
Building Probabilistic Networks:
ªWhere Do the Numbers Come From?º

Guest Editors' Introduction
Marek J. Druzdzel and Linda C. van der Gaag

æ

1 INTRODUCTION

PROBABILISTIC networks are now fairly well established as
practical representations of knowledge for reasoning

under uncertainty, as demonstrated by an increasing
number of successful applications in such domains as
(medical) diagnosis and prognosis, planning, vision, in-
formation retrieval, and natural language processing. A
probabilistic network (also referred to as a belief network,
Bayesian network, or, somewhat imprecisely, causal net-
work) consists of a graphical structure, encoding a domain's
variables and the qualitative relationships between them,
and a quantitative part, encoding probabilities over the
variables [29].

Building a probabilistic network for a domain of
application involves three tasks. The first of these is to
identify the variables that are of importance, along with
their possible values. Once the important domain variables
have been identified, the second task is to identify the
relationships between the variables discerned and to
express these in a graphical structure. The tasks of eliciting
the variables and values of importance, as well as the
relationships between them, from domain experts is
comparable, to at least some extent, to knowledge engineer-
ing for other artificial-intelligence representations and,
although it may require significant effort, is generally
considered doable. The last task in building a probabilistic
network is to obtain the probabilities that are required for
its quantitative part. This task often appears more daunting:
ªWhere do the numbers come from?º is a commonly asked
question. The three tasks in building a probabilistic network
are, in principle, performed one after the other. Building a
network, however, often requires a careful trade-off
between the desire for a large and rich model to obtain
accurate results, on the one hand, and the costs of
construction and maintenance and the complexity of
probabilistic inference on the other hand. In practice,
therefore, building a probabilistic network is a process that
iterates over these tasks until a network results that is
deemed requisite.

In collaboration with Finn V. Jensen and Max Henrion,
we organized in 1995 a workshop devoted to the theme of
obtaining the numbers, the most daunting task in building
probabilistic networks [14]. The workshop was held in
conjunction with the Fourteenth International Joint Con-
ference on Artificial Intelligence (IJCAI '95) and had a
program of presentations of selected contributions and
ample slots for flash communications and discussion.
Scientists from such disciplines as decision analysis,
statistics, and computer science attended the workshop.
The interest in the workshop, both during IJCAI '95 and
afterward, prompted us to follow up on the theme. The
current special section of IEEE Transactions on Knowledge and
Data Engineering is the result.

2 SOURCES OF PROBABILISTIC INFORMATION

In most application domains, probabilistic information is
available from various sources. The most common are
(statistical) data, literature, and human experts. Despite the
abundance of information, these sources seldom provide all
numbers required for the quantitative part of a probabilistic
network. As a consequence, the task of obtaining the
numbers for a real-life application is hard and time
consuming.

In data-rich application domains, often large data
collections are available, retrospectively documenting
every-day problem solving. Once the part of the domain
to be modeled is well-defined and well-demarcated, it also
is not too hard to prospectively collect data on the variables
of interest. These data will usually contain highly valuable
information about the relationships between the variables in
the domain. If a comprehensive data collection is available,
the construction of both the graphical part and the
quantitative part of a probabilistic network can be per-
formed automatically. The basic idea of the former is to
distill information about the relationships between the
variables from the data and exploit it for constructing the
network's graph. There are essentially two approaches to
learning the graphical structure from data. The first is based
on constraint-based search [30], [36] and the second on
Bayesian search for graphs with highest posterior prob-
ability given the data [3]. Once the graphical structure has
been established, assessing the required probabilities is
quite straightforward and amounts to studying subsets of
the data that satisfy various conditions.
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To allow for automated construction of a meaningful
probabilistic network, the data must have been collected
very carefully. Biases that are introduced in the data as a
result of the data collection strategies used will usually have
an effect on the resulting network [25]. This effect may not
be desirable, however, for the purpose for which the
network is being developed. Unfortunately, selection biases
are not easily detected in a network once it has been
constructed. Also, the variables and associated values that
are recorded in the data collection should match the
variables and values that are to be modeled in the network
or should at least admit transformation into these variables
and values without too much loss of information [26]. The
data collection should further be comprised of enough data
to allow for reliable identification of probabilistic relation-
ships among the variables discerned and to provide for
reliable probability assessments. In an insufficiently large
data collection, the various subsets from which probabilities
are estimated, for example, can be empty or too small to
allow for meaningful assessments. A common problem
typically found in real-life data, especially when it has been
retrospectively collected, is the occurrence of missing
values. Sometimes a missing value is the result of an error
of omission. Quite often, however, a value is not recorded
because the variable's measurement did not make sense in
practice given the values of other variables. Missing values
of the first type are often randomly distributed. Missing
values of the second type, on the other hand, generally are
not distributed evenly; as a consequence, they are informa-
tion bearing and need be handled accordingly [31]. To use a
data collection with missing values for automated construc-
tion of a probabilistic network, often values have to be filled
in, for example based upon (roughly) estimated prior or
posterior probabilities for these values or with the help of
domain experts [6], [16], [34]. Automated construction of
probabilistic networks from data is an active area of
research [1], [7], [19].

