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Abstract
Since the mid 1960s, researchers in computer science have famously referred to chess as the 

‘drosophila’ of artificial intelligence (AI). What they seem to mean by this is that chess, like the 

common fruit fly, is an accessible, familiar, and relatively simple experimental technology that 

nonetheless can be used productively to produce valid knowledge about other, more complex 

systems. But for historians of science and technology, the analogy between chess and drosophila 

assumes a larger significance. As Robert Kohler has ably described, the decision to adopt drosophila 

as the organism of choice for genetics research had far-reaching implications for the development 

of 20th century biology. In a similar manner, the decision to focus on chess as the measure of both 

human and computer intelligence had important and unintended consequences for AI research. 

This paper explores the emergence of chess as an experimental technology, its significance in the 

developing research practices of the AI community, and the unique ways in which the decision to 

focus on chess shaped the program of AI research in the decade of the 1970s. More broadly, it 

attempts to open up the virtual black box of computer software – and of computer games in 

particular – to the scrutiny of historical and sociological analysis.
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In 1965, the Russian mathematician Alexander Kronrod, when asked to justify the expensive 

computer time he was using to play correspondence chess at the Soviet Institute of Theoretical 

and Experimental Physics, gave an explanation both prescient and prophetic: it was essential 

that he, as a premier researcher in the burgeoning new discipline of artificial intelligence 

(AI), be allowed to devote computer time to chess because ‘chess was the drosophila of 
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artificial intelligence’.1 What exactly Kronrod meant by this dramatic pronouncement is 

not entirely clear. In 1965 there was hardly much of a field of AI – the term itself had been 

invented less than a decade earlier – and there were few computers available at this time 

capable of playing anything resembling real chess. The M-20 computer at Kronrod’s institute 

was one of the few that could. But Kronrod’s assertion that chess was, indeed, the drosophila 

of AI quickly became part of the foundational lore of the discipline. The analogy was first 

made in print by the Nobel-prize winning economist Herbert Simon in 1973, and by the 

end of the decade the metaphor was appearing consistently in the literature. More recently, 

the ‘chess as drosophila’ metaphor has been extended even further to encompass both AI 

and cognitive science (Rasskin-Gutman, 2009; Simon and Chase, 1973).2

Regardless of how true Kronrod’s grand claim about the centrality of chess to AI research 

might have been in 1965, within a few decades it had become undeniable reality. By all of 

the measures of contemporary scientific practice, computer chess has proven to be an 

enormously productive experimental technology. Hundreds of academic papers have been 

written about computer chess, thousands of working chess programs have been developed, 

and millions of computer chess matches have been played. It is a rare discussion of AI, 

whether historical, philosophical, or technical, that does not eventually come around to 

chess-playing computers (Collins, 2010; Hofstadter, 2005; Searle, 1999). Chess figures 

prominently in the iconography of the discipline, as a quick tour of the book jackets of its 

major literature will readily testify (Ekbia, 2008; Nilsson, 1998; Russell and Norvig, 2009). 

The 1997 victory of the IBM Deep Blue computer over Garry Kasparov continues to be 

celebrated as one of the pivotal moments in the history of modern computing. In the same 

way that Drosophila melanogaster dominates the history (and, to a lesser degree, the 

practice) of the genetic sciences, chess dominates AI (Bramer, 1978; Coles, 1994; Franchi, 

2005; Franchi et al., 2005; McCarthy, 1997; Rasskin-Gutman, 2009; Robinson, 1979; Ross, 

2006; Schaeffer and Donskoy, 1989; Wells and Reed, 2005).

But what exactly does it mean to suggest that chess is the drosophila of AI? The specific 

meaning of the analogy has never been more than superficially elaborated. What most 

practitioners seem to mean by claiming chess as the drosophila of AI is simply that computer 

chess, like drosophila, represented a relatively simple system that nevertheless could be 

used to explore larger, more complex phenomena. Herbert Simon, for example, described 

chess as a standardized experimental ‘test-bed’ that could be used to explore various hypoth-

eses (Simon et al., 1992). In this reductionist interpretation of the history of the genetic 

sciences, Drosophila melanogaster, like Mendel’s peas or Darwin’s finches, was significant 

largely in its role as a controlled microcosm in which to develop the more sophisticated 

techniques to solve more difficult and significant problems. Similarly, the choice of chess 

was, for Simon and his fellow computer scientists, solely a function of its intrinsic technical 

characteristics: chess was the ideal experimental technology for AI because it was both 

simple enough to be able to formalize mathematically and yet complicated enough to be 

theoretically interesting (Newell et al., 1958; Shannon, 1950).

It would be a poor historian of science indeed, however, who failed to see in any evo-

cation of drosophila the opportunity to ask questions of deeper analytical significance. As 

the work of Robert Kohler and others remind us, the choice of an experimental organism 

(or in this case, technology) is never an epistemologically neutral decision (Burian, 1993; 

Kohler, 1994; Waters, 2004). Not only are such decisions often driven by practical as well 

as intellectual factors – the ease with which the human-friendly drosophila adapted itself 
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to the lifecycle and ecosystem of the laboratory meant that other, less opportunistic organ-

isms, such as neurospora, were relegated to the sidelines – but they often have long-term 

implications for the research agenda of a discipline that are unexpected and perhaps even 

undesirable. The widespread adoption of drosophila as the experimental organism of 

choice for early 20th century genetics research, for example, meant that certain research 

agendas, such as transmission genetics, became dominant, while others, such as embryol-

ogy, were neglected (Mitman and Fausto-Sterling, 1992). In a similar manner, the success 

of computer chess, and in particular an approach to computer chess based on deep-tree 

searching and the minimax algorithm, came to dominate mid 20th century approaches to 

AI research, overshadowing other problem domains and techniques. Unlike drosophila, 

however, and despite its apparent productivity as an experimental technology, computer 

chess ultimately produced little in terms of fundamental theoretical insights.

