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Why can we learn? I.

* Regularities, compressibility,..
* The recursive universe

— patterns, artificial life, emergence,..
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Why can we learn? Il.

Nothing is more practical than a good theory (J.C.Maxwell)

No theory of knowledge
The most incomprehensible should attempt to explain
thing about the world why we are successful in
is that it is at all our attempt to explain
comprehensible. things.
Albert Einstein.

K.R.Popper: Objective
Knowledge, 1972

Nobody knows ;-), predictability, understandability and computability are
empirical observations.

=» Decision theory (DT) is at least a coherent framework.

=>»=>» Bayesian model averaging (BMA) follows from DT.

= =>=> MAP/ML learning is at least a reasonable approximation of BMA.

= =>=>=> Regularized ML learning has a strong classical statistical background.



Optimal decision: decision theory
probability theory+utility theory

e Decision situation:

— Actions ai
— Outcomes OJ
— Probabilities of outcomes p(Oj | ai)

— Utilities/losses of outcomes
U(o; |a)

— Maximum Expected Utility
Principle (MEU) EU (ai) :Zju(oj |ai)p(0j |ai)

— Best action is the one with

maximum expected utility a* = arg max. EU (ai )

Actions g, Outcomes Probabilities  Utilities, costs Expected utilities

Q< P(ojla) U(0)), C(a) } EU(a) = ¥ P(o/a)U(o)
O . ' : :
0.

J



Decision support systems, decision
networks
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Bayesian model averaging with data

Beside models, assume N multiple complete observations Dy.

The standard inference p(Q) = ¢|E = e, Di\) is defined as:

plqle, Dy) mp(q, Mile, Dy)

Because p(

€, DN) ~ p(ﬂ[JDi\)

M, e, DN) =

M;, e) and p(M;

plqle, D) Mmp(q| M, e)p(M;| Dy)

where again p(M;|Dy) is a posterior after observations D y:

p(Mi| D) =

Dn|M;)p(M;) | |
p(Dy .’M - o< p(Dn|M;) p(M;) .

likelthood — prior

ple)

.e., our rational foundation, probability theory, automatically includes
and normatively defines learning from observations as standard Bayesian

inference!



Frequentist vs Bayesian prediction

In the frequentist approach: Model identification (selection) is necessary

p(prediction| data) = p(prediction| BestModel(data))

In the Bayesian approach models are weighted

p(prediction|data) = Z p(pred.| Model.) p(Model. | data)

Note: in the Bayesian approach there is no need for model selection



Principles for induction

Epicurus' (3427 B.C. - 270 B.C.) principle of multiple explanations which
states that one should keep all hypotheses that are consistent with the
data.

The principle of Occam's razor (1285 - 1349, sometimes spelt Ockham).
Occam's razor states that when inferring causes entities should not be
multiplied beyond necessity. This is widely understood to mean: Among all
hypotheses consistent with the observations, choose the simplest. In
terms of a prior distribution over hypotheses, this is the same as giving
simpler hypotheses higher a priori probability, and more complex ones
lower probability.
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Markov’s ineq uality: If X'is any nonnegative integrable random variable and a > 0, then
E(X)

a

P(X >a) <

The estimate fx is strongly consistent (by the “strong law of large number"), that is

P(limn_—ocfn = f) =1 (54)

The standardized of fx has asymptotically Gaussian distribution (by the "central limit
theorem"), that is

Fy— 7
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— N(0,1) as N — oo where on = Var(f(X))/VN. (55)

If f(X) is bounded, then non-asymptotic results about the speed of convergence are also
available by the Hoeffding’s inequality including the bound and by the Bernstein’s inequality.
Specifically, if f(X) is within [0, 1], then
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p(lfn —fl =€) <
E[lfn — fl] < Veo/N, (57)




The Probably Approximately Correct PAC-learning

A single estimate is convergent, but can we estimate uniformly well the
error/performance if many hypotheses?

Example from concept learning

X: 1.I.d. samples.

m: sample size H

H: hypotheses

Hhad




Assume that the true hypothesis f is element of the hypothesis space
H.