Literature often provides abundant probabilistic infor-
mation. For every medical diagnostic test, for example, its
sensitivity and specificity characteristics, as well as its
typical ranges, are reported in medical handbooks or
journals. Medical disorders and symptoms, as well as the
(causal) relationships between them, are also discussed in
ample detail. Unfortunately, the reported probabilistic
information is seldom directly amenable to encoding in a
probabilistic network. Medical literature, for example, often
reports conditional probabilities of the presence of symp-
toms given a disorder, but not always the probabilities of
these symptoms occurring in the absence of the disorder.
Also, conditional probabilities are sometimes given in a
direction reverse to the direction required for the network.
For example, the statement ª70 percent of the patients with
esophageal cancer are smokersº specifies the probability of
a patient being a smoker given that he or she is suffering
from esophageal cancer, while, for the network, the
probability of esophageal cancer developing in a smoker
would be required. Moreover, probabilities for unobserva-
ble intermediate disease states are usually lacking alto-
gether. As a consequence, if the reported probabilistic
information can be exploited at all, it often requires

considerable processing and additional domain knowledge
[23]. Another commonly found problem that prohibits
direct use of probabilistic information from literature
pertains to the characteristics of the population from which
the information is derived. These characteristics often are
not properly described or deviate seriously from the
characteristics of the population for which the probabilistic
network is being developed [11]. Almanacs, morbidity and
mortality tables, and statistical yearbooks generally suffer
less from the problems outlined above. These sources tend
to contain fairly reliable probabilistic information that can
be used whenever the target population is not atypical.

Finally, when there are few or no reliable data available,
the knowledge and experience of experts in the domain of
application constitute the only remaining source of prob-
abilistic information. The role of domain experts in the
construction of the quantitative part of a probabilistic
network should not be underestimated. An expert's knowl-
edge and experience can help, not just in assessing the
probabilities required, but also in fine tuning probabilities
obtained from other sources to the specifics of the domain at
hand and in verifying the numbers within the context of the
network. The problems encountered when directly eliciting
probabilities from experts, however, are widely known [20].
An expert's assessments, for example, may reflect various
biases and may not be properly calibrated. Acknowledging
these problems, in the field of decision analysis various
techniques have been developed for the elicitation of well-
calibrated probabilities from experts, ranging from the use
of probability scales for marking assessments to the use of
lotteries [27], [43]. These techniques tend to be quite time-
consuming and can take up to 30 minutes per number,
including the typical overhead in interviews with domain
experts, for example, of explaining context. They have
found widespread use in the construction of decision-
analytic models, which traditionally comprise a reasonably
small number of variables. Probabilistic networks tend to
differ from conventional decision-analytic models by the
number of probabilities they require: Contemporary net-
works typically comprise tens or hundreds of variables and
hundreds or thousands of probabilities. Given that an
expert's time is a scarce and expensive commodity,
application of the decision-analytic techniques for prob-
ability elicitation rapidly becomes impractical if not im-
possible for network quantification. For probability
elicitation for probabilistic networks, therefore, supplemen-
tary techniques are being sought [13], [35], [40].

To conclude our brief discussion of sources of probabil-
istic information, we would like to note that, although
tempting, combining information from different sources in
a single probabilistic network can be risky and can in fact,
lead to incorrect results [10].

3 THE IMPORTANCE OF ACCURATE NUMBERS

Although generally various sources of information can be
exploited for probability assessment, the numbers obtained
are inevitably inaccurate due to incompleteness of data and
partial knowledge of the domain under study. As the
numbers are an integral part of a probabilistic network,
their inaccuracies will influence the network's output. It is a
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natural question, therefore, to ask how accurate the
numbers should be to arrive at satisfactory behavior of
the network. Experience with constructing probabilistic
networks for various domains of application has established
a consensus that the graphical structure of a network is its
most important part as it reflects the independence and
relevance relationships between the variables concerned,
being the most robust, qualitative properties of the domain
under study [8], [12], [39]. Within the context of the
graphical structure, however, numerical inaccuracies will
influence the network's output.

