
1

1. Introduction

Gene expression programming (GEP) is, like genetic algo-
rithms (GAs) and genetic programming (GP), a genetic al-
gorithm as it uses populations of individuals, selects them
according to fitness, and introduces genetic variation using
one or more genetic operators [1]. The fundamental differ-
ence between the three algorithms resides in the nature of
the individuals: in GAs the individuals are linear strings of
fixed length (chromosomes); in GP the individuals are
nonlinear entities of different sizes and shapes (parse trees);
and in GEP the individuals are encoded as linear strings of
fixed length (the genome or chromosomes) which are after-
wards expressed as nonlinear entities of different sizes and
shapes (i.e., simple diagram representations or expression
trees).

If we have in mind the history of life on Earth (e.g., [2]),
we can see that the difference between GAs and GP is only
superficial: both systems use only one kind of entity which
functions both as genome and body (phenome). These kinds
of systems are condemned to have one of two limitations: if
they are easy to manipulate genetically, they lose in func-
tional complexity (the case of GAs); if they exhibit a certain

Gene Expression Programming: A New Adaptive

Algorithm for Solving Problems

Cândida Ferreira†

Departamento de Ciências Agrárias
Universidade dos Açores

9701-851 Terra-Chã
Angra do Heroísmo, Portugal

Gene expression programming, a genotype/phenotype genetic algorithm (linear and ramified), is presented
here for the first time as a new technique for the creation of computer programs. Gene expression program-
ming uses character linear chromosomes composed of genes structurally organized in a head and a tail. The
chromosomes function as a genome and are subjected to modification by means of mutation, transposition,
root transposition, gene transposition, gene recombination, and one- and two-point recombination. The chro-
mosomes encode expression trees which are the object of selection. The creation of these separate entities
(genome and expression tree) with distinct functions allows the algorithm to perform with high efficiency that
greatly surpasses existing adaptive techniques. The suite of problems chosen to illustrate the power and
versatility of gene expression programming includes symbolic regression, sequence induction with and with-
out constant creation, block stacking, cellular automata rules for the density-classification problem, and two
problems of boolean concept learning: the 11-multiplexer and the GP rule problem.

amount of functional complexity, they are extremely difficult
to reproduce with modification (the case of GP).

In his book, River Out of Eden [3], R. Dawkins gives a list
of thresholds of any life explosion. The first is the replicator
threshold which consists of a self-copying system in which
there is hereditary variation. Also important is that replicators
survive by virtue of their own properties. The second thresh-
old is the phenotype threshold in which replicators survive
by virtue of causal effects on something else - the pheno-
type. A simple example of a replicator/phenotype system is
the DNA/protein system of life on Earth. For life to move
beyond a very rudimentary stage, the phenotype threshold
should be crossed [2, 3].

Similarly, the entities of both GAs and GP (simple
replicators) survive by virtue of their own properties. Under-
standingly, there has been an effort in recent years by the
scientific community to cross the phenotype threshold in evo-
lutionary computation. The most prominent effort is develop-
mental genetic programming (DGP) [4] where binary strings
are used to encode mathematical expressions. The expres-
sions are decoded using a five-bit binary code, called genetic
code. Contrary to its analogous natural genetic code, this “ge-
netic code”, when applied to binary strings, frequently pro-
duces invalid expressions (in nature there is no such thing as
an invalid protein). Therefore a huge amount of computational
resources goes toward editing these illegal structures, which
limits this system considerably. Not surprisingly, the gain in
performance of DGP over GP is minimal [4, 5].

† Electronic mail and web addresses: candidaf@gene-expression-

programming.com; http://www.gene-expression-programming.com.
Present address: Gepsoft, 37 The Ridings, Bristol BS13 8NU, UK.

Complex Systems, Vol. 13, issue 2: 87-129, 2001

2

Create Chromosomes of Initial Population

End

Express Chromosomes

Execute Each Program

Evaluate Fitness

Replication

Prepare New Programs of Next Generation

Keep Best Program

Select Programs

Mutation

IS transposition

RIS transposition

Gene Transposition

1-Point Recombination

2-Point Recombination

Gene Recombination

Iterate or Terminate?

Terminate

Iterate

R
eproduction

Figure 1. The flowchart of a gene expression algorithm.

The interplay of chromosomes (replicators) and expression
trees (phenotype) in GEP implies an unequivocal translation
system for translating the language of chromosomes into
the language of expression trees (ETs). The structural or-
ganization of GEP chromosomes presented in this work al-
lows a truly functional genotype/phenotype relationship, as
any modification made in the genome always results in syn-
tactically correct ETs or programs. Indeed, the varied set of
genetic operators developed to introduce genetic diversity
in GEP populations always produces valid ETs. Thus, GEP is
an artificial life system, well established beyond the replicator
threshold, capable of adaptation and evolution.

The advantages of a system like GEP are clear from na-
ture, but the most important should be emphasized. First, the
chromosomes are simple entities: linear, compact, relatively
small, easy to manipulate genetically (replicate, mutate, re-
combine, transpose, etc.). Second, the ETs are exclusively
the expression of their respective chromosomes; they are
the entities upon which selection acts and, according to fit-
ness, they are selected to reproduce with modification. Dur-
ing reproduction it is the chromosomes of the individuals,
not the ETs, which are reproduced with modification and
transmitted to the next generation.

On account of these characteristics, GEP is extremely
versatile and greatly surpasses the existing evolutionary tech-
niques. Indeed, in the most complex problem presented in
this work, the evolution of cellular automata rules for the
density-classification task, GEP surpasses GP by more than
four orders of magnitude.

The present work shows the structural and functional
organization of GEP chromosomes; how the language of the
chromosomes is translated into the language of the ETs; how
the chromosomes function as genotype and the ETs as phe-
notype; and how an individual program is created, matured,
and reproduced, leaving offspring with new properties, thus,
capable of adaptation. The paper proceeds with a detailed
description of GEP and the illustration of this technique with
six examples chosen from different fields.

2. An overview of gene expression algorithms

The flowchart of a gene expression algorithm (GEA) is shown
in Figure 1. The process begins with the random generation
of the chromosomes of the initial population. Then the chro-
mosomes are expressed and the fitness of each individual is
evaluated. The individuals are then selected according to
fitness to reproduce with modification, leaving progeny with
new traits. The individuals of this new generation are, in
their turn, subjected to the same developmental process:
expression of the genomes, confrontation of the selection
environment, and reproduction with modification. The proc-
ess is repeated for a certain number of generations or until a
solution has been found.

Note that reproduction includes not only replication but
also the action of genetic operators capable of creating ge-
netic diversity. During replication, the genome is copied and
transmitted to the next generation. Obviously, replication

alone cannot introduce variation: only with the action of the
remaining operators is genetic variation introduced into the
population. These operators randomly select the chromo-
somes to be modified. Thus, in GEP, a chromosome might be
modified by one or several operators at a time or not be

3

modified at all. The details of the implementation of GEP
operators are shown in section 5.

3. The genome of gene expression program-
ming individuals

In GEP, the genome or chromosome consists of a linear, sym-
bolic string of fixed length composed of one or more genes.
It will be shown that despite their fixed length, GEP chromo-
somes can code ETs with different sizes and shapes.

3.1. Open reading frames and genes

The structural organization of GEP genes is better under-
stood in terms of open reading frames (ORFs). In biology,
an ORF, or coding sequence of a gene, begins with the “start”
codon, continues with the amino acid codons, and ends at a
termination codon. However, a gene is more than the respec-
tive ORF, with sequences upstream from the start codon and
sequences downstream from the stop codon. Although in
GEP the start site is always the first position of a gene, the
termination point does not always coincide with the last po-
sition of a gene. It is common for GEP genes to have
noncoding regions downstream from the termination point.
(For now we will not consider these noncoding regions, be-
cause they do not interfere with the product of expression.)

Consider, for example, the algebraic expression:

, (3.1)

which can also be represented as a diagram or ET:

Looking only at the structure of GEP ORFs, it is difficult
or even impossible to see the advantages of such a repre-
sentation, except perhaps for its simplicity and elegance.
However, when ORFs are analyzed in the context of a gene,
the advantages of such representation become obvious. As
stated previously, GEP chromosomes have fixed length and
are composed of one or more genes of equal length. There-
fore the length of a gene is also fixed. Thus, in GEP, what
varies is not the length of genes (which is constant), but the
length of the ORFs. Indeed, the length of an ORF may be
equal to or less than the length of the gene. In the first case,
the termination point coincides with the end of the gene, and
in the second case, the termination point is somewhere up-
stream from the end of the gene.

So, what is the function of these noncoding regions in
GEP genes? They are, in fact, the essence of GEP and
evolvability, for they allow modification of the genome us-
ing any genetic operator without restrictions, always pro-
ducing syntactically correct programs without the need for a
complicated editing process or highly constrained ways of
implementing genetic operators. Indeed, this is the paramount
difference between GEP and previous GP implementations,
with or without linear genomes (for a review on GP with
linear genomes see [7]).

