
11Genetic Algorithms and NeuralNetworksD. WHITLEY11.1 INTRODUCTIONGenetic algorithms and neural networks are both inspired by computation in biologicalsystems. A good deal of biological neural architecture is determined genetically. It istherefore not surprising that as some neural network researchers explored how neuralsystems are organized that the idea of evolving neural architectures should arise.Genetic algorithms have been used in conjunction with neural networks in threemajor ways. First, they have been used to set the weights in �xed architectures. Thisincludes both supervised learning applications and reinforcement learning applications.In related work, a genetic algorithm has been used to set the learning rates which inturn are used by other types of learning algorithms. Genetic algorithms have also beencombined with more traditional forms of gradient based search.Second, genetic algorithms have been used to learn neural network topologies. Whenevolving neural networks topologies for function approximation, this includes theproblem of specifying how many hidden units a neural network should have and howthe nodes are connected.A third major application is the use of genetic algorithms to select training dataand to interpret the output behavior of neural networks.Scha�er, Whitley and Eshelman (1992) survey these various areas in an introductionto the proceeding of a 1992 workshop on Combinations of Genetic algorithms andNeural Networks. The current paper is tutorial in nature and highlights select casesand briey references some of the work that has been introduced in the last 3 years.Genetic Algorithms in Engineering and Computer ScienceEditor J. Periaux and G. Winter c1995 John Wiley & Sons Ltd.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

2 D. WHITLEY11.2 GENETIC ALGORITHMS FOR PREPROCESSING ANDINTERPRETING DATATwo examples of using genetic algorithms for preprocessing data is given in the workof Chang and Lippmann (1991) and the work of Brill, Brown and Martin (1992). Inboth cases, a large number of inputs were available as input to a K nearest neighbor(KNN) classi�er. In this case the coding can be a simple binary string indicatingwhether a particular input or combination of inputs can be deleted from the input setwithout signi�cantly changing the classi�cation behavior. In the Chang and Lippmannapplication, the genetic algorithm was able to reduce the input set from 153 to 33input features. Brill, Brown and Martin also were able to reduce the input set, buttheir goal was not just to reduce the set of inputs to the nearest neighbor classi�er, butto also identify inputs that would also work well for a counterpropagation network.The nearest neighbor classi�er was used for feature selection since the evalutationof a feature set is much faster with the KNN classi�er than the counterpropagationnetwork. Nevertheless, the reduced input set for the KNN classi�er also worked wellfor the counterpropagation network.Genetic algorithms have not only been used to reduce the input data set but also tointerpret outputs of a neural network. Eberhart and Dobbins (1991; Eberhart 1992)used a genetic algorithm to search for the decision surface that identi�ed boundarycases of appendicitis as predicted by a neural network. For example, what inputs leadto a classi�cation of 0.5, where 0.5 indicates a borderline case, i.e., a case that lies onthe boundary between the decision regions that classify cases as positive or negativeexamples of appendicitis? It can also be useful to determine what are considered to bewhat Eberhart calls `quintessential' examples of appendicitis as predicted by a neuralnetwork. In this case, what inputs lead to a classi�cation of 1.0, where 1.0 correspondsto a classic case of appendicitis?Asking for an input that yields an output of 1.0 or 0.5 is really a form of networkinversion; in other words, this is analogous to running the neural network backwards.One can literally attempt to run a neural network backwards by using backpropagationto look for hidden node and input node activations that yield a particular output,but the process can be time consuming and does not always work well since theclassi�cation of a neural network is often many-to-one and not an invertible function.Eberhart and Dobbins simply searched the input space for strings that produced thedesired output. By running a genetic algorithmmultiple times they were able to obtainmultiple patterns that mapped to a particular output.Such information can be used in two ways. First, it can be used as an explanationtool. Knowing quintessential examples as well as borderline cases can help explain howa network classi�es novel inputs. Second, it can also be used to assess what a neuralnetwork has learned and whether the cases that it considers to be quintessential andborderline are reasonable.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 311.3 GENETIC ALGORITHMS FOR TRAINING NEURALNETWORKSThe idea of training neural networks with genetic algorithms can be found in Holland's1975 book Adaptation in Natural and Arti�cial Systems. Most of the actual work inthis area is far more recent. Belew, McInernery and Schraudolph (1990), Harp, Samadand Guha (1989;1990) and Scha�er, Caruana and Eshelman (1990) all used geneticalgorithm to set the learning and momentum rates for feedforward neural networks.M�uhlenbein also contributed to the early e�orts in this area (1990; M�uhlenbein andKindermann, 1989).This tuning was often done in conjunction with other changes to the network, suchas weight initialization or changing the network topology. In addition, there havealso been several researchers that attempted to train feedforward neural networks fordecision problems using genetic algorithms (Whitley and Hanson, 1989; Montana andDavis, 1989; Whitley et al. 1990). Related to this is the use of genetic search in theoptimization of Kanerva's (1988) sparse distributed memories by Rogers (1990) andWilson's work (1990) which learned predicates over input features to construct newhigher order inputs to a perceptron.Rogers (1990) has used genetic algorithms to optimize the \location addresses"(i.e. the layer mapping inputs to hidden units) of a sparse distributed memory. Dasand Whitley (1992) extend the work of Rogers by using a genetic algorithm for\location address" optimization that actively extracts information about multiple localminima based on relative global competitiveness. Each local optimumin this particularde�nition of the search space represents a di�erent and distinct data pattern thatcorrelates with some output or event of interest. This allows multiple data patterns tobe tracked simultaneously, where each pattern corresponds to a di�erent local optimumin location address space.The application of genetic algorithms to simple weight training for neural networkshas been hampered by two factors. First, gradient methods have been developed thatare highly e�ective for weight training in supervised learning applications where input-output training examples are available and where the target network is a simple feedforward network. Second, the problem of training a feed forward Arti�cial NeuralNetwork (ANN) may represent an application that is inherently not a good match forgenetic algorithms that rely heavily on recombination. Some researchers do not userecombination (e.g. Porto and Fogel, 1990) while other have used small populationsand high mutation rates in conjunction with recombination. We �rst look at whyoptimizing the weights in a neural network may cause problem for algorithms thatrely heavily on simple recombination schemes.11.3.1 The Problem With ANNOne reason that genetic algorithms may not yield a good approach to optimizingneural network weights is the Competing Conventions Problem. Nick Radcli�e (1990;1991) has also named this the Permutations Problem. The source of the problem isthat there can be numerous equivalent symmetric solutions to a neural network weightoptimization problem.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