This paper explores the role of computer chess in defining the identity and research 

agenda of AI over the course of the previous half-century. The central argument is that 

the decision to focus on chess as a representative measure of both human and computer 

intelligence had important and unintended consequences for the discipline. In choosing 

chess over its various alternatives, AI researchers were able to tap into a long tradition of 

popular chess culture, with its corresponding technical and theoretical literature, interna-

tional networks of enthusiasts and competitions, and well-developed protocols for docu-

menting, sharing, and analyzing data. Yet the brute-force computational techniques that 

proved most suitable for winning computer chess tournaments distracted researchers from 

more generalizable and theoretically productive avenues of AI research. The rise to domi-

nance of minimax algorithm-based techniques in particular transformed chess from a 

quintessentially human intellectual activity into an exercise in deep searching and fast 

alpha–beta pruning (Marsland, 1991). As a result, computers got much better at chess, 

but increasingly no one much cared.

The point of this paper is not to give a definitive answer to the question of whether or 

not chess was the drosophila of AI. Like most such analogies, this one holds true in certain 

circumstances but in others breaks down. To a certain degree, what matters historically 

is not so much the fundamental legitimacy of the comparison, but how practitioners have 

made use of it. AI researchers themselves first proposed the relationship between chess 

and drosophila, and they mobilized this claim early and often in the self-construction of 

their discipline. If for no other reason, computer chess is significant in the history of AI 

because AI researchers believe it to be significant. But the real similarities between chess 

and drosophila are also illuminating, as they suggest new approaches for thinking about 

the computer sciences in terms of the larger history of the experimental sciences.

The history of computer chess has immediate relevance to historians of computing, 

cognitive science, operations research, and decision theory, as well as to scholars interested 

in the more general question of how experimental technologies shape scientific practice. 

But this paper also has a larger, more theoretical agenda: it represents an attempt to situate 

the history of computer software – as an object of historical inquiry quite distinct from the 

history of the computer itself – within the larger context of the history of science.

Despite numerous calls from historians of computing for further study of the history of 

software, software thus far has proven remarkably resistant to historical analysis (Campbell-

Kelly, 2007; Ensmenger, 2009; Hashagen et al., 2002; Jesiek, 2006; Mahoney, 2008).
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In part, this is a reflection of the inherently amorphous nature of software: unlike the 

computer itself, which is obviously and tangibly technological, software is generally invis-

ible, ethereal, and ephemeral. In many cases, it exists only as a unique – and temporary – 

arrangement of digital bits buried deeply within a tiny microprocessor. Certain aspects of 

software, such as sorting algorithms, can be generalized and formalized as mathematical 

abstractions, while others remain inescapably local and specific, subject to the particular 

constraints imposed by corporate culture, informal industry standards, or government 

regulations. In this sense, software sits uncomfortably at the intersection of science, 

engineering, and business. Software is where the technology of computing meets social 

relationships, organizational politics, and personal agendas (Ensmenger, 2010). As a result, 

software is difficult to situate historiographically. To the extent that the history of science 

has engaged with the history of software, it has treated it as the intellectual history of 

computer science. But in the real world, in order to transform ideas into action, software 

must necessarily become embodied: even the simplest algorithms, when translated from 

Platonic ideals into the specific forms required to operate specific computers, in specific 

socio-technical environments, become clearly constructed technological artifacts. Software 

encompasses not only computers, codes, algorithms, and ideas, but also people, practices, 

and networks of interaction. In this sense, software development is perhaps the ultimate 

expression of what the sociologist John Law has called ‘heterogeneous engineering’ 

(Ensmenger, 2009; Law, 1987).

And so this paper also represents an attempt to think seriously about software as a mate-

rial artifact; as a technology embedded in systems of practice and networks of exchange. 

More specifically, it uses the history of the minimax algorithm, the computational equivalent 

to the drosophila chromosome, to open at least partially the black box of software to the 

light of historical and sociological inquiry. Buried deeply within most chess-playing computer 

programs, rendered largely invisible by the literal black-box of a silicon-encased micropro-

cessor, the minimax algorithm can nevertheless be exposed to the scrutiny of historical and 

sociological analysis. By revealing the social history of even the most seemingly straight-

forward applications of computer software (one of the many virtues of chess, after all, is 

that it has unambiguous rules and well-established measures of success), this paper hopes 

to exemplify a new approach to the history of software. Computer chess in this respect will 

serve not as the drosophila of AI, but as the drosophila of the history of AI.

