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Overview
• Why can we learn?
• Learning as optimal decision and as probabilistic inference
• PAC learning
• The data flood and the big data
• Data science, e-science



Why can we learn? I.

• Regularities, compressibility,..

• The recursive universe

– patterns, artificial life, emergence,..

http://en.wikipedia.org/wiki/File:VonNeumann_CA_demo.gif
http://en.wikipedia.org/wiki/File:VonNeumann_CA_demo.gif
http://upload.wikimedia.org/wikipedia/commons/d/d0/Color_coded_racetrack_large_channel.gif
http://upload.wikimedia.org/wikipedia/commons/d/d0/Color_coded_racetrack_large_channel.gif
http://upload.wikimedia.org/wikipedia/commons/e/e6/Conways_game_of_life_breeder_animation.gif
http://upload.wikimedia.org/wikipedia/commons/e/e6/Conways_game_of_life_breeder_animation.gif


Why can we learn? II.

Nobody knows ;-), predictability, understandability and computability are 
empirical observations.

Decision theory (DT) is at least a coherent framework. 
 Bayesian model averaging (BMA) follows from DT.
MAP/ML learning is at least a reasonable approximation of BMA.
 Regularized ML learning has a strong classical statistical background.

Nothing is more practical than a good theory (J.C.Maxwell)

The most incomprehensible 
thing about the world 

is that it is at all 
comprehensible.

Albert Einstein.

No theory of knowledge 

should attempt to explain 

why we are successful in 

our attempt to explain 

things.

K.R.Popper: Objective 

Knowledge, 1972



Optimal decision: decision theory
probability theory+utility theory

• Decision situation:
– Actions

– Outcomes

– Probabilities of outcomes

– Utilities/losses of outcomes

– Maximum Expected Utility 
Principle (MEU)

– Best action is the one with 
maximum expected utility
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Decision support systems, decision 
networks





Frequentist vs Bayesian prediction

))(|()|( dataBestModelpredictionpdatapredictionp 

In the frequentist approach: Model identification (selection) is necessary
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In the Bayesian approach models are weighted

Note: in the Bayesian approach there is no need for model selection



Principles for induction

• Epicurus' (342? B.C. - 270 B.C.) principle of multiple explanations which 
states that one should keep all hypotheses that are consistent with the 
data.

• The principle of Occam's razor (1285 - 1349, sometimes spelt Ockham). 
Occam's razor states that when inferring causes entities should not be 
multiplied beyond necessity. This is widely understood to mean: Among all 
hypotheses consistent with the observations, choose the simplest. In 
terms of a prior distribution over hypotheses, this is the same as giving 
simpler hypotheses higher a priori probability, and more complex ones 
lower probability.



Laws of large numbers
Markov’s inequality:



Example from concept learning

X: i.i.d. samples.

m: sample size

H: hypotheses

bad

The Probably Approximately Correct PAC-learning

A single estimate is convergent, but can we estimate uniformly well the 

error/performance if many hypotheses?



Assume that the true hypothesis f is element of the hypothesis space
H. 

Define the error of a hypothesis h as its misclassification rate:

Hypothesis h is approximately correct if

(ε is the “accuracy”)

For h∈Hbad

𝑒𝑟𝑟𝑜𝑟 ℎ = 𝑝(ℎ(𝑥) ≠ 𝑓(𝑥))

𝑒𝑟𝑟𝑜𝑟 ℎ < 𝜀

𝑒𝑟𝑟𝑜𝑟 ℎ > 𝜀



H can be separated to H<ε and Hbad as Hε<.

By definition for any h ∈ Hbad, the probability of error is 
larger than 𝜀, thus the probability of no error is less than  )1( 

bad



Thus for m samples for a hb ∈ 𝐻𝑏𝑎𝑑:

For any hb ∈ 𝐻𝑏𝑎𝑑 , this can be bounded as

𝑝 𝐷𝑚:ℎ𝑏 𝑥 = 𝑓 𝑥 ≤ (1 − 𝜀)𝑚

𝑝 𝐷𝑚:∀ℎ𝑏∈ 𝐻, ℎ𝑏 𝑥 = 𝑓 𝑥 ≤

≤ 𝐻𝑏𝑎𝑑 1 − 𝜀 𝑚

≤ |𝐻| (1 − 𝜀)𝑚



To have at least δ “probability” of approximate correctness:

By expressing the sample size as function of  ε accuracy 
and δ confidence we get a bound for sample complexity
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Estimation of future performance

• How do we know that h ≈ f ?