3.2. Gene expression programming genes

GEP genes are composed of a head and a tail. The head
contains symbols that represent both functions (elements from
the function set F) and terminals (elements from the terminal
set T), whereas the tail contains only terminals. Therefore
two different alphabets occur at different regions within a

Q

Q

*

a a

a ab

The inverse process, that is, the translation of a K-ex-
pression into an ET, is also very simple. Consider the follow-
ing K-expression:

01234567890
Q*+*a*Qaaba (3.3)

The start position (position 0) in the ORF corresponds to the
root of the ET. Then, below each function are attached as
many branches as there are arguments to that function. The
assemblage is complete when a baseline composed only of
terminals (the variables or constants used in a problem) is
formed. In this case, the following ET is formed:

where “Q” represents the square root function. This kind of
diagram representation is in fact the phenotype of GEP indi-
viduals, being the genotype easily inferred from the pheno-
type as follows:

01234567
Q*+-abcd (3.2)

which is the straightforward reading of the ET from left to
right and from top to bottom. Expression (3.2) is an ORF,
starting at “Q” (position 0) and terminating at “d” (position
7). These ORFs were named K-expressions (from the Karva
language, the name I chose for the language of GEP). Note
that this ordering differs from both the postfix and prefix
expressions used in different GP implementations with arrays
or stacks [6].

Q

*

+

a b c d

–

)()(dcba −×+

4

gene. For each problem, the length of the head h is chosen,
whereas the length of the tail t is a function of h and the
number of arguments of the function with the most argu-
ments n, and is evaluated by the equation

t = h (n-1) + 1. (3.4)

Consider a gene composed of {Q, *, /, -, +, a, b}. In this
case n = 2. For instance, for h = 10 and t = 11, the length of the
gene is 10+11=21. One such gene is shown below (the tail is
shown in bold):

012345678901234567890
+Q-/b*aaQb aabaabbaaab (3.5)

and it codes for the following ET:

b

Q

*b

a Q

a

a

In this case, the ORF ends at position 10, whereas the gene
ends at position 20.

Suppose now a mutation occurred at position 9, chang-
ing the “b” into “+”. Then the following gene is obtained:

012345678901234567890
+Q-/b*aaQ+ aabaabbaaab (3.6)

and its ET gives:

012345678901234567890
+Q-/b*+*Qb aabaabbaaab (3.7)

giving the ET:

Q

*b

a Q

a

a

a b

b aa a

Q

*

*

b

bQ

a

a

Q

b

a a

In this case the termination point shifts several positions to
the right (position 14).

Obviously the opposite also happens, and the ORF is
shortened. For example, consider gene (3.5) and suppose a
mutation occurred at position 5, changing the “*” into “a”:

012345678901234567890
+Q-/baaaQb aabaabbaaab (3.8)

Its expression results in the following ET:

In this case, the ORF ends at position 7, shortening the origi-
nal ET by 3 nodes.

Despite its fixed length, each gene has the potential to
code for ETs of different sizes and shapes, the simplest
being composed of only one node (when the first element
of a gene is a terminal) and the biggest composed of as
many nodes as the length of the gene (when all the ele-
ments of the head are functions with the maximum number
of arguments, n).

It is evident from the examples above, that any modifica-
tion made in the genome, no matter how profound, always
results in a valid ET. Obviously the structural organization
of genes must be preserved, always maintaining the bounda-
ries between head and tail and not allowing symbols from
the function set on the tail. Section 5 shows how GEP opera-
tors work and how they modify the genome of GEP individu-
als during reproduction.

In this case, the termination point shifts two positions to the
right (position 12).

Suppose now that a more radical modification occurred,
and the symbols at positions 6 and 7 in gene (3.5) change
respectively into “+” and “*”, creating the following gene:

5

Q

b

*

a

b *

ba

Q

bab

*b

-b*b *Qb+ -*Qaabbab abbba bbaba

(b)

6XE�(7
�

6XE�(7
�

6XE�(7
�

(a)

3.3. Multigenic chromosomes

GEP chromosomes are usually composed of more than one
gene of equal length. For each problem or run, the number
of genes, as well as the length of the head, is chosen. Each
gene codes for a sub-ET and the sub-ETs interact with one
another forming a more complex multisubunit ET. The details
of such interactions are fully explained in section 3.4.

Consider, for example, the following chromosome with
length 27, composed of three genes (the tails are shown in
bold):

012345678012345678012345678
-b*babbab*Qb+abbba-*Qabbaba (3.9)

It has three ORFs, and each ORF codes for a sub-ET (Fig-
ure 2). Position 0 marks the start of each gene; the end of
each ORF, though, is only evident upon construction of
the respective sub-ET. As shown in Figure 2, the first ORF
ends at position 4 (sub-ET

1
); the second ORF ends at posi-

tion 5 (sub-ET
2
); and the last ORF also ends at position 5

(sub-ET
3
). Thus, GEP chromosomes code for one or more

ORFs, each expressing a particular sub-ET. Depending on
the task at hand, these sub-ETs may be selected individu-
ally according to their respective fitness (e.g., in problems
with multiple outputs), or they may form a more complex,
multi-subunit ET and be selected according to the fitness
of the whole, multi-subunit ET. The patterns of expression
and the details of selection will be discussed throughout
this paper. However, keep in mind that each sub-ET is both
a separate entity and a part of a more complex, hierarchical
structure, and, as in all complex systems, the whole is more
than the sum of its parts.

3.4. Expression trees and the phenotype

In nature, the phenotype has multiple levels of complexity,
the most complex being the organism itself. But tRNAs, pro-
teins, ribosomes, cells, and so forth, are also products of
expression, and all of them are ultimately encoded in the
genome. In all cases, however, the expression of the genetic
information starts with transcription (the synthesis of RNA)
and, for protein genes, proceeds with translation (the syn-
thesis of proteins).

3.4.1. Information decoding: Translation

In GEP, from the simplest individual to the most complex, the
expression of genetic information starts with translation, the
transfer of information from a gene into an ET. This process
has already been presented in section 3.2 where decoding of
GEP genes is shown. In contrast to nature, the expression of
the genetic information in GEP is very simple. Worth empha-
sizing is the fact that in GEP there is no need for transcription:
the message in the gene is directly translated into an ET.

GEP chromosomes are composed of one or more ORFs,
and obviously the encoded individuals have different degrees
of complexity. The simplest individuals are encoded in a sin-
gle gene, and the �organism� is, in this case, the product of
a single gene - an ET. In other cases, the organism is a multi-
subunit ET, in which the different sub-ETs are linked to-
gether by a particular function. In other cases, the organism
emerges from the spatial organization of different sub-ETs
(e.g., in planning and problems with multiple outputs). And,
in yet other cases, the organism emerges from the interac-
tions of conventional sub-ETs with different domains (e.g.,
neural networks). However, in all cases, the whole organism
is encoded in a linear genome.

Figure 2. Expression of GEP genes as sub-ETs. (a) A three-genic chromosome with the tails shown in bold. The arrows
show the termination point of each gene. (b) The sub-ETs codified by each gene.

6

Q

*

Q

bb a

b

*

a

b

6XE�(7
�

6XE�(7
� (7

012345678012345678
Q*Q+ *-babbaaa baabb

a

b

*

*

b a

Q

b

b

Q

(b) (c)

(a)

3.4.2. Interactions of sub-expression trees

We have seen that translation results in the formation of
sub-ETs with different complexity, but the complete expres-
sion of the genetic information requires the interaction of
these sub-ETs with one another. One of the simplest interac-
tions is the linking of sub-ETs by a particular function. This
process is similar to the assemblage of different protein
subunits into a multi-subunit protein.

When the sub-ETs are algebraic or boolean expressions,
any mathematical or boolean function with more than one
argument can be used to link the sub-ETs into a final, multi-
subunit ET. The functions most chosen are addition or mul-
tiplication for algebraic sub-ETs, and OR or IF for boolean
sub-ETs.

In the current version of GEP the linking function is a
priori chosen for each problem, but it can be easily intro-
duced in the genome; for instance, in the last position of
chromosomes, and also be subjected to adaptation. Indeed,
preliminary results suggest that this system works very well.

Figure 3 illustrates the linking of two sub-ETs by addi-
tion. Note that the root of the final ET (+) is not encoded by
the genome. Note also that the final ET could be linearly
encoded as the following K-expression:

0123456789012
+Q**-bQ+abbba (3.10)

However, to evolve solutions for complex problems, it is
more effective touse multigenic chromosomes, for they per-
mit the modular construction of complex, hierarchical struc-
tures, where each gene codes for a small building block.

Figure 3. Expression of multigenic chromosomes as ETs. (a) A two-genic chromosome with the tails shown in bold.
(b) The sub-ETs codified by each gene. (c) The result of posttranslational linking with addition.

These small building blocks are separated from each other,
and thus can evolve independently. For instance, if we tried
to evolve a solution for the symbolic regression problem
presented in section 6.1 with single-gene chromosomes, the
success rate would fall significantly (see section 6.1). In that
case the discovery of small building blocks is more con-
strained as they are no longer free to evolve independently.
This kind of experiment shows that GEP is in effect a power-
ful, hierarchical invention system capable of easily evolving
simple blocks and using them to form more complex struc-
tures [8, 9].