Define the error of a hypothesis h as its misclassification rate:

error(h) = p(h(x) # f(x))

Hypothesis h is approximately correct if
error(h) < €

(€ is the “accuracy”)

ForheH,., error(h) > ¢



H can be separatedtoH__ and H__yas H._..

bad

By definition for any h € H, _,, the probability of error is
larger than ¢, thus the probability of no error is less than

<

(1-¢)



Thus for m samples fora h, € Hp,4:

p(Dmihp(x) = f(x)) < (1 — &)™

For any h, € Hp 44, this can be bounded as

p(Dm:Vhy€ H, hy (x) = f(x)) <
< |Hpgql(1 — )™
<|Hl(1-&™



To have at least 0 “probability” of approximate correctness:

H(1l-¢&)"<6

By expressing the sample size as function of € accuracy
and 6 confidence we get a bound for sample complexity

1 1
> —(In—=+In|H
m g(n5+n\ )



Estimation of future performance

. How do we know that h = f?

1.  Use theorems of computational/statistical learning theory
2. Try honanew test set of examples
(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size

]_ T T T T T
.. ‘ro¢. P ?wégf b.' FIII:EI
! e s I& &

% s ARRS
0.9 | BT 2l et bl

#
08 F ¥
07 | |

0.6 |

% correct on test set

0.5 R

0.4 : : '
0 20 40 60 80 100
Training set size




Learning characteristics of various methods
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The bias-variance dilemma

In practice, the target typically is not inside the hypothesis space: the total real error can
be decomposed to “bias + variance”

* “bias”: expected error/modelling error
« ‘“variance”: estimation/empirical selection error
For a given sample size the error is decomposed:
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NN (Model selection error)
\'\‘\ /,’ ............................ TOtal error

Model complexity



Can we bypass human (expertise) by data?

e 1943 McCulloch & Pitts: Boolean circuit model of brain
e 1950 Turing's "Computing Machinery and Intelligence"
1956 Dartmouth meeting: the term "Artificial Intelligence”

1950s Early Al programs, including Samuel's checkers
program, Newell & Simon's Logic Theorist,
Gelernter's Geometry Engine

1965 Robinson's complete algorithm for logical reasoning

1966—73 Al discovers computational complexity
Neural network research almost disappears
1969—79 Early development of knowledge-based systems

Sy 1986-- Neural networks return to popularity
1988-- Probabilistic expert systems
1995-- Emergence of machine learning

Today: heterogeneous Al, data-intensive science,
data and knowledge fusion, automated science




Moore’s Law (in computation)

Transidors
Per Die

1"

« Integration and
parallelization wont

14" W 1965 Actwal data

W MOS Arrays ® MOS Logic 1975 Actual data :
, | Hanisom'® bring us further. End
140" ~ 1975 Projection
o ’
® Memory Pentiuru * 4 of Moor’s law?

: Pentivm * J11
Microprocessor

Pentium ™ 11

T Pentivan *
1965, Gordon Moore, founder of Intel:
,The number of transistors that can be
placed inexpensively on an integrated
circuit doubles approximately every two

years ”... "for at least ten years"
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Carlson’s Law for Biological Data

NATURE, Vol 464, April 2010 : B T ey
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Quantified self

Wearable electronics

With chips shrinking and sensors ing cheaper, p ing is moving from that
smartphone in your pocket to your arm, your wrist, nght out to your fingertips.

Speaker on me
thumb, microphone
on the pinkie;
‘Nuff said

Google
Glass
Coming soon: eyeglasses
that take photos and video
that you can immediately
share online, all with a few
taps of your finger or
the sound of
your voice

Medical bands
Strap one on your
arm and measure
your heart rate and
cholesterol

iWatch
Apple’s much-
rumored gadget
could turn your wrist
into an outpost for
your iPhone

Accessorize
for access
Jewelry, belts and
bracelets will monitor
your caloric intake,
connecting you
to the cloud

Wardrobe
change on the go
Clothes can light up,
advertise, change
colors or become
transparent

With the
Nike+ Fuel Band,
your gym workout
just got more
productive

|/ High-tech fahric
Items such as knee
socks from Uniglo
convert evaporating

moisture on your

body to heat

Graphic: Chuck Todd,
Bay Area News Group

©2013 MCT

The well-connected man
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Abdominal respiration
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triceps

Elbow
articulation




Precursors for the ,big” data

Financial transaction data, mobile phone data, user (click)
data, e-mail data, internet search data, social network data,
sensor networks, ambient assisted living, intelligent home,

wearable electronics,...