The extent to which the inaccuracies in its numbers
influence the output of a probabilistic network can be
studied by investigating the extent to which deviations
from the numbers affect the output. To this end, the
network can be subjected to a sensitivity analysis and an
uncertainty analysis. In general, sensitivity analysis of a
mathematical model amounts to investigating the effects of
inaccuracies in the model's parameters on its output by
systematically varying the parameters' values [27]. For a
probabilistic network, sensitivity analysis amounts to
varying the assessments for one or more probabilities in
the network's quantitative part simultaneously and inves-
tigating the effects on a probability of interest. In an
uncertainty analysis, the assessments for all probabilities
are varied simultaneously by drawing, for each of them, a
value from a prespecified distribution. Uncertainty analysis
serves to reveal the overall reliability of a network's output,
yet yields less insight into the effect of separate probabilities
than a sensitivity analysis.

Uncertainty analysis of a large real-life probabilistic
network for liver and biliary disease has provided evidence
that probabilistic networks can be highly insensitive to
inaccuracies in the numbers in their quantitative part [18],
[33]. There is additional, sometimes anecdotal, evidence
that networks that contain crude assessments for their
probabilities exhibit reasonable behavior. From this evi-
dence, numbers may be looked upon as merely convenient
order of magnitude approximations of the strengths of
influences between variables. However, evidence is build-
ing up that probabilistic networks can be sensitive to the
inaccuracies in their numbers. Sensitivity analysis of a real-
life network for congenital heart disease, for example, has
revealed large effects on a probability of interest [4]. We feel
that, from the limited available evidence, no decisive
conclusions can be drawn with respect to the effects of
inaccuracies in a network's probabilities. At present, it
seems likely that these effects will vary from application to
application. Sensitivity analysis and uncertainty analysis of
probabilistic networks constitute an active field of research
that has yielded efficient computational methods for study-
ing the robustness of a network's output [2], [22], [24], [38].
With these methods, more experimental results of sensitiv-
ity and uncertainty analyses of real-life probabilistic net-
works are likely to become available in the near future.

4 REDUCING THE BURDEN

Typical contemporary probabilistic networks comprise tens
or hundreds of variables, easily requiring thousands of
probabilities. It is the vast number of probabilities required

that generally hampers the construction of a network for a
real-life application. Often the majority of these probabil-
ities have to be assessed by domain experts. As we have
argued before, the conventional decision-analytic techni-
ques for probability elicitation are too time-consuming to be
suitable for the task. In fact, any contemporary or future
technique that aims at eliciting well-calibrated and un-
biased probability assessments from domain experts is
likely to suffer from this problem. We feel, therefore, that
research efforts aimed at reducing the number of prob-
abilities to be assessed and at procedures and tools for
supporting the quantification task currently are of more
practical significance.

The number of probabilities required for a probabilistic
network depends directly on the network's graphical
structure. Roughly speaking, the more densely connected
a network's graph, the more numbers it requires for its
quantitative part. For each variable, exponentially many
probabilities have to be provided, their number being
exponential in the size of the variable's parental set. There
are essentially two approaches to reducing the number of
probabilities that have to be assessed for a network. The
first is based on changes to the graphical structure and the
other on the use of parametric probability distributions. The
former approach builds, for example, on the principle of
divorcing parents by introducing intermediate variables
[28] and on removal of arcs representing weak dependences
[21], [41]. The use of a parametric probability distribution
for a variable is aimed at reducing the number of
probabilities that have to be assessed directly by providing
simple rules for the computation of the other probabilities
required. Examples of parametric probability distributions
currently in use are modeled by the noisy-OR and noisy-
AND gates and their generalizations [9], [15], [17], [29], [37].
These models are based on (inter)causal independence
assumptions for a variable and its parents. The number of
probabilities to be assessed directly for a variable with such
a model is linear, rather than exponential, in its number of
parents; the remaining, exponentially many, probabilities
are readily derived from the independence assumptions
underlying the model. A noisy-OR gate, for example, for a
binary variable with n binary parents requires n, rather than
2n, numbers; for n � 10, this means a reduction of the
number of probabilities to be assessed directly by two
orders of magnitude. Changes to the graphical structure of a
probabilistic network and the use of parametric distribu-
tions are likely to come at the price of accuracy. There
currently is little insight into whether or not a fully detailed
network with separately specified assessments has a better
performance than a network that is carefully reduced using
the approaches outlined above. There is no doubt, however,
that the reduced network will have required considerably
less time on the part of the experts involved. The time thus
saved can be exploited for verifying and refining the
network.