Figure 4 shows another example of sub-ET interaction,
where three boolean sub-ETs are linked by the function IF.
The multi-subunit ET could be linearized as the following K-
expression:

01234567890123456789012
IINAIAINu1ca3aa2acAOab2 (3.11)

Figure 5 shows another example of sub-ET interaction,
where the sub-ETs are of the simplest kind (one-element sub-
ETs). In this case, the sub-ETs are linked 3 by 3 with the IF
function, then these clusters are, in their turn, linked also 3
by 3 with another IF function, and the three last clusters are
also linked by IF, forming a large multi-subunit ET. This kind
of chromosomal architecture was used to evolve solutions
for the 11-multiplexer problem of section 6.5.2 and also to
evolve cellular automata rules for the density-classification
problem. The individual of Figure 5 could be converted into
the following K-expression:

IIIIIIIIIIIII131u3ab2ubab23c3ua31a333au3 (3.12)

And finally, the full expression of certain chromosomes
requires the sequential execution of small plans, where the

7

(a)

(b) 6XE�(7
�

6XE�(7
�

6XE�(7
�

(7

IIAI NNAO Au12ca3aa2acu ab2u3c31c ua3112cac

A

N

N

b 2

O a

u 1

A

a

II

c 3a 2 caa

A

I

A

N

N

b 2

O a

u 1

A

I

a

II

c 3a 2 caa

A

I

(c)

Figure 4. Expression of multigenic chromosomes as ETs.
(a) A three-genic chromosome with the tails shown in bold (�N� is a function of
one argument and represents NOT; �A� and �O� are functions of two arguments
and represent respectively AND and OR; �I� is a function of three arguments and
represents IF; the remaining symbols are terminals). (b) The sub-ETs codified by
each gene. (c) The result of posttranslational linking with IF.

Figure 5. Expression of multigenic chromosomes as ETs. (a) A 27-genic chromosome composed of one-element genes.
(b) The result of posttranslational linking with IF.

(a)

(b) (7

I II I II II I

1 2u u uu1 1a a aab b cba3 33 3 33 3 3 32

I I I

I

131u3ab2ubab23c3ua31a333au3

8

first sub-ET does a little work, the second continues from
that, and so on. The final plan results from the orderly action
of all subplans (see the block stacking problem in section
6.3).

The type of linking function, as well as the number of
genes and the length of each gene, are a priori chosen for
each problem. So, we can always start by using a single-
gene chromosome, gradually increasing the length of the
head; if it becomes very large, we can increase the number of
genes and of course choose a function to link them. We can
start with addition or OR, but in other cases another linking
function might be more appropriate. The idea, of course, is
to find a good solution, and GEP provides the means of
finding one.

4. Fitness functions and selection

In this section, two examples of fitness functions are de-
scribed. Other examples of fitness functions are given in the
problems studied in section 6. The success of a problem
greatly depends on the way the fitness function is designed:
the goal must be clearly and correctly defined in order to
make the system evolve in that direction.

4.1. Fitness functions

One important application of GEP is symbolic regression or
function finding (e.g., [9]), where the goal is to find an ex-
pression that performs well for all fitness cases within a cer-
tain error of the correct value. For some mathematical appli-
cations it is useful to use small relative or absolute errors in
order to discover a very good solution. But if the range of
selection is excessively narrowed, populations evolve very
slowly and are incapable of finding a correct solution. On
the other hand, if the opposite is done and the range of
selection is broadened, numerous solutions will appear with
maximum fitness that are far from good solutions.

To solve this problem, an evolutionary strategy was de-
vised that permits the discovery of very good solutions with-
out halting evolution. So, the system is left to find for itself
the best possible solution within a minimum error. For that a
very broad limit for selection to operate is given, for instance,
a relative error of 20%, that allows the evolutionary process
to get started. Indeed, these founder individuals are usually
very unfit but their modified descendants are reshaped by
selection and populations adapt wonderfully, finding better
solutions that progressively approach a perfect solution.
Mathematically, the fitness f

i
 of an individual program i is

expressed by equation (4.1a) if the error chosen is the abso-
lute error, and by equation (4.1b) if the error chosen is the
relative error:

(4.1a)

(4.1b)

where M is the range of selection, C
(i,j)

 the value returned by
the individual chromosome i for fitness case j (out of C

t

fitness cases), and T
j
 is the target value for fitness case j.

Note that for a perfect fit C
(i,j)

 = T
j
 and f

i
 = f

max
 = C

t
. M. Note

that with this kind of fitness function the system can find the
optimal solution for itself.

In another important GEP application, boolean concept
learning or logic synthesis (e.g., [9]), the fitness of an indi-
vidual is a function of the number of fitness cases on which
it performs correctly. For most boolean applications, though,
it is fundamental to penalize individuals able to solve cor-
rectly about 50% of fitness cases, as most probably this
only reflects the 50% likelihood of correctly solving a binary
boolean function. So, it is advisable to select only individu-
als capable of solving more than 50 to 75% of fitness cases.
Below that mark a symbolic value of fitness can be attrib-
uted, for instance f

i
 = 1. Usually, the process of evolution is

put in motion with these unfit individuals, for they are very
easily created in the initial population. However, in future
generations, highly fit individuals start to appear, rapidly
spreading in the population. For easy problems, like boolean
functions with 2 through 5 arguments, this is not really im-
portant, but for more complex problems it is convenient to
choose a bottom line for selection. For these problems, the
following fitness function can be used:

 (4.2)

where n is the number of fitness cases correctly evaluated,
and C

t
 is the total number of fitness cases.

4.2. Selection

In all the problems presented in this work, individuals were
selected according to fitness by roulettewheel sampling [10]
coupled with the cloning of the best individual (simple elit-
ism). A preliminary study of different selection schemes
(roulettewheel selection with and without elitism, tourna-
ment selection with and without elitism, and various kinds of
deterministic selection with and without elitism) suggests
that there is no appreciable difference between them as long
as the cloning of the best individual is guaranteed (results
not shown). Some schemes perform better in one problem,
others in another. However, for more complex problems it
seems that roulettewheel selection with elitism is best.

5. Reproduction with modification

According to fitness and the luck of the roulette, individuals
are selected to reproduce with modification, creating the
necessary genetic diversification that allows evolution in
the long run.

Except for replication, where the genomes of all the se-
lected individuals are rigorously copied, all the remaining
operators randomly pick chromosomes to be subjected to a
certain modification. However, except for mutation, each

1else;then,2
1If ==≥ ttt fnfCn

9

of a neutral mutation, as it occurred in the noncoding region
of the gene.

It is worth noticing that in GEP there are no constraints
neither in the kind of mutation nor the number of mutations
in a chromosome: in all cases the newly created individuals
are syntactically correct programs.

In nature, a point mutation in the sequence of a gene can
slightly change the structure of the protein or not change it
at all, as neutral mutations are fairly frequent (e.g., mutations
in introns, mutations that result in the same amino acid due
to the redundancy of the genetic code, etc.). Here, although
neutral mutations exist (e.g., mutations in the noncoding re-
gions), a mutation in the coding sequence of a gene has a
much more profound effect: it usually drastically reshapes
the ET.

5.3. Transposition and insertion sequence elements

The transposable elements of GEP are fragments of the ge-
nome that can be activated and jump to another place in the
chromosome. In GEP there are three kinds of transposable
elements. (1) Short fragments with a function or terminal in the
first position that transpose to the head of genes, except to
the root (insertion sequence elements or IS elements). (2) Short
fragments with a function in the first position that transpose
to the root of genes (root IS elements or RIS elements). (3)
Entire genes that transpose to the beginning of chromosomes.

The existence of IS and RIS elements is a remnant of the
developmental process of GEP, as the first GEA used only
single-gene chromosomes, and in such systems a gene with
a terminal at the root was of little use. When multigenic chro-
mosomes were introduced this feature remained as these
operators are important to understand the mechanisms of
genetic variation and evolvability.

5.3.1. Transposition of insertion sequence elements

Any sequence in the genome might become an IS element,
therefore these elements are randomly selected throughout
the chromosome. A copy of the transposon is made and
inserted at any position in the head of a gene, except at the
start position.

Typically, an IS transposition rate (p
is
) of 0.1 and a set of

three IS elements of different length are used. The transpo-
sition operator randomly chooses the chromosome, the start
of the IS element, the target site, and the length of the
transposon. Consider the 2-genic chromosome below:

 012345678901234567890012345678901234567890
 *-+*a-+a*bbabbaabababQ**+abQbb*aa bbaaaabba

Suppose that the sequence “bba” in gene 2 (positions 12
through 14) was chosen to be an IS element, and the target
site was bond 6 in gene 1 (between positions 5 and 6). Then,
a cut is made in bond 6 and the block “bba” is copied into the
site of insertion, obtaining:

operator is not allowed to modify a chromosome more than
once. For instance, for a transposition rate of 0.7, seven out
of 10 different chromosomes are randomly chosen.

Furthermore, in GEP, a chromosome might be chosen by
none or several genetic operators that introduce variation in
the population. This feature also distinguishes GEP from GP
where an entity is never modified by more than one operator
at a time [9]. Thus, in GEP, the modifications of several ge-
netic operators accumulate during reproduction, producing
offspring very different from the parents.

We now proceed with the detailed description of GEP
operators, starting obviously with replication. (Readers less
concerned with implementation details of genetic operators
may wish to skip this section.)

5.1. Replication

Although vital, replication is the most uninteresting opera-
tor: alone it contributes nothing to genetic diversification.
(Indeed, replication, together with selection, is only capable
of causing genetic drift.) According to fitness and the luck
of the roulette, chromosomes are faithfully copied into the
next generation. The fitter the individual the higher the prob-
ability of leaving more offspring. Thus, during replication
the genomes of the selected individuals are copied as many
times as the outcome of the roulette. The roulette is spun as
many times as there are individuals in the population, al-
ways maintaining the same population size.