1. Use theorems of computational/statistical learning theory

2. Try h on a new test set of examples

(use same distribution over example space as training set)

Learning curve = % correct on test set as a function of training set size



[Expected 

error]

[Sample size]medium largesmall

with prior

without 

prior

Learning characteristics of various methods

Bayesian

error limit

prior 
stucture 
limit

•Very complex model

•Complex model with non-informative prior

•Simple model with non-informative prior

•Simple model with informative prior

•Complex model with informative prior



The bias-variance dilemma

In practice, the target typically is not inside the hypothesis space: the total real error can 
be decomposed to “bias + variance” 

• “bias”: expected error/modelling error

• “variance”: estimation/empirical selection error 

For a given sample size the error is decomposed:

Modeling error 

Statistical error 

(Model selection error)

Total error

Model complexity
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Can we bypass human (expertise) by data?

• 1943     McCulloch & Pitts: Boolean circuit model of brain
• 1950     Turing's "Computing Machinery and Intelligence"
• 1956     Dartmouth meeting: the term "Artificial Intelligence”
• 1950s    Early AI programs, including Samuel's checkers

program, Newell & Simon's Logic Theorist, 
Gelernter's Geometry Engine

• 1965      Robinson's complete algorithm for logical reasoning
• 1966—73 AI discovers computational complexity

Neural network research almost disappears
• 1969—79 Early development of knowledge-based systems

• 1986-- Neural networks return to popularity
• 1988-- Probabilistic expert systems
• 1995-- Emergence of machine learning
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Today: heterogeneous AI, data-intensive science, 

data and knowledge fusion, automated science



1965, Gordon Moore, founder of Intel:

„The number of transistors that can be

placed inexpensively on an integrated

circuit doubles approximately every two

years ”... "for at least ten years" 
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Moore’s Law (in computation)

Integration and 

parallelization wont 

bring us further. End 

of Moor’s law?
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Carlson’s Law for Biological Data

Sequencing 

costs per mill. 

base

Publicly 

available 

genetic data

NATURE, Vol 464, April 2010

• x10 every 2-3 years

• Data volumes and 

complexity that IT has 

never faced before…



Quantified self



• Financial transaction data, mobile phone data, user (click) 
data, e-mail data, internet search data, social network data, 
sensor networks, ambient assisted living, intelligent home, 
wearable electronics,...
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Precursors for the „big” data

Gadgets

Internet
Moore’s 

law

“The line between the virtual 

world of computing and our 

physical, organic world is 

blurring.” E.Dumbill: Making 

sense of big data, Big Data, 

vol.1, no.1, 2013

Factors:
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Definitions of „big data”

M. Cox and D. Ellsworth, “Managing Big Data for Scientific 

Visualization,” Proc. ACM Siggraph, ACM, 1997

The 3xV: volume, variety, and velocity (2001).

The 8xV: Vast, Volumes of Vigorously, Verified, Vexingly 

Variable Verbose yet Valuable Visualized high Velocity Data

(2013)

Not „conventional” data: „Big data is data that exceeds the

processing capacity of conventional database systems. The

data is too big, moves too fast, or doesn’t fit the strictures of

your database architectures. To gain value from this data,

you must choose an alternative way to process it (E.Dumbill:

Making sense of big data, Big Data, vol.1, no.1, 2013)
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The „omic” definition of „big data”

.. [data] is often big in relation to the

phenomenon that we are trying to

record and understand. So, if we are

only looking at 64,000 data points,

but that represents the totality

or the universe of

observations. That is what

qualifies as big data. You do

not have to have a hypothesis

in advance before you collect

your data. You have collected all

there is—all the data

there is about a

phenomenon.
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„Big data, big hype”

Lack of results, 

problems,

„Boom”

„Hype”

Criticism, re-evaluation 

Application

Technology

trigger

Present?