4 D. WHITLEY
A B C D

Figure 11.1 A simple feedforward neural network. Note that rearranging thepositions of the hidden units does not change the functionality of the network.Figure 11.1 illustrates a simple feedforward network. Assume that the vectorwa;1; wa;2; wa;3; wb;1; wb;2; wb;3; wc;1; wc;2; wc;3; wd;1; wd;2; wd;3is an arbitrary assignment of weights to this neural network, where w�;i passes throughhidden node � and i = 1; i = 2 are input connections and i = 3 is the outputconnection. Note that for every vector of this form there are 4! = 24 equivalent vectorsrepresenting exactly the same solution. All permutations over the set of hidden unitindices, fa; b; c; dg, are equivalent vectors in terms of neural network functionality andin terms of the resulting evaluation function. This is because rearranging the orderof the hidden units has no e�ect on the functionality of the network. Thus, given Hhidden units in a simple fully connected feedforward network, there are H! symmetriesand up to H! equivalent solutions.The problem this creates for a genetic algorithm that uses simple recombination isas follows. If one does simple crossover on a permutation such as [A B C D] and [DA C B] then the o�spring will duplicate some elements of the permutation and willomit others. Similarly, if di�erent strings try to map functionality of hidden nodes indi�erent ways, then recombining these strings will result in duplication of some hiddenunits and omission of other hidden units. In this case, using a population-based formof search can be a disadvantage, since di�erent strings in the population may not mapfunctionality to the di�erent hidden units in the same way.Various solutions have been proposed to the Competing Conventions Problems.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 5Early on, Montana and Davis (1989) attempted to identify functional aspects of hiddenunits during recombination in order to perform a type of intelligent crossover. Radcli�e(1991) also suggested a solution whereby hidden units are treated as a multiset: hiddenunits with the same connectivity are considered to be the same, but hidden unitsmight have di�erent connectivities. During recombination, one can search throughthe hidden units to determine which are identical and use this information to guidecrossover. Hancock (1992) has implement this idea as well as extensions to considerhow similar hidden units are; he concludes the permutation problem is not as badas has often been suggested. More recently, Korning (1994) has suggested that thetraditional use of the standard quadratic error measurement, (target� observed)2, ispart of the problem and suggests the use of other �tness measurements. Korning alsosuggests \killing o�" any o�spring that do not meet minimal �tness requirements,which might �lter out o�spring from incompatible parents. Overall however, it is verydi�cult to �nd cases where genetic algorithms have been shown to yield results betterthan gradient based methods for supervised learning applications.One recent report returns to a theme initially put forward by Belew et al. (1990).Part of the traditional wisdom (folklore?) which has grown up around geneticalgorithms is that a genetic algorithm is good at roughly characterizing the structure ofa search space and �nding regions of good average �tness, but not adept at exploitinglocal features of the search space. One way to use a genetic algorithm then is to useit to �nd an initial set of good weights and then to turn the search over to a gradientbased method. Skinner and Broughton (1995) have reported good results with thiskind of approach and suggests this method is better than using gradient methodsalone for complex problems involving large weight vectors.11.3.2 Genetic and Evolutionarly Algorithms for Reinforcement LearningAnother stratgey is to use genetic and evolutionary algorithms for weight optimizationin domains where gradient methods cannot be directly applied, or where gradientmethods are less e�ective than in simple supervised learning applications. Onesuch application is the use of evolutionary algorithms to train neural networks forreinforcement learning problems and neurocontrol applications. Some results suggestthat evolutionary algorithms can be quite competitive against other algorithmsthat are applicable to reinforcement learning problems. For reinforcement learningapplications the set of target outputs that correspond