From Mechanical Turk to virtual fruit fly

The story of computer chess begins long before the invention of the first electronic com-

puters. The historical origins of the chess-playing machine – and of metaphysical specula-

tions about the relationship between mechanical chess and human intelligence – stretch 

back well into the 18th century (Lohr, 2007; Standage, 2002). In 1770 the Hungarian 

engineer Wolfgang von Kempelen constructed, as entertainment for the Empress Maria 

Theresa, an Automaton Chess Player. Kempelen’s automaton, also known as the Mechanical 

Turk (the humanoid portion of the machine was dressed in robes and a turban), could not 

only play a strong game of chess against a human opponent, but could also solve certain 

mathematical chess puzzles, such as the so-called Knight’s Tour.3

For 84 years the Mechanical Turk was exhibited throughout Europe, playing (and 

defeating) such illustrious figures as Benjamin Franklin and Napoleon Bonaparte (and 
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this despite the fact that Napoleon cheated). In 1783 it played a close game against 

François-André Danican Philidor, widely considered by contemporaries to be the world’s 

best human player. In 1818 an exhibition of the Turk, then owned by the aspiring mecha-

nician and musician Johann Mälzel, was visited in London by a youthful Charles Babbage, 

who was reportedly entranced. After playing two games against the Turk, Babbage was 

not only inspired to acquire his own automaton (albeit a dancer, not a chess player), but 

also to sketch out his own plans for a chess-playing machine (New York Times, 1875; 

Schaffer, 1996). He would later argue that chess was one of the compelling applications 

for his (never-constructed) Analytical Engine (Babbage, 1864). In addition to inspiring 

Babbage, the Turk also spawned numerous contemporary imitators, including the chess-

playing machines known as Ajeeb (‘The Egyptian’) and Mephisto (Jay, 2000).

The Mechanical Turk was not, in fact, an actual chess-playing machine, but rather an 

elaborate hoax involving a hidden human player, an articulated mechanical arm, and a 

series of magnetic linkages. But despite frequent attempts to uncover its secrets – including 

an 1836 article by Edgar Allen Poe in which Poe transformed (some say plagiarized) a 

contemporary exposé of Mälzel’s Automaton Chess Player and turned it into the model for 

the modern detective novel – the Mechanical Turk largely retained its mysterious appeal 

(Panek, 1976; Poe, 1836). It was not until the mid 20th century that a definitive account 

of its inner workings was made public. In any case, the possibility, at least, of mechanical 

chess remained a source of continual fascination, and was treated with serious attention by 

engineers, futurists, philosophers, mathematicians, and cyberneticians (Ashby, 1952). In 

1914, the Spanish engineer Leonardo Torres y Quevedo built the first actual chess-playing 

machine, which was capable of king and rook against king endgames without any human 

intervention (Randell, 1982).

The long-standing public fascination with chess-playing automata provides some context 

for understanding the popular appeal of the chess-playing computer, and explains in part 

why computer chess has played such a prominent role in the public presentation of AI 

research. Automata in general problematized the boundary between the organic and the 

artificial, and chess automata in particular raised questions about the distinctiveness of 

human cognitive activities (Riskin, 2007; Sussman, 1999; Voskuhl, 2007). Chess was, in 

this context, not just any game: the traditional province of kings (and scholars), chess had 

long been recognized as the pinnacle of human intellectual accomplishment, requiring both 

deliberate, carefully cultivated learning and strategy, as well as bold, creative, and coura-

geous flights of inspired brilliance. As such, chess-playing ability was widely considered 

to be a strong indicator of more general intelligence. In fact, a broad range of thinkers, 

from Goethe to Franklin, had made chess a metaphor for war, romance, politics, commerce, 

sports, and just about every other complex human cognitive and social activity (Kasparov, 

2007; Rasskin-Gutman, 2009; Shenk, 2006; Steiner, 1971).

Because chess was historically regarded as such an essentially human endeavor, the 

ability of machines to play chess seemed to have fundamental metaphysical implications. 

If a machine could emulate what was widely considered the summit of human intelligence, 

namely the abstract reasoning associated with chess-playing ability, then was it not 

possible that the essence, and not just the appearance, of humanity could eventually be 

reproduced mechanically (Guterl, 1996; Husbands et al., 2008)? The frequent portrayal 

of the first electronic computers as ‘giant brains’ made the connection between mind and 

machine, exemplified by chess-playing computers, all the more obvious (Berkeley, 1949; 
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von Neumann, 1958; Yood, 2003). AI researchers would play explicitly on the broader 

symbolic significance of chess. As Herbert Simon would famously declare in his 1973 

defense of chess as drosophila, since chess was ‘the intellectual game par excellence’, by 

devising a successful machine, ‘one would seem to have penetrated to the core of human 

intellectual endeavor’ (Simon and Chase, 1973).

The specific origins of computer chess (as opposed to mechanical chess) are often traced 

back to the mathematician Alan Turing. As early as 1946, Turing imagined a chess-playing 

computer as one possible example of a ‘thinking’ machine (Turing, 1946), and there is 

evidence that by 1948 he and his colleagues at the National Physical Laboratory were 

discussing in very tangible terms a potential chess-playing machine.4 In 1953 Turing would 

write the first chess-playing program (on paper, as no machine yet existed that could actu-

ally run his program), and much of Turing’s later speculations on the possibility of ‘machine 

intelligence’ revolved around an imagined chess-playing computer (Turing, 1950, 1953).