Intelligent data analysis

• Data analysis is a process (industrial process)

• Data analysis can be “deep”: 

– Predictive, causal, counterfactual

• Background knowledge

– Wide: Common sense

– Deep: domain knowledge

• Data analysis can be action oriented/ “ambient”

• Data analysis can be persistent.



Robustness evaluation 

and averaging

Selection of method and parameters

Sample engineering

Filtering and imputation

Transformation

Extraction

Quality control

Prior construction

Domain modeling

Data collection/measurement

Interpretation

Study design

Vocabulary

Ontology

Logical

Dependency/Causal

Parametric

Corpus

Prior based

Preliminary data analysis based

Feature subset slection

Dimensionality reduction 

Univariate transformation 

Normalization and discretization

Combining other datasets

Outlier detection

Test/train split-up

Sample weighting

Resampling (bootstrap)

Permutation

Confidence

Convergence 

Prior fusion

Running

Data engineering

Data analysis

Variable&sample size considerations

Application

Causal

Predictive-statistical

Patenti, project, valorization
DSS deployment, maintainance



Learning step or learning process?

Data

Result

Learning algorithm

Understanding the domain

Data engineering

Feature selection

Selection of learning method

Running the learning algorithm

Interpretation and evaluation

Integration

Domain knowledge

Learning step Learning process?



Open systems for machine learning

• R

• Julia

• IBM: SystemML

• Google: TensorFlow

• FB: Torch

• MS: Azure



Open linked data
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• Bio2RDF

• ~11 billion triples

• 35 datasets: 
clinicaltrials, dbSNP, 
DrugBank, KEGG, PIR, 
GOA, OrphaNet, 
PubMed, SIDER..)

• local: chembl, 
pathwaycommons, 
reactome, 
wikipathways

• http://download.bio
2rdf.org/release/3/r
elease.html

http://download.bio2rdf.org/release/3/release.html
http://download.bio2rdf.org/release/3/release.html


• Discovery Platform to cross barriers. 

• The data sources you already use, integrated and 
linked together: compounds, targets, pathways, 
diseases and tissues.

• ChEBI, ChEMBL, ChemSpider, ConceptWiki, 
DisGeNET, DrugBank, Gene Ontology, neXtProt, 
UniProt and WikiPathways. 

• For questions in drug discovery, answers from 
publications in peer reviewed scientific journals. 
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http://www.ebi.ac.uk/chebi/
https://www.ebi.ac.uk/chembl/
http://www.chemspider.com/
http://www.conceptwiki.org/
http://www.disgenet.org/web/DisGeNET/v2.1
http://www.drugbank.ca/
http://geneontology.org/
http://www.nextprot.org/
http://www.uniprot.org/
http://www.wikipathways.org/index.php/WikiPathways


Top questions in the 
pharma industry I. (Open 

PHACTS)

33



Top questions II. (OpenPHACTs)

34
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E-science, data-intensive science



„Data-driven” positivism

• Positivism (19th century-)
– experience-based knowledge

• Logical positivism (1920-)
– L. Wittgenstein: all knowledge should be codifiable in a single standard 

language of science + logic for inference

• Data/www-driven positivism
– Data are available in public repositories
– Scientific papers are available public repositories
– In a formal, single probabilistic representation the results of statistical 

data analyses are available in KBs
– In a formal, single probabilistic representation models, hypotheses, 