to some set of inputs usedto train the net are not known a priori. Rather, the evaluation of the network isperformance based. Most existing algorithms attempt to convert the reinforcementlearning problem to a supervised learning problem by indirectly or heuristicallygenerating a target output for each input. Some approaches compute an inverse ofa system model. The system model maps inputs (current state and control actions)to outputs (the subsequent state). Given a target state, the inverse of the systemmodel can be used to generate actions, which can then be used as a output target (theappropriate action) for a separate controller. This general description is applicableto methods such as \Back propagation through time." \Adaptive critic" methodsuse a separate evaluation net that learns to predict or evaluate performance at eachtime step. The prediction can then be used to heuristically generate output targetsfor an \action" net which controls system behavior. Note, however, that both ofcbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

6 D. WHITLEYthese methods compute target outputs and the resulting gradients either indirectlyor heuristically.Genetic algorithms can be directly applied to reinforcement learning problemsbecause genetic algorithms do not use gradient information, but rather only a relativemeasure of performance for each set of weight vectors that is evaluated. Geneticalgorithms and evolutionary algorithms have been successfully applied to trainingneural nets to controlling an inverted pendulum. Weiland (1990; 1991) for exampletrained recurrent networks to balance two inverted pendulums of di�erent lengths atthe same time, as well as a jointed pendulum. These algorithms often use smallerpopulation sizes and higher mutation rates to cope with the \Competing ConventionsProblems." Whitley et al. (1991; 1993) compared a genetic hill-climber to the wellknown work of Anderson (1989) which uses the \temporal di�erence method" (Sutton1988) to train an \Adaptive Heuristic Critic" (AHC) which in turn is used togenerate target outputs for doing reinforcement backpropagation. The results suggeststhat that the genetic algorithms produced training times comparable to the AHCwith reinforcement backpropagation, while generalization was better for the geneticalgorithm. .Whitley et al. (1991; 1993) have argued that comparisons of algorithms forreinforcement learning (and other decision problems) should not only consider learningtime but also generalization. Algorithms that learn very quickly can potentially failto produce an adequate generalized model of the process being learned. Thus, fastlearning is not in and of itself a good measurement for evaluating a training algorithm.Generalization is also e�ected by how the evaluation function is constructed. Inreinforcement learning and control problems, the number of possible initial statescan be intractable. Thus, evaluation involves sampling the set of possible start states.Evaluation based on a single �xed start state can result in fast learning, but very poorgeneralization. Evaluation based on a single random start state is somewhat better,but the resulting evaluation is noisy and it di�cult to compare the evaluation of onestring against another. Evaluation based on a set of start states that uniformly samplesthe input space would appear to be the best strategy.11.4 GENETIC ALGORITHMS FOR CONSTRUCTIONNEURAL NETWORKSSome of the early e�orts to encode neural network architectures assume thatthe number of hidden units was bounded; the genetic algorithm could then beused to determine what combinations of weights or hidden units yield improvedcomputational behavior within a �nite range of architectures. These directly codednetwork architectures have usually been trained using back propagation. A common�tness measurement is the training time. Miller and Todd (1989) have explored theseideas, as have Belew, McInerney and Schraudolf (1990). Whitley, Starkweather andBogart (1990) show that the genetic algorithm can be used to �nd network topologiesthat consistently display improved learning speeds over the typical fully connected feedforward network. They also explore how to create selective pressure toward smallernets and to reduce training time by initializing the reduced networks using weightsthat have already been optimized for larger fully connected networks.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 7
Network A