5.2. Mutation

Mutations can occur anywhere in the chromosome. How-
ever, the structural organization of chromosomes must re-
main intact. In the heads any symbol can change into an-
other (function or terminal); in the tails terminals can only
change into terminals. This way, the structural organization
of chromosomes is maintained, and all the new individuals
produced by mutation are structurally correct programs.

Typically, a mutation rate (p
m
) equivalent to two point

mutations per chromosome is used. Consider the following
3-genic chromosome:

012345678012345678012345678
-+-+ abaaa /bb/ ababb *Q*+ aaaba

Suppose a mutation changed the element in position 0 in
gene 1 to “Q”; the element in position 3 in gene 2 to “Q”; and
the element in position 1 in gene 3 to “b”, obtaining:

012345678012345678012345678
Q+-+abaaa /bbQ ababb *b*+ aaaba

 Note that if a function is mutated into a terminal or vice
versa, or a function of one argument is mutated into a func-
tion of two arguments or vice versa, the ET is modified dras-
tically. Note also that the mutation on gene 2 is an example

10

 012345678901234567890012345678901234567890
 *-+*a- bba+babbaabababQ**+abQbb*aa bbaaaabba

During transposition, the sequence upstream from the
insertion site stays unchanged, whereas the sequence down-
stream from the copied IS element loses, at the end of the
head, as many symbols as the length of the IS element (in
this case the sequence “a*b” was deleted). Note that, de-
spite this insertion, the structural organization of chromo-
somes is maintained, and therefore all newly created indi-
viduals are syntactically correct programs. Note also that
transposition can drastically reshape the ET, and the more
upstream the insertion site the more profound the change.
Thus, this kind of operator (IS transposition and RIS trans-
position below) may be seen as having a high hit rate at the
lowest levels of ETs [7].

5.3.2. Root transposition

All RIS elements start with a function, and thus are chosen
among the sequences of the heads. For that, a point is ran-
domly chosen in the head and the gene is scanned down-
stream until a function is found. This function becomes the
start position of the RIS element. If no functions are found, it
does nothing.

Typically a root transposition rate (p
ris

) of 0.1 and a set of
three RIS elements of different sizes are used. This operator
randomly chooses the chromosome, the gene to be modi-
fied, the start of the RIS element, and its length. Consider the
following 2-genic chromosome:

 012345678901234567890012345678901234567890
 -ba*+-+-Q/abababbbaaaQ*b/ +bbabbaaaaaaaabbb

Suppose that the sequence “+bb” in gene 2 was chosen to
be an RIS element. Then, a copy of the transposon is made
into the root of the gene, obtaining:

 012345678901234567890012345678901234567890
 -ba*+-+-Q/abababbbaaa +bbQ*b/ +bbaaaaaaaabbb

During root transposition, the whole head shifts to ac-
commodate the RIS element, losing, at the same time, the last
symbols of the head (as many as the transposon length). As
with IS elements, the tail of the gene subjected to transposi-
tion and all nearby genes stay unchanged. Note, again, that
the newly created programs are syntactically correct because
the structural organization of the chromosome is maintained.

The modifications caused by root transposition are ex-
tremely radical, because the root itself is modified. In nature,
if a transposable element is inserted at the beginning of the
coding sequence of a gene, causing a frameshift mutation, it
radically changes the encoded protein. Like mutation and IS
transposition, root insertion has a tremendous transforming
power and is excellent for creating genetic variation.

5.3.3. Gene transposition

In gene transposition an entire gene functions as a
transposon and transposes itself to the beginning of the
chromosome. In contrast to the other forms of transposition,
in gene transposition the transposon (the gene) is deleted in
the place of origin. This way, the length of the chromosome
is maintained.

The chromosome to undergo gene transposition is ran-
domly chosen, and one of its genes (except the first, obvi-
ously) is randomly chosen to transpose. Consider the fol-
lowing chromosome composed of 3 genes:

012345678012345678012345678
*a-*abbab -QQ/aaabb Q+abababb

Suppose gene 2 was chosen to undergo gene transposition.
Then the following chromosome is obtained:

012345678012345678012345678
-QQ/aaabb *a-*abbabQ+abababb

Note that for numerical applications where the function
chosen to link the genes is addition, the expression evalu-
ated by the chromosome is not modified. But the situation
differs in other applications where the linking function is not
commutative, for instance, the IF function chosen to link the
sub-ETs in the 11-multiplexer problem in section 6.5.2. How-
ever, the transforming power of gene transposition reveals
itself when this operator is conjugated with crossover. For
example, if two functionally identical chromosomes or two
chromosomes with an identical gene in different positions
recombine, a new individual with a duplicated gene might
appear. It is known that the duplication of genes plays an
important role in biology and evolution (e.g., [11]). Interest-
ingly, in GEP, individuals with duplicated genes are com-
monly found in the process of problem solving.

5.4. Recombination

In GEP there are three kinds of recombination: one-point,
two-point, and gene recombination. In all cases, two parent
chromosomes are randomly chosen and paired to exchange
some material between them.

5.4.1. One-point recombination

During one-point recombination, the chromosomes cross
over a randomly chosen point to form two daughter chromo-
somes. Consider the following parent chromosomes:

012345678012345678
-b+Qbbabb/aQbbbaab
/-a/ababb-ba-abaaa

Suppose bond 3 in gene 1 (between positions 2 and 3) was

11

randomly chosen as the crossover point. Then, the paired
chromosomes are cut at this bond, and exchange between
them the material downstream from the crossover point, form-
ing the offspring below:

012345678012345678
-b+ /ababb-ba-abaaa
/-a Qbbabb/aQbbbaab

With this kind of recombination, most of the time, the
offspring created exhibit different properties from those of
the parents. One-point recombination, like the above men-
tioned operators, is a very important source of genetic vari-
ation, being, after mutation, one of the operators most cho-
sen in GEP. The one-point recombination rate (p

1r
) used de-

pends on the rates of other operators. Typically a global
crossover rate of 0.7 (the sum of the rates of the three kinds
of recombination) is used.

5.4.2. Two-point recombination

In two-point recombination the chromosomes are paired and
the two points of recombination are randomly chosen. The
material between the recombination points is afterwards ex-
changed between the two chromosomes, forming two new
daughter chromosomes. Consider the following parent chro-
mosomes:

0123456789001234567890
+*a*bbcccac*baQ*acabab -[1]
*cbb+cccbcc++**bacbaab-[2]

Suppose bond 7 in gene 1 (between positions 6 and 7) and
bond 3 in gene 2 (between positions 2 and 3) were chosen as
the crossover points. Then, the paired chromosomes are cut
at these bonds, and exchange the material between the crosso-
ver points, forming the offspring below:

0123456789001234567890
+*a*bbc cbcc++* Q*acabab -[3]
*cbb+cc ccac*ba *bacbaab-[4]

Note that the first gene is, in both parents, split down-
stream from the termination point. Indeed, the noncoding re-
gions of GEP chromosomes are ideal regions where chromo-
somes can be split to cross over without interfering with the
ORFs. Note also that the second gene of chromosome 1 was
also cut downstream from the termination point. However,
gene 2 of chromosome 2 was split upstream from the termina-
tion point, profoundly changing the sub-ET. Note also that
when these chromosomes recombined, the noncoding region
of gene 2 of chromosome 1 was activated and integrated into
chromosome 3.

The transforming power of two-point recombination is
greater than one-point recombination, and is most useful to
evolve solutions for more complex problems, especially when
multigenic chromosomes composed of several genes are
used.

5.4.3. Gene recombination

In gene recombination an entire gene is exchanged during
crossover. The exchanged genes are randomly chosen and
occupy the same position in the parent chromosomes. Con-
sider the following parent chromosomes:

012345678012345678012345678
/aa-abaaa/a*bbaaab/Q*+aaaab
/-*/abbabQ+aQbabaa-Q/Qbaaba

Suppose gene 2 was chosen to be exchanged. In this case the
following offspring is formed:

012345678012345678012345678
/aa-abaaa Q+aQbabaa/Q*+aaaab
/-*/abbab /a*bbaaab -Q/Qbaaba

The newly created individuals contain genes from both par-
ents. Note that with this kind of recombination, similar genes
can be exchanged but, most of the time, the exchanged genes
are very different and new material is introduced into the
population.

It is worth noting that this operator is unable to create
new genes: the individuals created are different arrangements
of existing genes. In fact, when gene recombination is used
as the unique source of genetic variation, more complex prob-
lems can only be solved using very large initial populations
in order to provide for the necessary diversity of genes (see
section 6.1). However, the creative power of GEP is based
not only in the shuffling of genes or building blocks, but
also in the constant creation of new genetic material.

6. Six examples of gene expression program-
ming in problem solving

The suite of problems chosen to illustrate the functioning of
this new algorithm is quite varied, including not only prob-
lems from different fields (symbolic regression, planning,
Boolean concept learning, and cellular automata rules) but
also problems of great complexity (cellular automata rules
for the density-classification task).

6.1. Symbolic regression

The objective of this problem is the discovery of a symbolic
expression that satisfies a set of fitness cases. Consider we
are given a sampling of the numerical values from the func-
tion

y = a4 + a3 + a2 + a (6.1)

over 10 chosen points and we want to find a function fitting
those values within 0.01 of the correct value.