But it was the mathematician Claude Shannon who wrote the very first article ever 

published on the art of programming a computer to play chess. Like many subsequent 

computer theorists, Shannon believed that chess was the ideal experimental technology for 

AI because it was a) ‘sharply defined both in allowed operations (the moves) and in the 

ultimate goal (checkmate)’ and b) ‘neither so simple as to be trivial nor too difficult for 

satisfactory solution’ (Shannon, 1950). The discrete nature of chess – the fact that the posi-

tions on a chessboard could be easily described in terms of a simple 8 8 grid – also meant 

that it was particularly compatible with the digital nature of modern electronic computing. 

More significantly, however, since ‘chess is generally considered to require “thinking”’, 

Shannon argued, ‘a solution to this problem will either force us to admit the possibility of 

mechanized thinking or to further restrict our concept of  “thinking”’ (Shannon, 1950). Like 

many of his contemporaries, Shannon considered chess mastery to be an indicator of more 

general human intelligence. It seemed to follow therefore that a computer that could play 

chess was de facto intelligent – or at least capable of simulating a close approximation of 

intelligence. (This neat side-stepping of long-standing metaphysical discussions about the 

nature of the mind was characteristic of many AI researchers in this period.)

After briefly describing how a computer might represent internally the configuration 

of positions on a chessboard, Shannon proposed several approaches to teaching it to play. 

In theory, it would be possible to play a perfect game of chess, or to construct a machine 

to do so, simply by following a relatively straightforward algorithm. Because chess is a 

finite game, with a finite number of positions, each of which allows for a finite number 

of moves, and because the rules of chess guarantee that every game must eventually end 

in a win, draw, or loss, all of the possible combinations of moves and counter-moves (each 

of which is technically known as a ‘ply’) can be laid out in advance as a branching tree 

of decision points. By working backward from the end-points of this decision tree, the 

optimal move for any given position could readily be computed. Other than the flip of the 

coin that determined which player moves first, there are no random elements to a chess 

match. Perfect information is available to both players at every step of the process. For 

Shannon, therefore, chess was an entirely deterministic game: in theory, once a compre-

hensive decision tree was constructed, the outcome of any (and indeed every) possible 

game could be calculated in advance. The ‘problem’ of chess could be then be considered 

to have been solved conclusively.
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In practice, however, the perfect game of chess, while theoretically computable, is 

effectively unattainable. The numbers involved in constructing even a partially complete 

decision tree for chess quickly become astronomical – and intractable. Given an average 

of 42 moves (84 plies) per game, with an average of 38 legal moves to consider per ply, 

the typical master’s level chess match would require a total of 3884 (roughly 10134) positions 

to be evaluated. Just to put this number (10134) into perspective, if every atom in the universe 

(1075 of them) were a chess computer operating at the speed of Deep Blue (106 moves per 

second), there still would not have been enough time since the Big Bang (1018 seconds) to 

consider each of these combinations. Compared with such large numbers, even the expo-

nential growth in computer power promised by Moore’s Law ultimately proves insufficient. 

The full decision tree simply has too many branches to evaluate. There is not, and will 

never be, a comprehensive computational solution to chess.

Faced with the impossibility of calculating the combinatoric possibilities of an entire 

chess game, computer chess programs must necessarily evaluate only a more limited number 

of moves. Shannon himself proposed two potential solutions for ‘pruning’ the decision 

tree. The most obvious solution was to reduce the total number of moves that a computer 

was required to ‘look ahead’. This would make the overall decision tree to be evaluated 

smaller and more manageable, and therefore more amenable to straightforward computa-

tional approaches. Shannon called this approach a ‘Type-A’ solution, and considered it to 

be a brute-force method that did not accurately reflect the ways in which human beings 

played chess. He much preferred a ‘Type-B’ solution that used sophisticated heuristics to 

trim the decision tree by privileging certain branches over others. Like human grandmasters, 

Type-B solutions would focus only on the most promising lines of analysis, and would 

recognize in patterns of positions more general principles of play that would reflect a more 

truly intelligent approach to the problem of chess.

The sharp distinction Shannon drew between these two very different approaches –Type-A 

and Type-B – anticipated a debate that would soon emerge within the discipline about the 

relationship between artificial and natural intelligence. The lines of debate were drawn 

along a number of different axes, some philosophical, others pragmatic, but the central 

dilemma hinged around the question of whether it was necessary for AI to simulate (and 

therefore understand) natural intelligence, or whether it was enough simply to replicate its 

functionality (Collins, 1990; Dreyfus, 1992; Searle, 1999). In other words, was it important 

that intelligent machines ‘think’ like humans, or was it sufficient that their behavior appeared 

to be intelligent? Or to put it in terms of computer chess, does a computer that plays chess, 

no matter how skillfully, ever truly ‘understand’ chess, and does it matter one way or 

another? While this might seem at first to be a purely metaphysical distinction, the implica-

tions for both the computing and the cognitive sciences are significant: at stake are a set 

of fundamental distinctions between the class of problems whose knowledge domains are 

explicit (and therefore potentially comprehensible to a computer) and those whose knowl-

edge domains are tacit (and therefore difficult, if not impossible, to automate) (Brooks, 

1990; Collins, 2010).