Indicates a Nonzero Threshold

Network CFigure 11.2 A standard feedforward networks for adding two 2-bit numbersand an architecture evolved using a genetic algorithm. The special architecturelearns much faster.An example of the e�ort to reduce the network topology for a 2-bit adder is givenin Figure 11.2. Network C was evolved by a genetic algorithm and learned to add inbetween 8,000 and 9,000 training epochs on 50 out of 50 tests. Network A failed toconverge on 5 of the 50 tests, and over half of the networks required more than 50,000training epochs to train. A Network B was created by adding direct connections tothe input-output nodes of Network A. Network B learned the training set in between10,000 and 50,000 training epochs on 46 out of 50 tests.Such early results were encouraging, but the di�culty with directly optimizinga network architecture is the high cost of each evaluation. If we must run a back-propagation algorithm (or some faster, improved form of gradient descent) for eachevaluation, the number of evaluations needed to �nd improved network architecturesquickly becomes computationally prohibitive. The computation cost is typically sohigh as to make genetic algorithms impractical except for optimizing small topologies.For example, if an evaluation function for a modest-sized neural network architectureon a complex problem involves one hour of computation time, then it requires oneyear to do only 9,000 architecture evaluations. If the architecture is complex then9,000 evaluations is most likely inadequate for genetic search to be e�ective.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