First, the set of functions F and the set of terminals T
must be chosen. In this case F = {+, -, *, /} and T = {a}. Then

12

0

10

20

30

40

50

60

70

80

90

100

0 20 40 60 80 100 120 140 160 180 200

Population size

S
uc

ce
ss

ra
te

(%
)

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60 70 80 90 100

Chromosome length

S
uc

ce
ss

ra
te

(%
)

the structural organization of chromosomes, namely the
length of the head and the number of genes, is chosen. It is
advisable to start with short, single-gene chromosomes and
then gradually increase h. Figure 6 shows such an analysis
for this problem. A population size P of 30 individuals and
an evolutionary time G of 50 generations were used. A p

m

equivalent to two one-point mutations per chromosome and
a p

1r
 = 0.7 were used in all the experiments in order to

simplify the analysis. The set of fitness cases is shown
in Table 1 and the fitness was evaluated by equation
(4.1a), being M = 100. If |C

(i,j)
-T

j
| is equal to or less than

0.01 (the precision), then |C
(i,j)

-T
j
| = 0 and f

(i,j)
= 100;

thus for C
t
 = 10, f

max
 = 1000.

Note that GEP can be useful in searching the most parsi-
monious solution to a problem. For instance, the chromo-
some

0123456789012
*++/**aaaaaaa

with h = 6 codes for the ET:

which is equivalent to the target function. Note also that GEP
can efficiently evolve solutions using large values of h, that
is, it is capable of evolving large and complex sub-ETs. It is
worth noting that the most compact genomes are not the
most efficient. Therefore a certain redundancy is fundamen-
tal to efficiently evolve good programs.

In another analysis, the relationship between success rate
and population size P, using an h = 24 was studied (Figure 7).
These results show the supremacy of a genotype/pheno-

*

a a a aa a

a*

*

Table 1
Set of fitness cases for the symbolic regression
problem.

Figure 6. Variation of success rate (Ps) with chromosome
length. For this analysis G = 50, P = 30, and Ps was evaluated
over 100 identical runs.

Figure 7. Variation of success rate (Ps) with population size.
For this analysis G = 50, and a medium value of 49 for chromo-
some length (h = 24) was used. Ps was evaluated over 100
identical runs.

a f(a)

2.81 95.2425

6 1554

7.043 2866.55

8 4680

10 11110

11.38 18386

12 22620

14 41370

15 54240

20 168420

13

type representation, as this single-gene system, which is
equivalent to GP, greatly surpasses that technique [9]. How-
ever, GEP is much more complex than a single-gene system
because GEP chromosomes can encode more than one gene
(see Figure 8).

Suppose we could not find a solution after the analysis
shown in Figure 6. Then we could increase the number of
genes, and choose a function to link them. For instance, we
could choose an h = 6 and then increase the number of genes
gradually. Figure 8 shows how the success rate for this prob-
lem depends on the number of genes. In this analysis, the p

m

modified in order to encode the linking function as well. In
this case, for each problem the ideal linking function would
be found in the process of adaptation.

Consider, for instance, a multigenic system composed of
3 genes linked by addition. As shown in Figure 8, the suc-
cess rate has in this case the maximum value of 100%. Fig-
ure 10 shows the progression of average fitness of the popu-
lation and the fitness of the best individual for run 0 of the
experiment summarized in Table 2, column 1. In this run, a
correct solution was found in generation 11. The sub-ETs
are linked by addition:

 012345678901201234567890120123456789012
 -*a+aaaaaaa++a*aaaaaaa*+-a/aaaaaaaa

and mathematically corresponds to the target function (the
contribution of each sub-ET is indicated in brackets):

y = (a4) + (a3 + a2 + a) + (0) = a4 + a3 + a2 + a.

The detailed analysis of this program shows that some of
the actions are redundant for the problem at hand, like the
addition of 0 or multiplication by 1. However, the existence
of these unnecessary clusters, or even pseudogenes like
gene 3, is important to the evolution of more fit individuals
(compare, in Figures 6 and 8, the success rate of a compact,
single-gene system with h = 6 with other less compact sys-
tems both with more genes and h greater than 6).

The plot for average fitness in Figure 10 (and also Fig-
ures 12, 13 and 17 below) suggests different evolutionary

Figure 8. Variation of success rate (Ps) with the number of
genes. For this analysis G = 50, P = 30, and h = 6 (a gene
length of 13). Ps was evaluated over 100 identical runs.

was equivalent to two one-point mutations per chromo-
some, p

1r
= 0.2, p

2r
 = 0.5, p

gr
 = 0.1, p

is
 = 0.1, p

ris
 = 0.1, p

gt
 = 0.1,

and three transposons (both IS and RIS elements) of lengths
1, 2, and 3 were used. Note that GEP can cope very well with
an excess of genes: the success rate for the 10-genic system
is still very high (47%).

In Figure 9 another important relationship is shown: how
the success rate depends on evolutionary time. In contrast
to GP where 51 generations are the norm, for after that noth-
ing much can possibly be discovered [7], in GEP, populations
can adapt and evolve indefinitely because new material is
constantly being introduced into the genetic pool.

Finally, suppose that the multigenic system with sub-ETs
linked by addition could not evolve a satisfactory solution.
Then we could choose another linking function, for instance,
multiplication. This process is repeated until a good solu-
tion has been found.

As stated previously, GEP chromosomes can be easily

Figure 9. Variation of success rate (Ps) with the number of
generations. For this analysis P = 30, pm = 0.051, p1r = 0.7 and
a chromosome length of 79 (a single-gene chromosome with
h = 39) was used. Ps was evaluated over 100 identical runs.

0

10

20

30

40

50

60

70

80

90

100

0 1 2 3 4 5 6 7 8 9 10

Number of genes

S
uc

ce
ss

ra
te

(%
)

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350 400 450 500

Number of generations

S
uc

ce
ss

ra
te

(%
)

14

Table 2
Parameters for the symbolic regression (SR), sequence induction (SI), sequence induction using ephemeral
random constants (SI*), block stacking (BS), and 11-multiplexer (11-M) problems.

Figure 10. Progression of average fitness of the population
and the fitness of the best individual for run 0 of the experi-
ment summarized in Table 2, column 1 (symbolic regression).

dynamics for GEP populations. The oscillations on average
fitness, even after the discovery of a perfect solution, are
unique to GEP. A certain degree of oscillation is due to the
small population sizes used to solve the problems presented
in this work. However, an identical pattern is obtained using
larger population sizes. Figure 11 compares six evolution-
ary dynamics in populations of 500 individuals for 500 gen-
erations. Plot 1 (all operators active) shows the progression
of average fitness of an experiment identical to the one sum-
marized in Table 2, column 1, that is, with all the genetic
operators switched on. The remaining dynamics were ob-
tained for mutation alone (Plot 2), for gene recombination
combined with gene transposition (Plot 3), for one-point re-
combination (Plot 4), two-point recombination (Plot 5), and
gene recombination (Plot 6).

It is worth noticing the homogenizing effect of all kinds
of recombination. Interestingly, this kind of pattern is similar
to the evolutionary dynamics of GAs and GP populations [9,
10]. Also worth noticing is the plot for gene recombination
alone (Figure 11, Plot 6): in this case a perfect solution was
not found. This shows that sometimes it is impossible to
find a perfect solution only by shuffling existing building
blocks, as is done in all GP implementations without muta-
tion. Indeed, GEP gene recombination is similar in effect to
GP recombination, for it permits exclusively the recombina-
tion of mathematically concise blocks. Note that even a more
generalized shuffling of building blocks (using gene recom-
bination combined with gene transposition) results in oscil-
latory dynamics (Figure 11, Plot 3).

0

100

200

300

400

500

600

700

800

900

1000

0 10 20 30 40 50

Generations

F
itn

es
s

(m
ax

10
00

)

Best Ind

Avg fitness

SR SI SI* BS 11-M
Number of runs 100 100 100 100 100

Number of generations 50 100 100 100 400

Population size 30 50 50 30 250

Number of fitness cases 10 10 10 10 160

Head length 6 6 7 4 1

Number of genes 3 7 8 3 27

Chromosome length 39 91 184 27 27

Mutation rate 0.051 0.022 0.011 0.074 0.074

One-point recombination rate 0.2 0.7 0.5 0.1 0.7

Two-point recombination rate 0.5 0.1 0.2 -- --

Gene recombination rate 0.1 0.1 0.1 0.7 --

IS transposition rate 0.1 0.1 0.1 0.1 --

IS elements length 1,2,3 1,2,3 1 1 --

RIS transposition rate 0.1 0.1 0.1 0.1 --

RIS elements length 1,2,3 1,2,3 1 1 --

Gene transposition rate 0.1 0.1 0.1 -- --

Random constants mutation rate

Selection range

--

100

-- 0.01

20% 20%

--

--

--

--
Dc specific IS transposition rate

Error

--

0.01

-- 0.013

0.0% 0.0%

--

--

--

--

Success rate 1 0.83 0.31 0.7 0.57

15

6.2. Sequence induction and the creation of constants

The problem of sequence induction is a special case of sym-
bolic regression where the domain of the independent vari-
able consists of the nonnegative integers. However, the se-
quence chosen is more complicated than the expression used
in symbolic regression, as different coefficients were used.

The solution to this kind of problem involves the discov-
ery of certain constants. Here two different approaches to
the problem of constant creation are shown: one without
using ephemeral random constants [9], and another using
ephemeral random constants.

In the sequence 1, 15, 129, 547, 1593, 3711, 7465, 13539,
22737, 35983, 54321,..., the nth (N) term is

 (6.2)

where a
n
 consists of the nonnegative integers 0, 1, 2, 3,....