Factors:
“The line between the virtual Gadgets

world of computing and our
physical, organic world is
blurring.” E.Dumbill: Making "
sense of big data, Big Data, ‘
vol.1, no.1, 2013 Moore's
law




Definitions of , big data”

M. Cox and D. Ellsworth, “"Managing Big Data for Scientific
Visualization,” Proc. ACM Siggraph, ACM, 1997

The 3xV: volume, variety, and velocity (2001).

The 8xV: Vast, Volumes of Vigorously, Verified, Vexingly
Variable Verbose yet Valuable Visualized high Velocity Data
(2013)

Not ,,conventional” data: ,Big data Is data that exceeds the
processing capacity of conventional database systems. The
data Is too big, moves too fast, or doesn't fit the strictures of
your database architectures. To gain value from this data,
you must choose an alternative way to process it (E.Dumbill:
Making sense of big data, Big.Data, vol.1, no.1, 2013)

24



The ,,omic” definition of , big data’

.. [data] is often big in relation to the
phenomenon that we are trying to
record and understand. So, if we are
only looking at 64,000 data points,

but that represents the totality
or the universe of
observations. That is what
gualifies as big data. You do
not have to have a hypothesis
in advance before you collect
your data. You have collected all

mere is—all the data
there Is about
phenomenon.

4

25



,Big data, big hype”

Application

,Boom/’

Criticism, pe~evaluation

ack of re

roblems
Technology
trigger

Present?
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Intelligent data analysis

Data analysis is a process (industrial process)
Data analysis can be “deep”:
— Predictive, causal, counterfactual

Background knowledge
— Wide: Common sense
— Deep: domain knowledge

Data analysis can be action oriented/ “ambient”
Data analysis can be persistent.
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Learning step or learning process?

f?

Learning step : > Learning process
Data ‘ Domain knowledge
\“/'j/ Integration
Learning algorithm .. Interpretation and evaluation |
_ — R Running the learning é@orithm «
Result
\ Selection of learning method «

/ .
Feature selection P

Data engineering «

Understanding the domain

A



Open systems for machine learning

* R
* Julia

* |IBM: SystemML

* Google: TensorFlow
* FB: Torch

* MS: Azure




pen linked data

 Bio2RDF
e ~11 billion triples

* 35 datasets:
clinicaltrials, dbSNP,
DrugBank, KEGG,P!
GOA, OrphaNet, -
PubMed, SIDER=)

(i

Ul

—

R",A»

* local: chembl, -

pathwaycommons, - : 7

reactome, o
wikipathways e

1

2rdf.org/release/3/r
elease.html

Dataset

Linked Datasets as of Avgust 2014 @ @

# of unique
entities

11900533153 1108204952
31


http://download.bio2rdf.org/release/3/release.html
http://download.bio2rdf.org/release/3/release.html

A Open PHACTS

Discovery Platform to cross barriers.

The data sources you already use, integrated and
linked together: compounds, targets, pathways,
diseases and tissues.

ChEBI, ChEMBL, ChemSpider, ConceptWiki,
DisGeNET, DrugBank, Gene Ontology, neXtProt,
UniProt and WikiPathways.

For questions in drug discovery, answers from
publications in peer reviewed scientific journals.

32


http://www.ebi.ac.uk/chebi/
https://www.ebi.ac.uk/chembl/
http://www.chemspider.com/
http://www.conceptwiki.org/
http://www.disgenet.org/web/DisGeNET/v2.1
http://www.drugbank.ca/
http://geneontology.org/
http://www.nextprot.org/
http://www.uniprot.org/
http://www.wikipathways.org/index.php/WikiPathways

Top questions in the
pharma industry . (Open
PHACTS)

Give me all oxidoreductase inhibitors active <100 nm in human and mouse
i s i 2 = -target safety concerns for a
compound? What is the evidence and how reliable is that evidence (journal impact factor, KOL) fgr findings associated with

a compound?

Given a target, find me all actives against that target. Find/predict polypharmacology of actives. Determine ADMET profile
of actives

For a given interaction profile — give me similar compounds

The current Factor Xa lead series is characterized by substructure X. Retrieve all bioactivity data in serine protease assays
for molecules that contain substructure X

A project is considering protein kinase C alpha (PRKCA) as a target. What are all the compounds known to modulate the
target directly? What are the compounds that could modulate the target directly? Le. return all compounds active in assays

where the resolution is at least at the level of the target family (i.e. PKC) from structured assay databases and the literature
Give me all active compounds on a given target with the relevant assay data

Identify all known protein—protein interaction inhibitors

For a given compound, give me the interaction profile with targets

For a given compound, summarize all ‘similar compounds’ and their activities

Retrieve all experimental and clinical data for a given list of compounds defined by their chemical structure (with options
to match stereochemistry or not)

33



Top questions Il. (OpenPHACTSs)

For my given compound, which targets have been patented in the context of Alzheimer's disease?