8 D. WHITLEYAlso, one trend in neural networks that partially addresses the architecture issue isconstructive algorithms such as the Cascade Correlation Learning Architecture, whichincrementally adds hidden units to the neural network as it learns. Thus, the basis forcomparison is not just simple fully connected feedforward networks.Another more recent e�ort to evolve neural networks is the work of Angelineet al (1994). The GeNeralized Acquistion of Recurrent Links, or GNARL system,uses selection and mutation to search the space of possible recurrent neural networkarchitectures. GNARL attempts to learn weights and topology at the same time. Thistype of approach di�ers from constructive algorithms such as Cascade Correlation inthat the space of possible architectures is explored in a nonmonotonic fashion.11.4.1 Neurogenesis: Growing Neural NetworksIn the last 5 years some of the most advanced work for using genetic algorithmsto develop neural network have focused on growing neural network. Weights andarchitectures are often developed together. This can include systems such as GNARL.Other researchers have also looked at genetic programming as a way of developingarchitectures and weights together (Koza and Rice 1991).Grammar based architecture descriptions have been explored by Kitano (1990),Mjolsness et al. (1988) and by Gruau (1992). Nol� et al. (1990) have also lookedat grammar based systems that retain may of the characteristics of L-systems. Byoptimizing grammar structures that generate network architectures instead of directlyoptimizing architectures this research hopes to achieve better scalability, and in somesense, reusability of network architectures. In other words, the goal of this researchis to �nd rules for generating networks which will be useful for de�ning architecturesfor some general class of problems. In particular, this would allow developers to de�neneural structures for smaller problems that could reused as as building blocks forsolving larger problems.One of the earliest e�orts to look at network growth was by Mjolsness et al., (1988)which de�ned a recursive equation for a matrix from which a family of integer matricescould be derived, and then a family of weighted neural nets. The search space is de�nedover the set of equation coe�cients. Mjolsness uses simulated annealing instead of thegenetic algorithm to search this space.Kitano (1990) uses a grammar to generate a family of matrices of size 2k. Theelement of the matrix are characters in a �nite alphabet. In order to develop matrixMk+1 each character of the matrixMk is replaced by a 2�2 matrix. This connectivitymatrix describes the architecture of a neural net. To produce an acyclic graph for afeed forward neural network, only the upper right triangle of the matrix is used.More recently, Kitano has presented a simple model of neurogenesis that is morebiological in nature. In this approach, \axons grow while cell metabolism are beingcomputed." (1995:81). Cell membranes are also modeled that are capable of chemicaltransport and di�usion. This work appears to be focused on understanding theemergent properties of this type of system.Gruau (1992) directly develops a cellular development model for growing neural netscalled cellular encoding. Each cell has a duplicate copy of the \genetic code." Each cellreads the code at a di�erent position. Depending on what is read, a cell can divide,change internal parameters, and �nally become a neuron. Arguably, the resultingcbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 9language can describe networks in a more elegant and compact way than matrixrepresentations, and the representation can be readily recombined by the geneticalgorithm. Gruau used a genetic algorithm to recombine grammar trees representingcellular encodings and has showed that neural networks for the parity problem andsymmetry problem could be found. More recently Gruau (1995) has also evolvedcontrols for a 6 legged robot and Whitley, Gruau and Pyeatt (1995) evolve recurrentneurocontrollers for balancing 1 and 2 poles without velocity input information.11.4.2 A Review of Cellular Development.Each cell carries a copy of the genetic code in the form of a grammar tree. Each cellalso has a pointer which points to a node into the grammar tree. Each node is aprogram instruction. Development starts with a single ancestor cell with connectionsto input cells and output cells.In a Sequential divide, denoted by S, the parent cell splits into two cells such thatthe �rst child inherits all of the input connections of the parent and the second childinherits all of the output connections of the parent; the �rst child is also connectedby a single connection to the second child. In Figure 11.3, during a Sequential dividethe second child is placed under the �rst child. An S node is also a branch point, withthe top child cell moving its pointer to the left branch node below S and the bottomchild moving its pointer to the right branch node below S.In a Parallel divide, denoted by P , the parent cell splits into two cells that inheritall of the input and output connects of the parent. In Figure 11.3, during a Paralleldivide the two child cells are place side by side. A P node is also a branch point, withthe left hand child cell moving its pointer to the left branch node below P and theright hand child moving its pointer to the right branch node below P .The next symbol encountered in Figure 11.3 is the E, which is the end or terminationsymbol. A cell terminates development after reading the E symbol.The program-symbolA increments the threshold of the hidden unit. The program-symbol denoted \-" sets the weight of the input link pointed by the link register to�1. In this example the link register has not been reset and so has its original defaultsetting such that it points to the leftmost fan-in connection.Figure 11.3 shows an example of a simple grammar tree that generates a XORnetworks.In order to reuse subcomponents of the neural network, cellular encoding uses aspecial recurrent program-symbol denoted R. Associated with R is a counter thancontrols the number of recursive jumps that can be made. When R is encountered bya cell, the cell moves its reading head back to the root cell of the grammar tree. Theassociated counter decrements each time the recursive jump is made.When the counterequals 0 the cell does not reset it pointer, but rather moves forward in the grammartree, or gives up its reading head and terminates development. Gruau and Whitley(1993) provide an example of how the solution to the XOR net can be generalizedto cover all parity problems by placing an R symbol in the leftmost leaf node of thegrammar tree in Figure 11.3. On parity and symmetry problems, after the geneticalgorithm has generated a family of recursively developed networks that handle thelower order cases (3 to 6 inputs), the recursive network encoding represents a generalrelation and automatically generalizes to handle arbitrarily large problems.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