For this problem F = {+, -, *, /} and T = {a}. The set of
fitness cases is shown in Table 3 and the fitness was evalu-
ated by equation (4.1b), being M = 20%. Thus, if the 10 fit-
ness cases were computed exactly, f

max
 = 200.

Figure 12 shows the progression of average fitness of
the population and the fitness of the best individual for run
1 of the experiment summarized in Table 2, column 2. In this

12345 234 ++++= nnnn aaaaN

run, a perfect solution was found in generation 81 (the sub-
ETs are linked by addition):

 0123456789012012345678901201234567890120123456789012...

 *a/+a*aaaaaaa**-/**aaaaaaa**+++*aaaaaaa+-+a/*aaaaaaa...

 ...012345678901201234567890120123456789012

 ...*a*-a+aaaaaaa-+++-+aaaaaaa+*/*/+aaaaaaa

Table 3
Set of fitness cases for the
sequence induction problem.

Figure 11. Possible evolutionary dynamics for GEP populations. For this analysis P = 500. The plots show the
progression of average fitness of the population. Plot 1: All operators switched on with rates as shown in Table 2,
column 1; in this case a perfect solution was found in generation 1. Plot 2: Only mutation at pm = 0.051; in this case
a perfect solution was found in generation 3. Plot 3: Only gene recombination at pgr = 0.7 plus gene transposition at
pgt = 0.2 were switched on; in this case a perfect solution was found in generation 2. Plot 4: Only one-point
recombination at p1r = 0.7; in this case a perfect solution was found in generation 3. Plot 5: Only two-point recombination
at p2r = 0.7; in this case a perfect solution was found in generation 1. Plot 6: Only gene recombination at pgr = 0.7; in this
case a perfect solution was not found: the best of run has fitness 980 and was found in generation 2.

a N
1 15
2 129
3 547
4 1593
5 3711
6 7465
7 13539
8 22737
9 35983

10 54321

16

and mathematically corresponds to the target sequence (the
contribution of each sub-ET is indicated in brackets):

 y = (a2+a)+(a4-a3)+(4a4+4a3)+(a2+2a-1)+(a3)+(-a)+(a2+2).

As shown in column 2 of Table 2, the probability of suc-
cess for this problem using the first approach is 0.83. Note
that all the constants are created from scratch by the algo-
rithm. It seems that in real-world problems this kind of ap-
proach is more advantageous because, first, we never know
beforehand what kind of constants are needed and, second,
the number of elements in the terminal set is much smaller,
reducing the complexity of the problem.

However, ephemeral random constants can be easily
implemented in GEP. For that an additional domain Dc was
created. Structurally, the Dc comes after the tail, has a length
equal to t, and consists of the symbols used to represent the
ephemeral random constants.

For each gene the constants are created at the beginning
of a run, but their circulation is guaranteed by the genetic
operators. Besides, a special mutation operator was created
that allows the permanent introduction of variation in the set
of random constants. A domain specific IS transposition
was also created in order to guarantee an effective shuffling
of the constants. Note that the basic genetic operators are
not affected by the Dc: it is only necessary to keep the
boundaries of each region and not mix different alphabets.

Figure 12. Progression of average fitness of the population
and the fitness of the best individual for run 1 of the experi-
ment summarized in Table 2, column 2 (sequence induction
without ephemeral random constants).

Consider the single-genic chromosome with an h = 7:

01234567890123456789012
*?**?+?aa??a?a?63852085 (6.3)

where “?” represents the ephemeral random constants. The
expression of this kind of chromosome is done exactly as
before, obtaining:

The “?” symbols in the ET are then replaced from left to right
and from top to bottom by the symbols in Dc, obtaining:

The values corresponding to these symbols are kept in an
array. For simplicity, the number represented by the symbol
indicates the order in the array. For instance, for the 10 ele-
ment array

A = {-0.004, 0.839, -0.503, 0.05, -0.49, -0.556, 0.43,
 -0.899, 0.576, -0.256}

the chromosome (6.3) above gives:

To solve the problem at hand using ephemeral random
constants F = {+, -, *}, T = {a, ?}, the set of random con-
stants R = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, and the ephemeral random
constant “?” ranged over the integers 0, 1, 2, and 3. The

0

25

50

75

100

125

150

175

200

0 20 40 60 80 100

Generations

F
itn

es
s

(m
ax

20
0)

Best Ind

Avg fitness

17

parameters used per run are shown in Table 2, column 3. In
this experiment, the first solution was found in generation 91
of run 8 (the sub-ETs are linked by addition):

Gene 0: -??*a-*aaa?a?aa26696253
 A

0
 = {3, 1, 0, 0, 3, 3, 2, 2, 2, 3}

Gene 1: *-aa-a-???a?aaa73834168
 A

1
 = {0, 1, 2, 3, 1, 3, 0, 0, 1, 3}

Gene 2: +a??-+??aaaa?aa43960807
 A

2
 = {1, 2, 1, 3, 3, 2, 2, 2, 1, 3}

Gene 3: *a***+aa?a??aaa20546809
 A

3
 = {3, 0, 1, 3, 0, 2, 2, 2, 2, 0}

Gene 4: *a***+aa?aa?aaa34722724
 A

4
 = {2, 3, 3, 2, 1, 3, 0, 0, 2, 3}

Gene 5: *a*++*+?aa??a?a54218512
 A

5
 = {1, 3, 3, 1, 0, 0, 2, 0, 0, 2}

Gene 6: +a*?a*-a?aaa??a94759218
 A

6
 = {3, 0, 0, 2, 1, 1, 3, 1, 3, 2}

Gene 7: +-?a*a??a?aa??a69085824
 A

7
 = {2, 2, 3, 1, 3, 1, 0, 0, 1, 0}

and mathematically corresponds to the target function (the
contribution of each sub-ET is indicated in brackets):

y = (-2)+(-3a)+(a+3)+(a4+3a3)+(4a4)+(a3+3a2)+(3a).

As shown in column 3 of Table 2, the probability of suc-
cess for this problem is 0.31, considerably lower than the
0.83 of the first approach. Furthermore, only the prior knowl-
edge of the solution enabled us, in this case, to correctly
choose the random constants. Therefore, for real-world ap-
plications where the magnitude and type of coefficients is
unknown, it is more appropriate to let the system find the
constants for itself. However, for some numerical applica-
tions the discovery of constants is fundamental and they
can be easily created as indicated here.

6.3. Block stacking

In block stacking, the goal is to find a plan that takes any initial
configuration of blocks randomly distributed between the
stack and the table and places them in the stack in the correct
order. In this case, the blocks are the letters of the word “uni-
versal”. (Although the word universal was used as illustra-
tion, in this version the blocks being stacked may have iden-
tical labels like, for instance, in the word “individual”.)

The functions and terminals used for this problem con-
sisted of a set of actions and sensors, being F = {C, R, N, A}

(move to stack, remove from stack, not, and do until true,
respectively), where the first three take one argument and
“A” takes two arguments. In this version, the “A” loops are
processed at the beginning and are solved in a particular
order (from bottom to top and from left to right). The action
argument is executed at least once despite the state of the
predicate argument and each loop is executed only once,
timing out after 20 iterations. The set of terminals consisted
of three sensors {u, t, p} (current stack, top correct block,
and next needed block, respectively). In this version, “t”
refers only to the block on the top of the stack and whether
it is correct or not; if the stack is empty or has some blocks,
all of them correctly stacked, the sensor returns True, other-
wise it returns False; and “p” refers obviously to the next
needed block immediately after “t”.

A multigenic system composed of three genes of length
9 was used in this problem. The linking of the sub-ETs con-
sisted of the sequential execution of each sub-ET or sub-
plan. For instance, if the first sub-ET empties all the stacks,
the next sub-ET may proceed to fill them, and so on. The
fitness was determined against 10 fitness cases (initial con-
figurations of blocks). For each generation, an empty stack
plus nine initial configurations with one to nine letters in the
stack were randomly generated. The empty stack was used
to prevent the untimely termination of runs, as a fitness point
was attributed to each empty stack (see below). However,
GEP is capable of efficiently solving this problem using 10
random initial configurations (results not shown).

The fitness function was as follows: for each empty stack
one fitness point was attributed; for each partially and cor-
rectly packed stack (i.e., with 1 to 8 letters in the case of the
word “universal”) two fitness points were attributed; and
for each completely and correctly stacked word 3 fitness
points were attributed. Thus, the maximum fitness was 30.
The idea was to make the population of programs hierarchi-
cally evolve solutions toward a perfect plan. And, in fact,
usually the first useful plan discovered empties all the stacks,
then some programs learn how to partially fill those empty
stacks, and finally a perfect plan is discovered that fills the
stacks completely and correctly (see Figure 13).

Figure 13 shows the progression of average fitness of
the population and the fitness of the best individual for run 2
of the experiment summarized in Table 2, column 4. In this
run, a perfect plan was found in generation 50:

012345678012345678012345678
ARCuptppuApNCptuutNtpRppptp

Note that the first sub-plan removes all the blocks and
stacks a correct letter; the second sub-plan correctly stacks
all the remaining letters; and the last sub-plan does nothing.
It should be emphasized that the plans with maximum fitness
evolved are in fact perfect, universal plans: each generation
they are tested against nine randomly generated initial con-
figurations, more than sufficient to allow the algorithm to

18

Figure 13. Progression of average fitness of the population
and the fitness of the best individual for run 2 of the experiment
summarized in Table 2, column 4 (block stacking).

generalize the problem (as shown in Figure 13, once reached,
the maximum fitness is maintained). Indeed, with the fitness
function and the kind of fitness cases used, all plans with
maximum fitness are universal plans.