Which ligands have been described for a particular target associated with transthyretin-related amyloidosis, what is their
affinity for that target and how far are they advanced into preclinical/clinical phases, with links to publications/patents
describing these interactions?

Target druggability: compounds directed against target X have been tested in which indications? Which new targets have
appeared recently in the patent literature for a disease? Has the target been screened against in AZ before? What
information on in vitro or in vivo screens has already been performed on a compound?

Which chemical series have been shown to be active against target X? Which new targets have been associated with
disease Y? Which companies are working on target X or disease Y?

Which compounds are known to be activators of targets that relate to Parkinson’s disease or Alzheimer’s disease

For my specific target, which active compounds have been reported in the literature? What is also known about upstream
and downstream targets?

Give me the compound(s) that hit most specifically the multiple targets in a given pathway (disease)
For a given disease/indication, give me all targets in the pathway and all active compounds hitting them

34



E-science, data-intensive science

All Scientific Data Online

» Many disciplines overlap and
use data from other sciences

* Internet can unify Literature

all literature and data
Derived and

* Go from literature to Recombined Data

computation to data

back to literature
+ Information at your fingertips Raw Data
for everyone-everywhere

+ Increase Scientific Information Velocity

* Huge increase in Science Productivity

35



,Data-driven” positivism

e Positivism (19th century-)
— experience-based knowledge
* Logical positivism (1920-)

— L. Wittgenstein: all knowledge should be codifiable in a single standard
language of science + logic for inference

e Data/www-driven positivism
— Data are available in public repositories

— Scientific papers are available public repositories

— In a formal, single probabilistic representation the results of statistical
data analyses are available in KBs

— In a formal, single probabilistic representation models, hypotheses,
conclusions linked to data are available in KBs



Overview

* Lectures
* Topics



1. Sept 9th Introduction: what is Al

Decision theory and intelligent system design

16th Sporting day (no lectures)

Problem solving with search: uninformed (

23rd Problem solving with search: informed, optimization @

Problem solving with constraint based programming C

30th Search in game playing Z‘
Problem solving: exercises 0/.,
7th Logic: syntacs and semantics @
10. Propositional logic &
11. 14th Logic: first-order logic

12. Logic: exercises

WONOURWN

3. 21st Earlier midterms: exercises

midterm N Pay off{Oct—23)
th 15. )Midterm exam
28™ of Oct. 167 Discussion of midterm, Uncertainty

7. Probability theory

. Nov. 6th : Probabilistic modeling, simple models: Markov chains, Naive BNs, HMMs
. Bayesian networks and inference (observational, interventional, counterfactual)

20. 13 Knowledge engineering of BNs: exercises, homework guide, applications

21. Inference in BNs: HMMs, poly-BNs, stochastic inference, Markov Chain Monte Carlo
. 20. Decision theory, Inference with utilities and interventions, decision networks

. Learning: induction/transduction/compression, PAC learning, sample complexity

Nov. 27.: Open university (no lectures)
repeated 25. \Qec. 2.Repeated midterm exam
midterm 26. 4Bayesian learning-approximations, Bayesian/MAP/ML decision tree learning
2nd of D 27. Overview — exercises for the final exam
Nd of VeC. 297 Homework presentations — exercises for the final exam

Exams: 16t of December, 10am.
6th of January, 10am.
20th of January, 8.30am




Topics I.