10 D. WHITLEY
outputpointercell
inputpointercellancestorcellstartingnetworkEE P

1 21Step 3, 4, 5
Step 9, 10, 11

S SPAE E -E S SPAE E -E
Step 1 Step 2E-EEA P SS E-EEA P SSPE E E-EEA P SSEE P

PE E Step 6E-EEA P SSEE P Step 7S SPAE E -EPE EPE EStep 8E-EEA P SSEE P
Figure 11.3 The cellular development process. In step 1 the ancestor cell doesa sequential divide into 2 cells. In step 2 the uppermost cell from the previousstep does a parallel divide. The two cells that are created both read terminationsymbols in steps 3 and 4; in step 5 the sequential divide is executed. In step 6 aparallel divide is executed. In step 7 the \-" symbol has been executed and anegative weight is introduced feeding into the output node. In step 8 the blackcell has changed its threshold. In the �nal steps, the remaining cells just readtermination symbols. (This �gure is taken from Gruau and Whitley, 1993).cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

GENETIC ALGORITHMS AND NEURAL NETS 11Another way to reuse development code is to use a form of Automatic FunctionDe�nition like that used in Genetic Programming. Subtrees are created, such that themain tree can jump to a subtree, execute the subtree, then return to the associatedprogram-symbol in the main grammar tree. Subtrees thus function like programsubroutines. Gruau has used Automatic Function De�nition to evolve a mechanism tocontrol the gait of a 6-legged robot. The use of Automatic Function De�nition resultsin simpler, more modular and well structured neural network (Gruau 1995).11.5 Evolution, Learning and the Baldwin E�ectThere has been considerable interest recently in the idea that learning can impactevolution even if learned behaviors are not coded back on the chromosome, as inLamarckian evolution. The work of Hinton and Nowlan (1987) explains how learningcan reshape the �tness landscape, since an individual's �tness is made up of boththeir genetically determined behavior and learned behavior. If learned behavior has asigni�cant impact on �tness and if the contribution of the learned behavior is stableover time, there can be a selective advantage to having a genetic predisposition thatmakes it easier to acquire this learned behavior, and eventually, perhaps even toadd the behavior to the individual's genetically determined behaviors. Note that thiscan occur without Lamarckian mechanisms, since there is selection presssure for thelearned behavior which can be exploited by Darwinian selection. This idea dates backto Baldwin (1896) and hence is known as the Baldwin E�ect.Such interactions in learning and evolution have been observed when training neuralnetworks using genetic algorithms. Also, the idea of using learning on top of geneticsearch to speed up the search process has also been explored. Some researchers thatexplore the interaction of learning and evolution in neurogenetic systems includeAckley and Littman (1991), Gruau and Whitley (1991) and Belew (1989).11.6 CONCLUSIONSThe challenge facing researchers interested in combinations of genetic algorithms andneural networks is to show how genetic algorithms can make a positive and competitivecontribution in the neural networks arena. Currently, it appears that using geneticalgorithms to �nd a set of initial weights before applying gradient based methodsmay be advantageous for supervised learning classi�cation problems. The applicationof genetic methods to the development of neural networks for reinforcement learningapplication also appears to be a worthwhile area for future work. Combinations ofgenetic algorithms and neural networks are likely to also continue to impact the �eldof arti�cial life.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