conclusions linked to data are available in KBs
– …



Overview

• Lectures

• Topics



1. Sept 9th  Introduction: what is AI
2. Decision theory and intelligent system design
3. 16th Sporting day (no lectures)
4. Problem solving with search: uninformed
5. 23rd Problem solving with search: informed, optimization
6. Problem solving with constraint based programming
7. 30th Search in game playing
8. Problem solving: exercises
9. 7th Logic: syntacs and semantics
10. Propositional logic
11. 14th Logic: first-order logic
12. Logic: exercises
13. 21st Earlier midterms: exercises
14. Day-off (Oct. 23)
15. Midterm exam
16. Discussion of midterm, Uncertainty
17. Probability theory
18. Nov. 6th : Probabilistic modeling, simple models: Markov chains, Naïve BNs, HMMs
19. Bayesian networks and inference (observational, interventional, counterfactual)
20. 13 Knowledge engineering of BNs: exercises, homework guide, applications
21. Inference in BNs: HMMs, poly-BNs, stochastic inference, Markov Chain Monte Carlo
22. 20. Decision theory, Inference with utilities and interventions, decision networks
23. Learning: induction/transduction/compression, PAC learning, sample complexity
24. Nov. 27.: Open university (no lectures)
25. Dec. 2.Repeated midterm exam
26. 4 Bayesian learning-approximations, Bayesian/MAP/ML decision tree learning 
27. Overview – exercises for the final exam
28. Homework presentations – exercises for the final exam

Mmidterm
28th of Oct.

repeated 
midterm 

2nd of Dec.

Exams: 16th of December, 10am.
6th of January, 10am.

20th of January, 8.30am



Topics I.
1.Intro

1.The four approaches to AI.

2.The Turing test

3.Acting rationally. The rational agent.

2.Agents

1.Agent function, agent program, agent types/architectures.

2.Environment properties: Observable, deterministic, static, single-agent.

3.The reflex agent architecture, The utility-based agent architecture.

3.Problem-solving with search

1.Problem types. The single-state problem formalization.

2.The general tree search algorithm

3.The four evaluation metric/properties for search strategies: completeness, space-complexity, time-complexity, 

optimality (branching factor, diameter of the state space).

4.Uninformed search.

a.Breadth-first (concept, pseudocode, properties), Depth-first (concept, pseudocode, properties), Iterative 

deepening (depth-limited depth-first) search (concept, pseudocode, properties), Comparison of properties.,

5.Informed search

a.Heuristic function

b.Greedy search (concept, pseudocode, properties)

c.A* (concept, pseudocode, properties) optimality with informal proof

4.Local search

1.Applicability (when?)

2.The hill-climbing algorithm (pseudocode)

3.Problems with the hill-climbing algorithm

4.Simulated annealing

5.Constraint satisfaction: heuristics

6.Game playing

1.The game tree

2.The MINIMAX algorithm

3.Alpha-beta cuts

7.Logic

1.The concept of general purpose inference and domain specific knowledge-base.

2.Logic: syntax and semantics (conceptualization).

3.The syntax of propositional logic.

4.The concept of models wrt KBs and the model-based definition of semantic inference: entailment.

5.(Syntactic) inference: elementary steps: modus ponens, resolution.

6.Relation between entailment and (syntactic) inference: soundness, completeness.

7.Definition of a Horn-clause

8.The forward-chaining proof method

9.The backward-chaining proof method

10.Conversion of a KB to CNF form.

11.The resolution-based proof method

12.The first-order logic: Advantages, Quantifiers



Topics II.

1.Uncertainty

1.The subjective interpretation of probability

2.Decision theory: the binary decision problem (which action?)

3.Probability theory

a.Atomic events, composite events, joint distribution

b.Conditional probability, the chain rule

c.The Bayes rule, 

i.prior and posterior probabilities

ii.relevance: causal and diagnostic direction

d.Independence, conditional independence

4.Inference by enumeration

5.The naive Bayes model.

a.The product form for the joint.

b.Diagnostic inference

c.The structure.

2.The Bayesian networks.

1.Syntax.

2.A complete example.

3.Compactness (for binary random variables with max k parents).

4.Global semantics (the product decomposition of the joint wrt the structure)

5.Construction steps.

3.Inference in Bayesian networks.

1.Tasks: simple query, composite query, relevance

2.Inference by enumeration (pseudocode).

3.Inference by stochastic simulation

a.Sampling from an empty network (concept, pseudocode).

4.Temporal probability models

1.Definition of a Markov process (homogeneous).

2.Definition of a Hidden Markov model (homogeneous).

a.Inference tasks: definitions of filtering, most likely explanation, smoothing.

i.Filtering (concept, derivation, pseudocode)

3.Connection between HMMs and Bayesian networks.

5.Decision theory

1.Utility theory, preferences, the conditions for the existence of a utility function.

2.The maximum expected utility principle.