But while Shannon clearly favored the mimetic, Type-B approach to machine intelli-

gence, his paper described in detail only a functional Type-A solution, a brute force approach 

built around the so-called minimax algorithm. Although Shannon believed that his, like all 

other Type-A solutions, was doomed to be ‘both slow and a weak player’, in practice his 
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minimax approach proved unexpectedly powerful, and durable. Because the minimax 

algorithm was relatively simple and easy to understand, it could be quickly and readily 

implemented on a broad range of computer machinery. Its performance scaled linearly with 

improvements in the underlying hardware. It was an algorithm that was amenable to tinker-

ing and remarkably resilient to programming errors. And, perhaps most importantly, minimax 

played a pretty decent game of chess. As a result, the minimax approach disseminated 

quickly and widely throughout the emerging computing community. By the end of the 

1960s, minimax so dominated computer chess competitions that all other approaches were 

effectively abandoned. By providing a well-defined solution (minimax-based computer 

chess) to a poorly defined problem (machine intelligence), Shannon’s concrete and authori-

tative answer foreclosed for the time being any discussion about the underlying nature of 

more fundamental questions.

How a computer sees a chess game

To understand the significance of the minimax algorithm in the subsequent history of AI, 

it is necessary first to understand how a computer ‘sees’ a chess game.

To begin with, the computer must be programmed with a numeric representation of the 

positions on the board. Fortunately for the early computer chess researchers, by the begin-

ning of the 20th century there were already well-established systems for describing and 

recording chess games. The most widely used was the algebraic chess notation, which used 

a unique letter–number pair to identify each square of a chessboard. In algebraic notation, 

vertical files were labeled a–h, and horizontal ranks 1–8. Individual pieces were labeled 

with an uppercase letter (in English, for example, K for king, Q for queen, B for bishop, 

and so on), and moves were designated by a combination of piece and position. The nota-

tion Be5, for example, indicated that a move by a bishop to file e and rank 5. Which bishop 

was moved depended on context and the column in which the move was noted (left column 

is white, right column black).

Although most computers did not use algebraic chess notation as their internal repre-

sentation of the board, the fact that most human players were already familiar with symbolic 

representations of chess made the transition between real and virtual chessboards much 

easier. The specific internal implementation mattered little; what was important was that 

the widespread use of notational systems meant that computer chess researchers had avail-

able to them an enormous amount of data – historical matches, opening books, end-game 

solutions, puzzles, and post-game analysis – already translated into convenient, machine-

readable form. The use of chess notation to transform ephemeral local performances into 

structured data allowed for the accumulation and codification of chess knowledge.5 The 

widespread adoption of systems of chess notation also made it possible to play chess at a 

distance: the combination of notational systems, communications networks, and protocols 

for correspondence chess provided a context for the first man-versus-computer chess 

tournaments, since the practice of playing chess against an unseen (and unknowable) 

opponent had already been well developed.

In any case, once a computer has been provided with an internal representation of a 

chessboard and a system for determining which legal moves are available to a given piece 

in a given position, the process of constructing a decision tree can begin.
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Consider, for example, the two popular opening moves e4 and d4, which represent two 

possible options for the first ply of a hypothetical game (see Figure 1).

In order to evaluate the relative strength of these two moves, the computer first gener-

ates a set of possible responses by black. These responses would represent the second 

ply. In practice, the moves to be considered in the second ply would generally include 

only a subset of all the possible legal moves as determined by a ‘plausible move genera-

tor’. The development of sophisticated plausible move generators was the key to Shannon’s 

Type-B solutions, but even in Type-A solutions they are used (in much simplified form) 

to reduce the total number of moves to be considered. The plausible move generator is 

one of several components of minimax algorithm that were subject to constant experi-

mentation by enthusiasts.

The subset of plausible moves generated for the first and second plies is then arranged 

into a decision tree, with each branch representing one possible combination of moves 

and counter-moves (see Figure 2). The tree can be grown as needed simply by using the 

plausible move generator to compute additional plies. The practical limit of the tree 

depends on the available hardware; the Deep Blue computer, for example, evaluated a 

tree that contained on average 17 to 18 plies.

Once a decision of the desired depth has been constructed, a numeric score is assigned 

to the terminal node of each branch using an evaluation function. The evaluation function 

attempts to rank the relative strength of the various final positions represented by the 

terminal nodes. Most evaluation functions make use of some combination of the number 

of pieces remaining and the strategic value of certain positions on the board to provide a 

relative rank for each outcome. In general, positive numbers are used to represent posi-

tions favorable to white and negative numbers for positions favorable to black.

In a complete decision tree that traced all of the possible branches to their ultimate con-

clusion, the construction of the evaluation function is trivial: each match would conclude 

with either a win, loss, or a draw. Such comprehensive trees are typically only computation-

ally feasible in the end-game; for practical reasons, most decision trees are necessarily 

incomplete. For such partial trees, developing an evaluation function is much more compli-

cated, because it must incorporate some method for evaluating the relative strength of each 

position, without reference to some known final conclusion. There is no single, optimal 

Figure 1. The King’s Pawn (d4) and Queen’s Pawn (e4) opening sequences are common and 
well documented in chess books.
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technique for ranking relative positions: the construction of a robust evaluation function is 

more of an art than a science, and as such, provides endless opportunities for tinkering.