12 D. WHITLEY

cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

ReferencesAckley D.H. and Littman M. (1991) Interactions between learning and evolution. In Proc. ofthe 2nd Conf. on Arti�cial Life, C.G. Langton, ed., Addison-Wesley, 1991.Anderson C. W. (1989) Learning to Control an Inverted Pendulum Using Neural Networks.IEEE Control Systems Magazine, 9, 31-37.Angeline P.J., Saunders G. M. and Pollack J.B. (1994) An evolutionary algorithm thatconstructs recurrent neural networks. IEEE Transactions on Neural Networks 5(1):54-64.Baldwin J.M. (1896) A new factor in evolution. American Naturalist, 30:441-451, 1896.Belew R. (1989) When both individuals and populations search: Adding simple learning tothe genetic algorithm. In J.D. Scha�er (Ed.), Third international conference on geneticalgorithms (pp. 34-41). San Mateo, CA: Morgan Kaufmann.Belew R., McInerney J. and Schraudolph N. (1990) Evolving Networks: Using the GeneticAlgorithms with Connectionist Learning. CSE Technical Report CS90-174, ComputerScience, UCSD.Brill F.Z., Brown D.E. and Martin W.N. (1992) Fast genetic selection of features for neuralnetwork classi�ers. IEEE Transactions on Neural Networks, 3 (2), 324-328.Chang E.J. and Lippmann R.P. (1991) Using genetic algorithms to improve patternclassi�cation performance. In R.P. Lippmann, J.E. Moody and D.S. Touretsky (Eds.),Advances in neural information processing 3 (pp. 797-803). San Mateo, CA: MorganKaufmann.Das R. and Whitley D. (1992) Genetic Sparse Distributed Memories. Combinations of GeneticAlgorithms and Neural Networks. D. Whitley and J.D. Scha�er (eds.) IEEE ComputerSociety Press.Eberhart R.C. and Dobbins R.W. (1991) Designing neural network explanation facilitiesusing genetic algorithms. IEEE international joint conference on neural networks (pp.1758-1763). Singapore: IEEE.Eberhart R.C. (1992) The role of genetic algorithms in neural network query-based learningand explanation facilities. In Combinations of Genetic Algorithms and Neural Networks.D.Whitley and J.D. Scha�er (eds.) IEEE Computer Society Press. Fahlman S. and Lebiere C.(1990). The Cascade Correlation Learning Architecture. In D. Touretzky (Ed), Advancesin Neural Information Processing Systems 2, Morgan Kaufmann.Gruau F. (1992) Genetic synthesis of Boolean neural networks with a cell rewritingdevelopmental process. In, Combination of Genetic Algorithms and Neural Networks, D.Whitley and J.D. Scha�er, eds, IEEE Computer Society Press, 1992.Gruau F. and Whitley D. (1993) Adding Learning to the Cellular Development of NeuralNetworks: Evolution and the Baldwin E�ect. Evolutionary Computation 1(3): 213{233.Gruau F. (1995). Automatic De�nition of Modular Neural Networks, Adaptive Behavior,3(2):151-183.Hancock P.J.B. (1992) Genetic algorithms and permutation problems: a comparison ofrecombination operators for neural structure speci�cation. In Combinations of GeneticAlgorithms and Neural Networks. D. Whitley and J.D. Scha�er (eds.) IEEE ComputerSociety Press.Harp S.A., Samad T. and Guha A. (1989) Towards the genetic synthesis of neural networks.In J.D. Scha�er (Ed.), Third international conference on genetic algorithms (pp. 360-369).Genetic Algorithms in Engineering and Computer ScienceEditor J. Periaux and G. Winter c1995 John Wiley & Sons Ltd.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