3.Decision network: elements and structure.
4.Value of perfect information, formula



Topics III.

1.Learning

1.The function approximation view of inductive learning.

2.The Ockham principle

3.Bayesian learning

a.Bayes rule

b.Posterior probability of a model/hypothesis

c.Prediction using averaging, MAP and ML approximations.

2.decision theoretic foundation

1.loss functions, error measures

2.empirical vs expected loss: AUC

3.asymptotic consistency

4.rate of learning, speed of convergence

5.The learning curve.

6.The bias-variance dilemma

7.Probably Approximately Correct (PAC) learning

a.definition

b.the misclassification rate as loss

c.derivation of sample complexity of concept learning in i.i.d. context (independent identically distributed)

i.within class

ii.outside class

8.concept learning methods

a.version space

3.The decision tree representation.

1.Expressivity

2.Cardinality

3.a learning method



Reminder: regression



Reminder: regression



Reminder: concept learning/classification:
learning decision trees (AIMA)

Problem: decide whether to wait for a table at a restaurant, 
based on the following attributes:
1. Alternate: is there an alternative restaurant nearby?

2. Bar: is there a comfortable bar area to wait in?

3. Fri/Sat: is today Friday or Saturday?

4. Hungry: are we hungry?

5. Patrons: number of people in the restaurant (None, Some, Full)

6. Price: price range ($, $$, $$$)

7. Raining: is it raining outside?

8. Reservation: have we made a reservation?

9. Type: kind of restaurant (French, Italian, Thai, Burger)

10. WaitEstimate: estimated waiting time (0-10, 10-30, 30-60, >60)



Attribute-based representations

• Examples described by attribute values (Boolean, discrete, continuous)

• E.g., situations where I will/won't wait for a table:

• Classification of examples is positive (T) or negative (F)

•



Decision trees

• One possible representation for hypotheses

• E.g., here is the “true” tree for deciding whether to wait:



Expressiveness

• Decision trees can express any function of the input attributes.

• E.g., for Boolean functions, truth table row → path to leaf:

• Trivially, there is a consistent decision tree for any training set with one path to leaf 
for each example (unless f nondeterministic in x) but it probably won't generalize 
to new examples

• Prefer to find more compact decision trees



Hypothesis spaces

How many distinct decision trees with n Boolean attributes?

= number of Boolean functions

= number of distinct truth tables with 2n rows = 22n

• E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 
trees



Hypothesis spaces

How many distinct decision trees with n Boolean attributes?
= number of Boolean functions
= number of distinct truth tables with 2n rows = 22n

• E.g., with 6 Boolean attributes, there are 18,446,744,073,709,551,616 
trees

How many purely conjunctive hypotheses (e.g., Hungry  Rain)?
• Each attribute can be in (positive), in (negative), or out

 3n distinct conjunctive hypotheses

• More expressive hypothesis space
– increases chance that target function can be expressed
– increases number of hypotheses consistent with training set

 may get worse predictions



Decision tree learning

• Aim: find a small tree consistent with the training examples

• Idea: (recursively) choose "most significant" attribute as root of (sub)tree



Choosing an attribute

• Idea: a good attribute splits the examples into subsets that are 
(ideally) "all positive" or "all negative"

• Patrons? is a better choice



Using information theory

• To implement Choose-Attribute in the DTL 
algorithm

• Information Content (Entropy):

I(P(v1), … , P(vn)) = Σi=1 -P(vi) log2 P(vi)

• For a training set containing p positive examples and 
n negative examples:
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Information gain

• A chosen attribute A divides the training set E into subsets E1, 
… , Ev according to their values for A, where A has v distinct 
values.

• Information Gain (IG) or reduction in entropy from the 
attribute test:

• Choose the attribute with the largest IG
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Information gain

For the training set, p = n = 6, I(6/12, 6/12) = 1 bit

Consider the attributes Patrons and Type (and others too):

Patrons has the highest IG of all attributes and so is chosen by the DTL 
algorithm as the root
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Example contd.

• Decision tree learned from the 12 examples:

• Substantially simpler than “true” tree---a more complex 
hypothesis isn’t justified by small amount of data