1l.Intro
1.The four approaches to Al.
2.The Turing test
3.Acting rationally. The rational agent.
2.Agents
1.Agent function, agent program, agent types/architectures.
2.Environment properties: Observable, deterministic, static, single-agent.
3.The reflex agent architecture, The utility-based agent architecture.
3.Problem-solving with search
1.Problem types. The single-state problem formalization.
2.The general tree search algorithm
3.The four evaluation metric/properties for search strategies: completeness, space-complexity, time-complexity,
optimality (branching factor, diameter of the state space).
4.Uninformed search.
a.Breadth-first (concept, pseudocode, properties), Depth-first (concept, pseudocode, properties), Iterative
deepening (depth-limited depth-first) search (concept, pseudocode, properties), Comparison of properties.,
5.Informed search
a.Heuristic function
b.Greedy search (concept, pseudocode, properties)
c.A* (concept, pseudocode, properties) optimality with informal proof
4.Local search
1.Applicability (when?)
2.The hill-climbing algorithm (pseudocode)
3.Problems with the hill-climbing algorithm
4.Simulated annealing
5.Constraint satisfaction: heuristics
6.Game playing
1.The game tree
2.The MINIMAX algorithm
3.Alpha-beta cuts
7.Logic
1.The concept of general purpose inference and domain specific knowledge-base.
2.Logic: syntax and semantics (conceptualization).
3.The syntax of propositional logic.
4.The concept of models wrt KBs and the model-based definition of semantic inference: entailment.
5.(Syntactic) inference: elementary steps: modus ponens, resolution.
6.Relation between entailment and (syntactic) inference: soundness, completeness.
7.Definition of a Horn-clause
8.The forward-chaining proof method
9.The backward-chaining proof method
10.Conversion of a KB to CNF form.
11.The resolution-based proof method
12.The first-order logic: Advantages, Quantifiers



Topics Il.

1.Uncertainty
1.The subjective interpretation of probability
2.Decision theory: the binary decision problem (which action?)
3.Probability theory
a.Atomic events, composite events, joint distribution
b.Conditional probability, the chain rule
c.The Bayes rule,
i.prior and posterior probabilities
ii.relevance: causal and diagnostic direction
d.Independence, conditional independence
4.Inference by enumeration
5.The naive Bayes model.
a.The product form for the joint.
b.Diagnostic inference
c.The structure.
2.The Bayesian networks.
1.Syntax.
2.A complete example.
3.Compactness (for binary random variables with max k parents).
4.Global semantics (the product decomposition of the joint wrt the structure)
5.Construction steps.
3.Inference in Bayesian networks.
1.Tasks: simple query, composite query, relevance
2.Inference by enumeration (pseudocode).
3.Inference by stochastic simulation
a.Sampling from an empty network (concept, pseudocode).
4. Temporal probability models
1.Definition of a Markov process (homogeneous).
2.Definition of a Hidden Markov model (homogeneous).
a.Inference tasks: definitions of filtering, most likely explanation, smoothing.
i.Filtering (concept, derivation, pseudocode)
3.Connection between HMMs and Bayesian networks.
5.Decision theory
1.Utility theory, preferences, the conditions for the existence of a utility function.
2.The maximum expected utility principle.
3.Decision network: elements and structure.
4.Value of perfect information, formula



Topics lI.

1.Learning
1.The function approximation view of inductive learning.
2.The Ockham principle
3.Bayesian learning
a.Bayes rule
b.Posterior probability of a model/hypothesis
c.Prediction using averaging, MAP and ML approximations.
2.decision theoretic foundation
1.loss functions, error measures
2.empirical vs expected loss: AUC
3.asymptotic consistency
4.rate of learning, speed of convergence
5.The learning curve.
6.The bias-variance dilemma
7.Probably Approximately Correct (PAC) learning
a.definition
b.the misclassification rate as loss
c.derivation of sample complexity of concept learning in i.i.d. context (independent identically distributed)
i.within class
ii.outside class
8.concept learning methods
a.version space
3.The decision tree representation.
1.Expressivity
2.Cardinality
3.a learning method



Reminder: regression

Construct/adjust /» to agree with [ on training set
(5 is consistent if it agrees with f on all examples)

E.g., curve fitting:

Jx)
A




Reminder: regression

Construct /adjust /2 to agree with / on training set
(/2 is consistent if it agrees with f on all examples)

E.g., curve fitting:

f(x)
A

-



Reminder: concept learning/classification:
learning decision trees (AIMA)

Problem: decide whether to wait for a table at a restaurant,
based on the following attributes:
1. Alternate: is there an alternative restaurant nearby?

Bar: is there a comfortable bar area to wait in?

Fri/Sat: is today Friday or Saturday?

Hungry: are we hungry?

Patrons: number of people in the restaurant (None, Some, Full)

Price: price range (S, $S, SSS)

Raining: is it raining outside?

Reservation: have we made a reservation?

. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)

© 0 NOU A WN



Attribute-based representations

 Examples described by attribute values (Boolean, discrete, continuous)
* E.g., situations where | will/won't wait for a table:

Example Attributes Target

Alt | Bar | Fri| Hun | Pat | Price | Rain | Res | Type | Est | Wait
X, T| F | F | T |Somel| $$% F T |French| 0-10 T
Xo T | F F T | Full $ F F | Thai |30-60 F
X3 F T F F | Some $ F F | Burger| 0-10 T
Xy T F T T Full $ F F Thai |10-30 T
Xs T| F | T F Full [ $$$ F T |French| =60 F
b. F| T | F | T |Some| $% T | T |ltalian | 0-10 T
X7 F T F F | None $ T F | Burger| 0-10 F
X3y F F F T |Some| $% T T Thai | 0-10 T
Xy F| T | T F Full $ T F | Burger| >60 F
Xo | T| T | T| T [ Full|$%$ | F | T |ltalian|10-30| F
Xy F F F F | None $ F F Thai | 0-10 F
X9 T T | T T | Full $ F F |Burger|30-60| T

e Classification of examples is positive (T) or negative (F)



Decision trees

* One possible representation for hypotheses
 E.g., hereisthe “true” tree for deciding whether to wait:

Patrons7?
MNone m Full
WaitEstimate?
=60 30 0=10
Alternate? Hu ngl

/\ -IIFFE-
Reservation? Fri'sat? Alternate?

A A Al
A A




Expressiveness

* Decision trees can express any function of the input attributes.
 E.g., for Boolean functions, truth table row - path to leaf:

A B AxorB /\
F F F
F

= F F

* Trivially, there is a consistent decision tree for any training set with one path to leaf
for each example (unless f nondeterministic in x) but it probably won't generalize
to new examples

* Prefer to find more compact decision trees



Hypothesis spaces

How many distinct decision trees with n Boolean attributes?

= humber of Boolean functions
= number of distinct truth tables with 2" rows = 22"

 E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees



Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2" rows = 22"

 E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616
trees

How many purely conjunctive hypotheses (e.g., Hungry A —Rain)?
* Each attribute can be in (positive), in (negative), or out
= 3" distinct conjunctive hypotheses
* More expressive hypothesis space
— increases chance that target function can be expressed
— increases number of hypotheses consistent with training set
—> may get worse predictions




Decision tree learning

 Aim: find a small tree consistent with the training examples
* |dea: (recursively) choose "most significant" attribute as root of (sub)tree

function DTL(examples, attributes, default) returns a decision tree

if examples is empty then return default
else if all ezamples have the same classification then return the classification
else if attributes is empty then return MoDE(ezamples)
else
best < CHOOSE- ATTRIBUTE( altributes, examples)
tree «— a new decision tree with root test best
for each value v; of best do
examples; +— {elements of examples with best = v;}
subtree +— DTL(examples;, attributes — best, MODE(examples))
add a branch to tree with label v; and subtree subtree
return [lree




Choosing an attribute

* |dea: a good attribute splits the examples into subsets that are
(ideally) "all positive" or "all negative"

000000 000000
00000 00000
Patrons? Type?
MNone Some Full French ltalian Thai Burger
000 00 o e 00 o0
o0 0000 @ ® 00 o0

e Patrons? is a better choice



Using information theory

To implement Choose-Attributein the DTL
algorithm

Information Content (Entropy):
I(P(v,), ..., Plv,)) =2._, -P(v)) log, P(v,)

For a training set containing p positive examples and
n negative examples:
(P p p

n n
, )=-— log, - log,
p+n’ p+n P+N S p+n p+n o p+n




Information gain

A chosen attribute A divides the training set E into subsets E,
..., E according to their values for A, where A has vdistinct

values.

. Y. D.+N . N.
remainder(A) = > Pith | ( b
i P+n PN P +n,
Information Gain (IG) or reduction in entropy from the
attribute test:

IG(A) = 1 (—P—,— Yy _remainder(A)
p+n p+n

Choose the attribute with the largest I1G




Information gain

For the training set, p=n=6, I(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

5
12
12 2 2 12 2 2 12 4 4 12 4

2 4 2 4 i
IG(Patrons) =1-[—1(0)+—1(1,0)+—1(=,—)]=.0541bits
( ) [12()12() (66)]

IG(Type) =1-[ ,%)]:Obits

Patrons has the highest IG of all attributes and so is chosen by the DTL
algorithm as the root



Example contd.

e Decision tree learned from the 12 examples:

Patrons?

MNone m Full

e Substantially simpler than “true” tree---a more complex
hypothesis isn’t justified by small amount of data