14 D. WHITLEYSan Mateo, CA: Morgan Kaufmann.Harp S.A., Samad T. and Guha A. (1990) Designing application-speci�c neural networksusing the genetic algorithm. In D.S. Touretsky (Ed.), Advances in neural informationprocessing 2 (pp. 447-454). San Mateo, CA: Morgan Kaufmann.Hinton G.E. and Nowlan S.J.(1987) How learning can guide evolution. Complex Systems,1:495{502.Holland J. (1975) Adaptation in Natural and Arti�cial Systems.Ann Arbor, Univ. of MichiganPress.Kanerva Pentti (1988). Sparse Distributed Memory. Cambridge, Mass: MIT Press.Kitano H. (1990) Designing neural network using genetic algorithm with graph generationsystem. Complex Systems, 4:461{476.Kitano H. (1995) A simple model of neurogenesis and cell di�erentiation based onevolutionary large-scale chaos. Arti�cial Life, 2:79{99.Korning P.G. (1994) Training of neural networks by means of genetic algorithm workingon very long chromosomes. Technical Report, Computer Science Department, Aarhus C,Denmark.Koza J.R. and Rice J.P. (1991) Genetic generation of both the weights and architecture fora neural network. In, Intern. Joint Conf. on Neural Networks, Seattle 92.Miller G., Todd P. and Hedge S. (1989) Designing Neural Networks using Genetic Algorithm,In, 3rd Intern. Conf. on Genetic Algorithms, D.J. Scha�er, ed., Morgan Kaufmann.Mjolsness E., Sharp D.H. and Alpert B.K. (1989) Scaling, machine learning, and geneticneural nets. Advances in Applied Mathematics, 10, 137-163.Montana D.J. and Davis L. (1989) Training feedforward neural networks using geneticalgorithms. In Proceedings of eleventh international joint conference on arti�cialintelligence (pp. 762-767). San Mateo, CA: Morgan Kaufmann.M�uhlenbein H. (1990) Limitations of multi-layer perceptrons networks - steps towards geneticneural networks. Parallel Computing, 14:249{260.M�uhlenbein H. & Kindermann J. (1989). The dynamics of evolution and learning { Towardsgenetic neural networks. In R. Pfeifer, Z. Schreter, F. Fogelman-Soulie & L. Steels (Eds.),Connectionism in perspective (pp. 173-197). Amsterdam: Elsevier Science Publishers B.V.(North-Holland).Nol� S., Elman J.L. and Parisi D. (1990) Learning and evolution in neural networks. CRLTechnical Report 9019, La Jolla, CA: University of California at San Diego.Porto V.W. and Fogel D.B. (1990) Neural network techniques for navigation of AUVs.Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology (pp.137-141). Washington, DC: IEEE.Radcli�e N.J. (1990) Genetic neural networks on MIMD computers. Doctoral dissertation,University of Edinburgh, Edinburgh, Scotland.Radcli�e N.J. (1991) Genetic set recombination and its application to neural network topologyoptimization. Technical report EPCC-TR-91-21, University of Edinburgh, Edinburgh,Scotland.Rogers D. (1990) Predicting Weather Using a Genetic Memory: a Combination of Kanerva'sSparse Distributed Memory with Holland's Genetic Algorithm; Advances in NeuralInformation Processing 2.Sutton R. (1988) Learning to Predict by the Methods of Temporal Di�erences, MachineLearning, 3:9-44.Skinner A. and Broughton J.Q. (1995) Neural Networks in Computational Materials Science:Training Algorithms Modelling and Simulation in Materials Science and Engineering,3:371|390.Scha�er J.D., Whitley D. and Eshelman L. (1992) Combination of Genetic Algorithms andNeural Networks: The state of the art. Combination of Genetic Algorithms and NeuralNetworks, IEEE Computer Society, 1992.Scha�er J.D., Caruana R.A. and Eshelman L.J. (1990) Using genetic search to exploit theemergent behavior of neural networks. In S. Forrest (Ed.), Emergent computation (pp.244-248). Amsterdam: North Holland.cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

REFERENCES 15Weiland A.P. (1990) Evolving controls for unstable systems. In D.S. Touretsky, J.L. Elman,T.J Sejnowski & G.E. Hinton (Eds.) Proceedings of the 1990 connectionist models summerschool (pp. 91-102). San Mateo, CA: Morgan Kaufmann.Weiland A.P. (1991) Evolving neural network controllers for unstable systems. IEEEinternational joint conference on neural networks (pp. II-667 - II-673). Seattle, WA: IEEE.Wilson S.W. (1990) Perceptron redux: Emergence of structure. In S. Forrest (Ed.), EmergentComputation (pp. 249-256). Amsterdam: North Holland.Whitley D. and Hanson T. (1989) Optimizing neural networks using faster, more accurategenetic search. In J.D. Scha�er (Ed.), Third international conference on genetic algorithms(pp. 391-396). San Mateo, CA: Morgan Kaufmann.Whitley D., Starkweather T. and Bogart C. (1990) Genetic Algorithms and Neural Networks:Optimizing Connections and Connectivity. Parallel Computing. 14:347-361.Whitley, D., Dominic, S. & Das, R. (1991). Genetic Reinforcement Learning with MultilayeredNeural Networks. Proc. 4th International Conf. on Genetic Algorithms,Morgan Kaufmann.Whitley D., Dominic S., Das R. and Anderson C. (1993) Genetic Reinforcement Learning forNeurocontrol Problems. Machine Learning 13:259-284.Whitley D., Gruau F. and Pyeatt L. (1995) Cellular Encoding Applied to Neurocontrol. In,5th Intern. Conf. on Genetic Algorithms, L. Eshelman, ed., Morgan Kaufmann.

cbook 16/8/1995 13:52|PAGE PROOFS for John Wiley & Sons Ltd (jwbook.sty v3.0, 12-1-1995)