As shown in the fourth column of Table 2, the probabil-
ity of success for this problem is very high (0.70) despite
using nine (out of 10) random initial configurations. It is
worth noting that GP uses 167 fitness cases, cleverly con-
structed to cover the various classes of possible initial con-
figurations [9]. Indeed, in real-life applications it is not al-
ways possible to predict the kind of cases that would make
the system discover a solution. So, algorithms capable of
generalizing well in face of random fitness cases are more
advantageous.

6.4. Evolving cellular automata rules for the
density-classification problem

Cellular automata (CA) have been studied widely as they
are idealized versions of massively parallel, decentralized
computing systems capable of emergent behaviors. These
complex behaviors result from the simultaneous execution
of simple rules at multiple local sites. In the density-classifi-
cation task, a simple rule involving a small neighborhood
and operating simultaneously in all the cells of a one-dimen-
sional cellular automaton, should be capable of making the
CA converge into a state of all 1s if the initial configuration

(IC) has a higher density of 1s, or into a state of all 0s if the IC
has a higher density of 0s.

The ability of GAs to evolve CA rules for the density-
classification problem was intensively investigated [12-15],
but the rules discovered by the GA performed poorly and
were far from approaching the accuracy of the GKL rule, a
human-written rule. GP was also used to evolve rules for the
density-classification task [16], and a rule was discovered
that surpassed the GKL rule and other human-written rules.

This section shows how GEP is successfully applied to
this difficult problem. The rules evolved by GEP have accu-
racy levels of 82.513% and 82.55%, thus exceeding all hu-
man-written rules and the rule evolved by GP.

6.4.1. The density-classification task

The simplest CA is a wrap-around array of N binary-state
cells, where each cell is connected to r neighbors from both
sides. The state of each cell is updated by a defined rule.
The rule is applied simultaneously in all the cells, and the
process is iterated for t time steps.

In the most frequently studied version of this problem,
N=149 and the neighborhood is 7 (the central cell is repre-
sented by “u”; the r = 3 cells to the left are represented by
“c”, “b”, and “a”; the r = 3 cells to the right are represented
by “1”, “2”, and “3”). Thus the size of the rule space to
search for this problem is the huge number of 2128. Figure 14
shows a CA with N = 11 and the updated state for the cellu-
lar automaton “u” upon application of a certain transition
rule.

t = 1

1 1 1

b

1

u

1

10

c

t = 0 0

a

1

1 2 3

0 0 0

Figure 14. A one-dimensional, binary-state, r = 3 cellular automa-
ton with N = 11. The arrows represent the periodic boundary con-
ditions. The updated state is shown only for the central cell. The
symbols used to represent the neighborhood are also shown.

The task of density-classification consists of correctly
determining whether ICs contain a majority of 1s or a major-
ity of 0s, by making the system converge, respectively, to an
all 1s state (black or “on” cells in a space-time diagram), and
to a state of all 0s (white or “off” cells). Because the density
of an IC is a function of N arguments, the actions of local
cells with limited information and communication must be
coordinated with one another to correctly classify the ICs.
Indeed, to find rules that perform well is a challenge, and
several algorithms were used to evolve better rules [14-17].
The best rules with performances of 86.0% (coevolution 2)
and 85.1% (coevolution 1) were discovered using a
coevolutionary approach between GA-evolved rules and ICs
[17]. However, the aim of this section is to compare the per-
formance of GEP with GAs and GP when applied to a difficult

0

5

10

15

20

25

30

0 20 40 60 80 100

Generations

F
itn

es
s

(m
ax

30
)

Best Ind

Avg fitness

19

nally, when an individual program could correctly classify
ICs both with majorities of 1s and 0s, a bonus equal to the
number of ICs C was added to the number of correctly clas-
sified ICs, being in this case f = i + C. For instance, if a
program correctly classified two ICs, one with a majority of
1s and another with a majority of 0s, it receives 2+25=27
fitness points.

In this experiment a total of 7 runs were made. In genera-
tion 27 of run 5, an individual evolved with fitness 44:

0123456789012345678901234567890123456789012345678901

OAIIAucONObAbIANIb1u23u3a12aacb3bc21aa2baabc3bccuc13

Note that the ORF ends at position 28. This program has an
accuracy of 0.82513 tested over 100,000 unbiased ICs in a
149x298 lattice, thus better than the 0.824 of the GP rule
tested in a 149x320 lattice [16, 17]. The rule table of this rule
(GEP

1
) is shown in Table 5. Figure 15 shows three space-time

diagrams for this new rule.
As a comparison, GP used populations of 51,200 indi-

viduals and 1000 ICs for 51 generations [16], thus a total of
51,200 . 1,000 . 51 = 2,611,200,000 fitness evaluations were
made, whereas GEP only made 30 . 25 . 50 = 37,500 fitness
evaluations. Therefore, in this problem, GEP outperforms GP
by more than four orders of magnitude (69,632 times).

In another experiment a rule slightly better than GEP
1
,

with an accuracy of 0.8255, was obtained. Again, its per-
formance was determined over 100,000 unbiased ICs in a
149x298 lattice. In this case F = {I, M} (“I” stands for IF, and
“M” represents the majority function with three arguments),
and T was obviously the same. In this case, a total of 100
unbiased ICs and three-genic chromosomes with sub-ETs
linked by IF were used. The parameters used per run are
shown in the second column of Table 4.

The fitness function was slightly modified by introduc-
ing a ranking system, where individuals capable of correctly
classifying between 2 and 3/4 of the ICs receive one bonus
equal to C; if between 3/4 and 17/20 of the ICs are correctly
classified two bonus C; and if more than 17/20 of the ICs are
correctly classified three bonus C. Also, in this experiment,
individuals capable of correctly classifying only one kind of
situation, although not indiscriminately, were differentiated
and had a fitness equal to i.

problem. And, in fact, GEP does evolve better rules than the
GP rule, using computational resources that are more than
four orders of magnitude smaller than those used by GP.

6.4.2. Two gene expression programming discovered rules

In one experiment F = {A, O, N, I} (“A” represents the boolean
function AND, “O” represents OR, “N” represents NOT, and
“I” stands for IF) and T = {c, b, a, u, 1, 2, 3}. The parameters
used per run are shown in Table 4, column 1.

Table 4
Parameters for the density-classification task.

The fitness was evaluated against a set of 25 unbiased
ICs (i.e., ICs with equal probability of having a 1 or a 0 at
each cell). In this case, the fitness is a function of the number
of ICs i for which the system stabilizes correctly to a con-
figuration of all 0s or 1s after 2xN time steps, and it was
designed in order to privilege individuals capable of cor-
rectly classifying ICs both with a majority of 1s and 0s. Thus,
if the system converged, in all cases, indiscriminately to a
configuration of 1s or 0s, only one fitness point was attrib-
uted. If, in some cases, the system correctly converged ei-
ther to a configuration of 0s or 1s, f = 2. In addition, rules
converging to an alternated pattern of all 1s and all 0s were
eliminated, as they are easily discovered and invade the
populations impeding the discovery of good rules. And fi-

Table 5
Description of the two new rules (GEP1 and GEP2) discovered using GEP for the density-classification problem. The GP rule
is also shown. The output bits are given in lexicographic order starting with 0000000 and finishing with 1111111.

00010001 00000000 01010101 00000000 00010001 00001111 01010101 00001111
00010001 11111111 01010101 11111111 00010001 11111111 01010101 11111111

00000000 01010101 00000000 01110111 00000000 01010101 00000000 01110111
00001111 01010101 00001111 01110111 11111111 01010101 11111111 01110111

00000101 00000000 01010101 00000101 00000101 00000000 01010101 00000101
01010101 11111111 01010101 11111111 01010101 11111111 01010101 11111111

GEP1

GEP2

GP rule

GEP1 GEP2

Number of generations 50 50
Population size 30 50
Number of ICs 25 100
Head length 17 4
Number of genes 1 3
Chromosome length 52 39
Mutation rate 0.038 0.051
1-Point recombination rate 0.5 0.7
IS transposition rate 0.2 --
IS elements length 1,2,3 --
RIS transposition rate 0.1 --
RIS elements length 1,2,3 --

20

By generation 43 of run 10, an individual evolved with
fitness 393:

 012345678901201234567890120123456789012
 MIuua1113b21cMIM3au3b2233bM1MIacc1cb1aa

Its rule table is shown in Table 5. Figure 16 shows three
space-time diagrams for this new rule (GEP

2
). Again, in this

case the comparison with GP shows that GEP outperforms
GP by a factor of 10,444.

6.5. Boolean concept learning

The GP rule and the 11-multiplexer are, respectively, boolean
functions of seven and 11 activities. Whereas the solution
for the 11-multiplexer is a well-known boolean function, the
solution of the GP rule is practically unknown, as the pro-
gram evolved by GP [16] is so complicated that it is impossi-
ble to know what the program really does.