One common technique used to develop an evaluation function is to assign each piece 

remaining on the board a numeric value: 1 point for a pawn, 3 points for a knight or bishop, 

5 points for a rook, and 9 points for a queen, an effectively infinite number of points for 

the king. Other points might be rewarded for pieces that controlled tactically significant 

positions. Although all such evaluations were inherently subjective, workable techniques 

for ranking positions and outcomes were already well developed by the 1950s to facilitate 

chess learning and analysis by human players. This is yet another example of how the 

cultural history of chess made it an ideal experimental technology: computer chess research-

ers were able to leverage of the vast body of preexisting technique and literature that was 

both quantitative and analytical without being deterministic (van den Herik et al., 2002).

The fact that most branches of a decision tree do not culminate in an objectively measur-

able outcome (win, loss, or draw), meant it was always possible that the application of a 

given evaluation function would produce an outcome that was locally but not globally 

optimal – meaning that the outcome represented what appeared to be a strong position, but 

in the long term produced a losing outcome. This is known as the ‘horizon effect’. Given 

the limits on the depth of the search tree, it is always possible that just over the horizon – the 

next, un-evaluated move, for example – might lie a looming disaster. To a certain degree, 

the horizon effect is similar to the problem of optimization in mathematics: although it is 

usually possible to determine local extrema (maxima and minima) for a given function, 

determining whether these are also global extrema is often analytically impossible. There 

are strategies and heuristics than can be used to assure the likelihood that a local solution is 

also a global optimum, but they are never infallible. Techniques for identifying how far over 

the horizon to pursue stable position solutions, also known as quiescence search, represented 

one of the few aspects of the minimax approach to computer chess not susceptible to mechani-

cal solution (see Figure 3). As such, quiescence search served as a site of innovation and 

experimentation.

It is important to note that the development of the evaluation function is the only aspect 

of implementing the minimax approach to computer chess that requires any substantial 

Figure 2. A truncated decision tree for the opening moves e4 and d4 with the evaluation 
function applied to the terminal leaves.
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chess ability or knowledge. The remaining steps of the algorithm were entirely mechanical. 

There is some evidence, in fact, that the less the computer ‘knew’ about chess, the better 

it performed (Schaeffer and Donskoy, 1989). This made the minimax approach exemplified 

by computer chess very different from other approaches to AI, such as rule-based expert 

systems or Bayesian statistics-based inference engines, which emphasized domain-

specific knowledge. Computerized chess-machines might act intelligently, but they were 

intrinsically (and perhaps even necessarily) ignorant.

Once the decision tree is constructed and the evaluation function used to apply a numeric 

ranking to each of its terminal nodes (or ‘leaves’), the application of the minimax algorithm 

is essentially mechanical. Only the terminal nodes needed to be evaluated, as the minimax 

algorithm itself would fill in all the intermediate nodal values, saving both time and process-

ing power. Beginning at the terminal nodes, the algorithm works backward through the 

decision tree, assigning optimal values to each decision branch by alternatively maximizing 

or minimizing the outcome. If a decision point at a given level of the tree (for example, ply x) 

represents a move for black, the algorithm assumes that the player will always follow the 

branch that minimizes the score at the subsequent node (ply x 1). The white player, con-

sidering the set of branches earlier in the decision tree (ply x–1), would therefore know that 

the maximal outcome possible at that level is limited to the minimum of the level above. At 

each branch black will minimize, and white will maximize. By alternating between maxi-

mizing and minimizing strategies at each level of the decision tree, and ‘backing up’ these 

optimal outcomes to the previous branch level, the entire tree can be populated quickly and 

efficiently with numeric rankings. This is an entirely mechanical process that does not require 

the application of the computationally expensive evaluation function: the ranking of each 

node is determined by the optimum response (for the opposing player) at the following level.

Once all of the rankings have been assigned, the first player to move (in this case white) 

would simply walk through the tree, maximizing and minimizing alternatives. Given a 

Figure 3. The Horizon Effect: White has a win in 10 moves, but a search depth of less than 20 
plies will fail to reveal it. Example, with permission, from Brudno (2000).
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well-defined decision tree with unambiguous numeric rankings at the terminal nodes, and 

two players each with access to full information (a characteristic feature of chess – as 

opposed to, say, poker) the entire decision-making process can be reduced to a simple 

search process whose effectiveness relies almost solely on the brute force application of 

computational power. More significantly, the performance of the minimax search algorithm 

scales linearly with processing power. Build a faster computer, and you automatically 

have a better performing chess machine.

The multiple virtues of minimax

Although Claude Shannon published his important early paper on computer chess in 1950, 

it was not until 1957 that the first working chess program was implemented. There was a 

brief period of experimentation with alternatives to the Type-A minimax algorithms. For 

example, IBM programmer and chess player Alex Bernstein pursued a selective pruning 

Type-B strategy. However, the minimax algorithm soon emerged as the dominant approach 

to computer chess (Bernstein and Roberts, 1958). In 1958, Allan Newell, Herbert Simon, 

and Clifford Shaw modified the minimax algorithm to include a technique called alpha–

beta pruning (which appears to have been invented simultaneously by at least several others, 

including John McCarthy). This program allowed entire branches to be quickly eliminated 

from the search process. The combination of the minimax algorithm with the alpha–beta 

pruning technique significantly reduced the total number of branches of the decision tree 

that need to be considered, which made it possible to play chess on almost any computer, 

including the earliest microcomputers. It also made the minimax algorithm faster, more 

robust, and generally more powerful than its competitors. After the Chess 4.0 program, 

which was based on minimax and alpha–beta pruning technology, won the first Association 

for Computing Machinery (ACM) computer chess championships in the early 1970s, 

alternative Type-B approaches were almost completely abandoned.

