameter optimization method which may be againgenetic algorithms [25, 30] or conventional gradient-based search methods[29]. Notice that this adaptation does not change the top-level structure ofthe breeder genetic programming method described in Figure 4.As opposed to conventional learning algorithms for neural networks, thegenetic programming method makes relatively few assumptions about thenetwork types. Thus the same method can also be used to breed other net-work architectures, e.g. networks of radial basis functions, sigma-pi units, orany mixture of them, instead of the threshold or sigmoid units. The potentialfor evolving neural architectures that are customized for speci�c applicationsis one of the most interesting properties of genetic algorithms. On the otherhand, neural net optimization provides a very interesting problem worthyof further theoretical study from the genetic algorithm point of view. Forexample, the problem we discussed had to handle variable length of chro-mosomes through which the �tness landscape is modi�ed during evolution.This kind of optimization problem is contrasted with usual applications ofgenetic algorithms in which the search space is �xed.The ultimate usefulness of the BGP methodmust be tested by implement-ing it in systems that solve real-world problems such as pattern recognitionor time series prediction. To this end we may need some further exten-sions to the current implementation. We believe, however, that the generalframework and the �tness function provided in this paper are of value sincethe problem of balancing the accuracy and the complexity of the solution is

Evolving Optimal Neural Networks 24fundamental in both neural networks and genetic programming.AcknowledgementsThis research was supported in part by the Real-World Computing Pro-gram under the project SIFOGA (Statistical Inference as a Foundation ofGenetic Algorithms). The authors thank J�urgen Bendisch, Frank �Smieja,Dirk Schlierkamp-Voosen, and the other members of the learning systemsresearch group of the GMD Institute for Applied Information Technologyfor their valuable discussions and suggestions. We also wish to thank theanonymous reviewers whose comments helped to improve the clarity of thepaper.References[1] Y. S. Abu-Mostafa, \The Vapnik-Chervonenkis Dimension: Informationversus Complexity in Learning," Neural Computation, 1 (1989) 312{317.[2] T. B�ack and H.-P. Schwefel, \An Overview of Evolutionary Algorithmsfor Parameter Optimization," Evolutionary Computation, 1 (1993) 1{23.[3] S. Kau�man and S. Levin, \Towards a General Theory of AdaptiveWalks on Rugged Landscapes," Journal of Theoretical Biology, 128(1987) 11{45.[4] I. P. Gent and T. Walsh, \Towards an Understanding of Hill-climbingProcedures for SAT," in Proceedings of the 11th National Conferenceon Arti�cial Intelligence (AAAI-93), 28{33, (MIT Press, 1993).[5] D. E. Goldberg, Genetic Algorithms in Search, Optimization & MachineLearning (Addison Wesley, 1989).[6] F. Gruau, \Genetic Synthesis of Boolean Neural Networks with a CellRewriting Developmental Process," Tech. Rep., Laboratoire de l'Infor-matique du Parall�elisme (1992).

Evolving Optimal Neural Networks 25[7] S. A. Harp, T. Samad, and A. Guha, \Towards the Genetic Synthesis ofNeural Networks," in Proceedings of the Third International Conferenceon Genetic Algorithms (ICGA-89), 360{369, (Morgan Kaufmann, 1989).[8] J. H. Holland, Adaptation in Natural and Arti�cial Systems, (Universityof Michigan Press, Ann Arbor, 1975).[9] A. G. Ivakhnenko, \Polynomial Theory of Complex Systems," IEEETransactions on Systems, Man, and Cybernetics, SMC-1 (1971) 364{378.[10] S. Kirkpatrick, C. D. Gelett, and M. P. Vecchi, \Optimization by Sim-ulated Annealing," Science, 220 (1985) 621{630.[11] H. Kitano, \Designing Neural Networks Using Genetic Algorithms withGraph Generation System," Complex Systems, 4 (1990) 461{476.[12] J. R. Koza, Genetic Programming: On the Programming of Computersby Means of Natural Selection (MIT Press, 1992).[13] D. J. C. MacKay, \Bayesian Methods for Adaptive Models," Ph.D. the-sis, Caltech, Pasadena, CA. (1992).[14] W. S. McCulloch and W. Pitts, \A Logical Calculus of the Ideas Imma-nent in Nervous Activity," Bull. Math. Biophysics, 5 (1943) 115{133.[15] G. F. Miller, P. M. Todd, and S. U. Hegde, \Designing Neural NetworksUsing Genetic Algorithms," in Proceedings of the Third InternationalConference on Genetic Algorithms (ICGA-89), 379{384 (Morgan Kauf-mann, 1989).[16] M. Minsky and S. Papert, Perceptrons: An Introduction to Computa-tional Geometry (MIT Press, 1969, 1988).[17] D. Montana and L. Davis, \Training Feedforward Neural Networks Us-ing Genetic Algorithms,", in Proceedings of the International Joint Con-ference on Arti�cial Intelligence (1989).[18] P. Morris, \The Breakout Method for Escaping from Local Minima," inProceedings of the 11th National Conference on Arti�cial Intelligence(AAAI-93), 40{45, (MIT Press, 1993).