This section shows how GEP can be efficiently applied
to evolve boolean expressions of several arguments. Fur-
thermore, the structural organization of the chromosomes
used to evolve solutions for the 11-multiplexer is an example

Figure 15. Three space-time diagrams describing the evolution of CA states for the GEP1 rule. The number of 1s in the IC (0) is shown
above each diagram. In (a) and (b) the CA correctly converged to a uniform pattern; in (c) it converged wrongly to a uniform pattern.

Figure 16. Three space-time diagrams describing the evolution of CA states for the GEP2 rule. The number of 1s in the IC (0)
is shown above each diagram. In (a) and (b) the CA converges, respectively, to the correct configuration of all 0s and all 1s;
in (c) the CA could not converge to a uniform pattern.

21

of a very simple organization that can be used to efficiently
solve certain problems. For example, this organization (one-
element genes linked by IF) was successfully used to evolve
CA rules for the density-classification problem, discovering
better rules than the GKL rule (results not shown).

6.5.1. The genetic programming rule problem

For this problem F = {N, A, O, X, D, R, I, M} (representing,
respectively: NOT, AND, OR, XOR, NAND, NOR, IF, and
Majority, the first being a function of one argument, the sec-
ond through fifth are functions of two arguments, and the
last two are functions of three arguments), and T = {c, b, a, u,
1, 2, 3}. The rule table (27=128 fitness cases) is shown in
Table 5 and the fitness was evaluated by equation (4.2). Thus,
f
max

 = 128.
Three different solutions were discovered in one experi-

ment:

MA3OOAMOAuOMRa1cc3cubcc2cu11ba2aacb331ua122uu1
X3RRMIMODIAIAAI3cauuc313bub2uc33ca12u233c22bcb
MMOIOcXOMa3AXAu3cc112ucbb3331uac3cu3auubuu2ab1

Careful analysis of these programs shows that the GP rule is,
like the GKL rule, a function of five arguments: c, a, u, 1, and 3.

6.5.2. The 11-multiplexer problem

The task of the 11-bit boolean multiplexer is to decode a 3-bit
binary address (000, 001, 010, 011, 100, 101, 110, 111) and
return the value of the corresponding data register (d

0
, d

1
, d

2
,

d
3
, d

4
, d

5
, d

6
, d

7
). Thus, the boolean 11-multiplexer is a func-

tion of 11 arguments: three, a
0
 to a

2
, determine the address,

and eight, d
0
 to d

7
, determine the answer. As GEP uses sin-

gle-character chromosomes, T = {a, b, c, 1, 2, 3, 4, 5, 6, 7, 8}
which correspond, respectively, to {a

0
, a

1
, a

2
, d

0
, d

1
, d

2
, d

3
, d

4
,

d
5
, d

6
, d

7
}.

There are 211 = 2048 possible combinations for the 11
arguments of the boolean 11-multiplexer function. For this
problem a random sampling of the 2048 combinations was
used each generation as the fitness cases for evaluating
fitness. The fitness cases were assembled by address, and
for each address a sub-set of 20 random combinations was
used each generation. Therefore, a total of 160 random fit-
ness cases were used each generation as the adaptation
environment. In this case, the fitness of a program is the
number of fitness cases for which the boolean value returned
is correct, plus a bonus of 180 fitness points for each sub-set
of combinations solved correctly as a whole. Therefore, a
total of 200 fitness points was attributed for each correctly
decoded address, being the maximum fitness 1600. The idea
was to make the algorithm decode one address at a time.
And, in fact, the individuals learn to decode first one ad-
dress, then another, until the last one (see Figure 17).

To solve this problem, multigenic chromosomes com-
posed of 27 genes were used, each gene consisting of only
one terminal. Thus, no functions were used to generate the

Figure 17. Progression of average fitness of the population
and the fitness of the best individual for run 1 of the experiment
summarized in Table 2, column 5 (11-multiplexer).

chromosomes, although the sub-ETs were posttranslationally
linked by IF.

The parameters used per run are shown in Table 2, col-
umn 5. The first correct solution in this experiment was found
in generation 390 of run 1 (the characters are linked 3 by 3,
forming an ET with depth 4, composed of 40 nodes, the first
14 nodes being IFs, and the remaining nodes, the chromo-
some characters; see K-expression (3.12) and Figure 5):

3652bb5bbba4c87c43bcca62a51

which is a universal solution for the 11-multiplexer. Figure
17 shows the progression of average fitness of the popula-
tion and the fitness of the best individual for run 1 of the
experiment summarized in Table 2, column 5.

As shown in the fifth column of Table 2, GEP solves the
11-multiplexer with a success rate of 0.57. It is worth noting
that GP could not solve the 11-multiplexer with a population
size 500 for 51 generations [18], and could only solve it using
4,000 individuals [9].

7. Conclusions

The details of implementation of gene expression program-
ming were thoroughly explained allowing other researchers
to implement this new algorithm. Furthermore, the problems
chosen to illustrate the functioning of GEP show that the
new paradigm can be used to solve several problems from

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250 300 350 400

Generations
F

itn
es

s
(m

ax
16

00
)

Best Ind

Avg fitness

22

different fields with the advantage of running efficiently in a
personal computer. The new concept behind the linear chro-
mosomes and the ETs enabled GEP to considerably outper-
form existing adaptive algorithms. Therefore, GEP offers new
possibilities for solving more complex technological and sci-
entific problems. Also important and original is the multigenic
organization of GEP chromosomes, which makes GEP a truly
hierarchical discovery technique. And finally, gene expres-
sion algorithms represent nature more faithfully, and there-
fore can be used as computer models of natural evolutionary
processes.

Acknowledgments

I am very grateful to José Simas for helping with hardware
problems, for reading and commenting on the manuscript,
and for his enthusiasm and support while I was grasping the
basic ideas and concepts of GEP.

References

1. M. Mitchell, An Introduction to Genetic Algorithms (MIT
Press, 1996).

2. J. Maynard Smith and E. Szathmáry, The Major Transi-
tions in Evolution (W. H. Freeman, 1995).

3. R. Dawkins, River out of Eden (Weidenfeld and Nicolson,
1995).

4. W. Banzhaf, “Genotype-phenotype-mapping and Neutral
variation - A Case Study in Genetic Programming”, in Y.
Davidor, H.-P. Schwefel, and R. Männer, eds., Parallel Prob-
lem Solving from Nature III, Vol. 866 of Lecture Notes in
Computer Science (Springer-Verlag, 1994).

5. R. E. Keller and W. Banzhaf, “Genetic Programming Using
Genotype-phenotype Mapping from Linear Genomes into
Linear Phenotypes”, in J. R. Koza, D. E. Goldberg, D. B. Fogel,
and R. L. Riolo, eds., Genetic Programming 1996: Proceed-
ings of the First Annual Conference (MIT Press, 1996).

6. M. J. Keith and M. C. Martin, “Genetic Programming in
C++: Implementation Issues”, in K. E. Kinnear, ed., Advances
in Genetic Programming (MIT Press, 1994).

7. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone,
Genetic Programming: An Introduction: On the Automatic

Evolution of Computer Programs and its Applications
(Morgan Kaufmann, San Francisco, 1998).

8. J. H. Holland, Adaptation in Natural and Artificial Sys-
tems: An Introductory Analysis with Applications to Biol-
ogy, Control, and Artificial Intelligence, second edition
(MIT Press, 1992).

9. J. R. Koza, Genetic Programming: On the Programming
of Computers by Means of Natural Selection, (MIT Press,
Cambridge, MA, 1992).

10. D. E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion, and Machine Learning (Addison-Wesley, 1989).

11. M. Lynch and J. S. Conery, “The Evolutionary Fate and
Consequences of Duplicated Genes”, Science, 290 (2000),
1151-1155.

12. M. Mitchell, P. T. Hraber, and J. P. Crutchfield, “Revisiting
the Edge of Chaos: Evolving Cellular Automata to Perform
Computations”, Complex Systems, 7 (1993), 89-130.

13. M. Mitchell, J. P. Crutchfield, and P. T. Hraber, “Evolving
Cellular Automata to Perform Computations: Mechanisms
and Impediments”, Physica D, 75 (1994), 361-391.

14. J. P. Crutchfield and M. Mitchell, “The Evolution of Emer-
gent Computation”, Proceedings of the National Academy
of Sciences, USA, 82 (1995), 10742-10746.

15. R. Das, M. Mitchell, and J. P. Crutchfield, “A Genetic
Algorithm Discovers Particle-based Computation in Cellular
Automata”, in Y. Davidor, H.-P. Schwefel, and R. Männer,
eds., Parallel Problem Solving from Nature - PPSN III
(Springer-Verlag, 1994).

16. J. R. Koza, F. H. Bennett III, D. Andre, and M. A. Keane,
Genetic Programming III: Darwinian Invention and Prob-
lem Solving (Morgan Kaufmann, San Francisco, 1999).

17. H. Juillé, and J. B. Pollack, “Coevolving the “Ideal” Trainer:
Application to the Discovery of Cellular Automata Rules”, in
J. R. Koza, W. Banzhaf, K. Chellapilla, M. Dorigo, D. B. Fogel,
M. H. Garzon, D. E. Goldberg, H. Iba, and R. L. Riolo, eds.,
Genetic Programming 1998: Proceedings of the Third An-
nual Conference (Morgan Kaufmann, San Francisco, 1998).

18. U.-M. O’Reilly and F. Oppacher, “A Comparative Analy-
sis of Genetic Programming”, in P. J. Angeline and K. E.
Kinnear, eds., Advances in Genetic Programming 2 (MIT
Press, 1996).