Many features of the minimax algorithm made it particularly well-suited to the applica-

tion of computer chess. To begin with, it was easy to understand and to program, even on 

(when viewed with hindsight) primitive and low-powered equipment. The Microchess 

program, for example, written by Peter Jennings in 1976 for the MOS Technology 6502 

microprocessor, could fit into a mere 1024 bytes of memory. The relative ease with which 

the minimax algorithm could be implemented allowed chess programs based on it to dis-

seminate rapidly throughout the electronic computing ecosystem. Like a hardy weed or 

the adventurous fruit fly, the minimax algorithm was a fit competitor in many environments. 

And once established, it proved difficult to replace or eradicate.

In addition to being easy to program, the performance of the minimax algorithm scaled 

linearly with improvements in hardware. This meant that every improvement in computer 

hardware translated directly into faster, more powerful chess engines. With each new 

generation of computer hardware, chess systems based on the minimax algorithm became 

immediately, impressively – and above all measurably – better. This is not true of every 

computer algorithm, much less of every approach to AI. Compared with their competitors, 

researchers in computer chess were able to demonstrate constant progress, no small con-

sideration for a field that generally failed to live up to its audacious claims and predictions. 

Every year minimax-based chess programs would win more tournaments and defeat more 

highly ranked human players.
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The minimax algorithm also allowed for easy tinkering. Not only was it simple to imple-

ment, but it also was resilient to errors. In other words, it was easy to modify but difficult 

to break. Chess programs built around minimax were inherently modular, meaning that 

their component parts were relatively independent of one another. Once the basic minimax 

algorithm was up and running, the other elements of the system – the evaluation function, 

the plausible move generator, and the quiescence search – could be isolated with ease and 

experimented upon. The evaluation function was a particular site of much innovation, and 

incremental improvements drawn from chess theory, historical matches, or personal experi-

ence were relatively simple both to implement and test. The quiescence search, which 

helped alleviate the risks of the horizon effect, was similarly amenable to experiment and 

improvement. The plausible move generator proved more resistant to fundamental innova-

tion, but nevertheless allowed for small, incremental improvements without threatening 

the stability of the larger system.

Finally, the minimax algorithm worked. The technique of deep searching in a decision 

tree proved effective when applied to the problem of computer chess. Although it would 

take decades before computers could approach the level of play achieved by the very best 

human players, even the early systems played a respectable game. Like Bridges’ and 

Sturtevant’s early chromosomal maps of Drosophila melanogaster, chess programs based 

on the minimax algorithm were over-simplifications of reality. However, they were rela-

tively easy to develop, provided clear value, and over time could be consistently refined 

and improved. It is no coincidence that the first published claim that chess was the dro-

sophila of AI appeared just as the practice of computer chess stabilized around the minimax 

algorithm.

Cultures of chess and computing

Although the multiple virtues of the minimax algorithm explain much about why minimax 

quickly became the dominant approach to computer chess, they do not, in and of themselves, 

explain how and why computer chess came to be seen as the drosophila of AI. Most of the 

earliest computer chess researchers justified their choice of experimental technology on 

the basis of its internal characteristics: according to them, chess was ideal because it was 

a simple game with straightforward rules that could be readily formalized. And it is true 

that, unlike other AI research agendas at the time (such as machine translation), chess 

provided a well-defined problem domain, with unambiguous rules and clear objectives and 

measures of success. But chess was not the only game in town with these particular virtues, 

as early flirtations by AI researchers with alternatives such as checkers, Nim, and Go made 

apparent. The choice of any of these (particularly Go) might have shaped the research 

agenda of the discipline in a very different direction (Brown, 1979; Dowsey, 1973; Schaeffer, 

2001). Chess did have some unique advantages over its competitors, but these were not 

necessarily inherent in the structure of the game. Its ultimate triumph has to do with very 

specific material and social practices that had developed around chess over the course of 

the previous century. Again, consider Robert Kohler’s explanation for the rise to dominance 

of the actual drosophila: although the specific characteristics of the drosophila genome 

were significant, so too were the features of the species and its lifecycle that fit well within 

the academic environment and culture. It was the combination of organism, culture, and 

practice that made drosophila so successful. So too with computer chess.



18 Social Studies of Science 42(1)  

One obvious advantage of chess was that it was well-known and popular. This was not 

true of alternatives such as Go, which despite being one of the most ancient of board games, 

was not widely played outside of Asia. Perhaps more significantly, however, chess was 

also generally recognized as a complex, creative game that required strategy and planning; 

thus, the ability to play good chess was widely considered to be a strong indicator of more 

general intelligence. Chess was a prestigious activity, long associated with intellectuals, 

artists, and individual genius, as well as a grand metaphor for other complex human cogni-

tive and social activities (Kasparov, 2007; Shenk, 2006; Steiner, 1971; Rasskin-Gutman, 

2009). The presumed broader significance of chess made it particularly symbolic for AI 

researchers: recall, for example, Herbert Simon’s claim that ‘if one could devise a success-

ful chess machine, one would seem to have penetrated to the core of human intellectual 

endeavor’ (Simon and Chase, 1973). Because chess was historically regarded as such an 

essentially human endeavor, the ability of machines to play chess seemed to have funda-

mental metaphysical implications.