Building a probabilistic network requires a careful trade-
off between the desire for a large and rich model on the one
hand and the costs of construction, maintenance, and
inference on the other hand. As we have argued before,
building a network is a creative and iterative process.
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Although obtaining the numbers for a probabilistic network
is generally postponed until its graphical structure is
considered robust, it is not realistic to assume that the
assessment of all numbers required is a one-shot process.
Building upon this insight, various research efforts aim at
iterative procedures and associated tools to support the
daunting quantification task. The procedures build, for
example, on the use of sensitivity and value-of-information
analyses [5], [32]. As these give insight into the level of
accuracy that is required for the various probabilities of a
network, they help in focusing elicitation efforts. A
procedure building upon sensitivity analysis, for example,
sets out with the elicitation of crude, probably highly
inaccurate, numbers, within a short period of time [40].
Starting with these numbers, a sensitivity analysis of the
network is performed. The most influential probabilities are
uncovered, which are thereupon refined, for example, using
conventional decision-analytic elicitation techniques. As a
side-effect, the analysis can point to uninfluential parts of a
network that may be deleted or simplified. Iteratively
performing sensitivity analyses and refining probabilities is
pursued until satisfactory behavior of the network is
obtained, until the costs of further elicitation outweigh the
benefits of higher accuracy, or until higher accuracy can no
longer be attained due to lack of knowledge. Given the
limited and costly time of experts, attention can thus be
focused on the probabilities to which the network's
behavior shows highest sensitivity.

Procedures for network quantification can be supported
by graphical tools that provide for interactive elicitation,
inspection, and modification of probabilities [42]. With such
tools, probabilities can be elicited through a variety of
modalities. Direct elicitation of probabilities, while easiest to
implement, is generally the least reliable. Elicitation using
graphical means that allow an expert to directly manipulate
a pie chart or a bar graph offers more support to the expert
and is likely to lead to numbers with higher accuracy.
Probabilities can also be related to verbal descriptions such
as very likely and improbable [35]. Although verbal descrip-
tions of probabilities are known to be context sensitive and
can describe wide ranges of numerical quantities, the use of
both words and numbers in probability elicitation can result
in reasonable assessments [40]. Rather than pushing an
expert to assess a large number of probabilities, tools for
interactive probability elicitation can support noninvasive
elicitation by accommodating whatever probabilistic infor-
mation the expert is willing to provide [13]. This informa-
tion may be quantitative in nature, such as point estimates
and probability intervals, but may also be qualitative, such
as comparisons and statements of stochastic dominance.
Procedures for network quantification can furthermore be
supported by tools for automated generation of explana-
tions of reasoning behavior. Detailed explanation provides
for studying the reasoning behavior of a network, which
can point to problems with the probabilities in the
network's quantitative part.

To conclude, in this brief introduction, we have focused
attention on the task of obtaining the numbers required for
a probabilistic network as this is the main scope of the
current issue. However, as we have argued before, the

quantification task is not performed in isolation from the
rest of the process of building a network. With the
increasing number of applications, a need for knowledge-
engineering principles tailored to the construction of
probabilistic networks is emerging. With the advance of
iterative procedures and associated graphical tools for
supporting the overall construction process, the quantifica-
tion task will be addressed within its proper context, which
hopefully will contribute to reducing its burden.

5 GUIDE TO THE CONTENTS

Limited space allows for a special section of a journal to
focus only on selected aspects of a problem. The current
issue of IEEE Transactions on Knowledge and Data Engineering
is no exception. The papers that we have selected cover just
some of the topics addressed above; each of the papers,
however, addresses one or more of these topics in detail
and does so from the point of view of experiences with
building real-life probabilistic networks. As a guide to the
contents of the section, we briefly review the four selected
papers.

In ªNetwork Engineering for Agile Belief Network
Models,º K. Blackmond Laskey and S.M. Mahoney argue
that the quantification task is best treated within the
broader context of building probabilistic networks because
of the interplay between structural modeling decisions and
the numbers to be obtained. The authors propose an
integrated systems engineering approach in building prob-
abilistic networks to take this interplay into consideration.
In ªDealing with the Expert Inconsistency in Probability
Elicitation,º S. Monti and G. Carenini describe experiences
with elicitation of probabilities from human domain experts
for a real-life probabilistic network in the domain of chronic
nonorganic headaches. The authors evaluate and compare
the use of various techniques for probability elicitation,
among which is a newly developed technique that provides
for uncovering inconsistencies in an expert's assessments.
D. Nikovski in ªConstructing Bayesian Networks for
Medical Diagnosis from Incomplete and Partially Correct
Statisticsº introduces several knowledge engineering tech-
niques for the construction of probabilistic networks,
tailored to the domain of medical diagnosis. The author
focuses on the task of obtaining the numbers required for a
network from available probabilistic information that is
incomplete. In the last paper of the section, ªA Causal
Probabilistic Network for Optimal Treatment of Bacterial
Infections,º L. Leibovici, M. Fishman, H.C. Schùnheyder,
C. Riekehr, B. Kristensen, I. Shraga, and S. Andreassen
describe their experiences with building a large real-life
probabilistic network for the treatment of severe bacterial
infections. The probabilities in the network's quantitative
part have been obtained from large data collections and
from literature. The authors address the structural decisions
they have made to take account of the availability of data
from which the required probabilities could be estimated.
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