Evolving Optimal Neural Networks 26[19] H. M�uhlenbein, \Darwin's Continental Cycle and Its Simulation by thePrisoner's Dilemma," Complex Systems, 5 (1991) 459{478.[20] H. M�uhlenbein, \Evolution in Time and Space|The Parallel GeneticAlgorithm," in Foundations of Genetic Algorithms, 316{338, edited byG. Rawlins (Morgan Kaufmann, 1991).[21] H. M�uhlenbein, \Parallel Genetic Algorithms in Combinatorial Opti-mization," in Computer Science and Operations Research, 441{456,edited by G. Balci, R. Sharda, and S. A. Zenios (Pergamon, Oxford,1992).[22] H. M�uhlenbein, \Evolutionary Algorithms: Theory and Applications,"in Local Search in Combinatorial Optimization, edited by E. H. L. Aartsand J. K. Lenstra (Wiley, 1993).[23] H. M�uhlenbein, M. Gorges-Schleuter, and O. Kr�amer, \New Solutions tothe Mapping Problem of Parallel Systems|The Evolution Approach,"Parallel Computing, 4 (1987) 269{279.[24] H. M�uhlenbein and J. Kindermann, \The Dynamics of Evolution andLearning|Towards Genetic Neural Networks," in Connectionism in Per-spective, 173{197, edited by R. Pfeifer et al., (Elsevier, 1989).[25] H. M�uhlenbein and D. Schlierkamp-Voosen, \Predictive Models for theBreeder Genetic Algorithm I: Continuous Parameter Optimization,"Evolutionary Computation, 1 (1993) 25{49.[26] T. Poggio and F. Girosi, \Networks for Approximation and Learning,"Proceedings of the IEEE, 78 (1990) 1481{1497.[27] I. Rechenberg, Evolutionsstrategie: Optimierung Technischer Systemenach Prinzipien der Biologischen Evolution (Stuttgart, Frommann-Holzboog, 1973).[28] F. Rosenblatt, Principles of Neurodynamics (Spartan Books, Washing-ton D.C., 1962).

Evolving Optimal Neural Networks 27[29] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, \Learning InternalRepresentations by Error-Propagation," in Parallel Distributed Process-ing, Vol. I, 318{362, edited by D. E. Rumelhart and J. L. McClelland(MIT Press, 1986).[30] H.-P. Schwefel, Numerical Optimization of Computer Models (Chich-ester, Wiley, 1981).[31] B. Selman and H. A. Kautz, \An Empirical Study of Greedy LocalSearch for Satis�ability Testing," in Proceedings of the 11th NationalConference on Arti�cial Intelligence (AAAI-93), 46{51, (MIT Press,1993).[32] F. �Smieja, \Neural Network Constructive Algorithms: Trading Gener-alization for Learning E�ciency?", Circuits, Systems, and Signal Pro-cessing, 12 (1993) 331{374.[33] R. Sorkin, \A Quantitative Occam's Razor," International Journal ofTheoretical Physics, 22 (1983) 1091{1104.[34] M. F. Tenorio and W. -T. Lee, \Self-Organizing Network for OptimumSupervised Learning," IEEE Transactions on Neural Networks, 1 (1990)100{110.[35] N. Tishby, E. Levin, and S. A. Solla, \Consistent Inference of Probabili-ties in Layered Networks: Predictions and Generalization," in Proceed-ings of the International Joint Conference on Neural Networks (IJCNN-89), Vol. II, 403{409 (IEEE, 1989).[36] D. Whitley, T. Starkweather, and C. Bogart, \Genetic Algorithms andNeural Networks: Optimizing Connections and Connectivity," ParallelComputing, 14 (1990) 347{361.[37] B. T. Zhang, Learning by Genetic Neural Evolution, (in German), ISBN3-929037-16-5, In�x-Verlag, Sankt Augustin (1992). Also available asInformatik Berichte No. 93, Institut f�ur Informatik I, Universit�at Bonn(July 1992).[38] B. T. Zhang, \Accelerated Learning by Active Example Selection," toappear in International Journal of Neural Systems (1993).

Evolving Optimal Neural Networks 28[39] B. T. Zhang and H. M�uhlenbein, \Genetic Programming of MinimalNeural Nets Using Occam's Razor," in Proceedings of the Fifth Inter-national Conference on Genetic Algorithms (ICGA-93), 342-349, editedby S. Forrest (Morgan Kaufmann, 1993).[40] B. T. Zhang and G. Veenker, \Focused Incremental Learning for Im-proved Generalization with Reduced Training Sets," in Arti�cial Neu-ral Networks: Proceedings of the International Conference on Arti�cialNeural Networks (ICANN-91), Vol. I, 227{232, edited by T. Kohonen etal. (Elsevier, 1991).[41] B. T. Zhang and G. Veenker, \Neural Networks That Teach Themselvesthrough Genetic Discovery of Novel Examples," in Proceedings of theInternational Joint Conference on Neural Networks (IJCNN-91), Vol. I,690{695 (IEEE, 1991).