Chess also happened to be a game with a unique and idiosyncratic historical association 

with mathematics and computing. Many of the mathematicians who worked on computer 

chess, including Turing and Shannon, were avid amateur players. And as I have written 

about elsewhere, chess-playing ability has long been associated with programming ability 

(Ensmenger, 2010). Many of the early advertisements for programming positions empha-

sized chess and musical aptitude, and several of the IBM Corporation’s earliest programmers 

were chess players, including one US Open Chess champion. ‘Look for the chess player, 

the solver of mathematical puzzles’, advised one representative contemporary article on 

the selection of computing personnel (O’Shields, 1965). Throughout the 1950s and 1960s 

the ability to play chess was embodied early on in the hiring practices of the computer 

industry through the use of aptitude tests and personality profiles, and so many computer prac-

titioners brought with them an interest in the game that it quickly became self-perpetuating. 

It was simply assumed within this community that chess mastery was synonymous with 

generalized intelligence.

The existence of an extensive body of historical and theoretical literature on chess also 

greatly facilitated its adoption by computer enthusiasts. This was made possible by, and 

encouraged the standardization of, a comprehensive system of symbolic notation that 

allowed chess researchers to ‘seed’ their system with reliable data, and to validate its per-

formance against a wide variety of opponents and situations. Books of standard chess 

openings could be stored as pre-computed solutions to the most common early sequences 

of moves, for example, and popular end-game puzzles could be used to prove the effective-

ness of quiescence search algorithms. Any modifications made to a chess engine could be 

quickly tested against the standardized sequences of historical games and puzzles. In addi-

tion, well-established systems of chess notation facilitated the development of protocols 

for playing correspondence chess and other forms of chess-at-a-distance. The popularity 

of correspondence chess accustomed players to playing remotely against unseen, unknown 

opponents separated in space and time. This familiarity with playing chess by mail (and 

wire) smoothed the eventual transition to playing chess against a computer opponent.

In addition to systems of notation, the chess community had established by the middle of 

the 20th century a well-developed system for ranking the relative strength of its players. 

During the 1950s this was the Harkness system. By the 1960s, the Elo rating system, named 
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after the Hungarian-born physicist Arpad Elo, had been formally adopted by the US Chess 

Federation. The details of these systems are irrelevant. What matters is that they provided 

clear numerical benchmarks for measuring performance and improvement. Against such 

benchmarks, it was possible for computer chess programs to make continual and measurable 

progress – a clear advantage that chess had over other problem domains in AI research, where 

such unambiguous measures of performance were generally not available. In science, as in 

other disciplines, success speaks volumes and, given the larger context in which AI found 

itself in the late 1960s and 1970s, the ability of computer chess programs to demonstrate 

continual and convincing progress, often in sensational fashion, helped elevate computer 

chess to its paradigmatic status as the experimental technology of AI. There were no equivalent 

accomplishments for researchers working on natural language processing or deductive rea-

soning programs. In terms of public perceptions of success, at least, chess was clearly king.

These numeric systems of ratings were enabled and reinforced by an extended network 

of chess tournaments that regularly took place throughout the world. Chess tournaments 

provided forums for players to establish their reputations and improve their ratings. They 

had well-developed protocols for determining winners and resolving disputes, and provided 

a community of practitioners that encouraged both competition and cooperation (Peterson, 

1983). Chess tournaments enabled enthusiasts to cultivate their skills, validate their experi-

ences and obsessions, and share information. Human chess tournaments became the model 

for the first computer chess tournaments, the very first of which were held in the mid 1960s 

(see Figure 4). By the late 1960s computers were able to cross over into the conventional 

Figure 4. Scoreboard, ACM National Computer Chess Competition, 1979. Courtesy of the 
Computer History Museum.
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chess tournament circuit, and in 1967 the MacHack Six, a system developed by Richard 

Greenblatt and others at MIT, became the first computer to defeat a human player in official 

tournament play (Greenblatt et al., 1967; Levy, 1976).

Computer chess tournaments also served as a form of public spectacle. From the earli-

est origins of computer chess, chess matches between human and computer have been 

sensationalized as the ultimate embodiment of The Clash Between Men and Machine. 

The public staging of these matches capitalized on the dramatic conventions of the tradi-

tional chess tournament, including, in at least one case, formal evening wear (at least on 

the part of the human opponent). AI enthusiasts made the most of such performances. 

When the MIT philosopher Hubert Dreyfus (1965) mocked the limitations of contemporary 

chess engines (one of which had recently been defeated by a 10-year-old human opponent) 

in his sweeping critique of AI, AI researchers staged a match between Dreyfus and the 

state-of-the-art MacHack program. Dreyfus, who never claimed to be skilled player, was 

soundly defeated. ‘A Ten Year Old Can Beat the Machine–Dreyfus: But the Machine Can 

Beat Dreyfus’ triumphed the Bulletin of the Association of Computing Machinery’s Special 

Interest Group in AI, and the so-called ‘Dreyfus affair’ was widely mobilized to deflect 

criticism of the discipline (McCorduck, 1979). The fact that Dreyfus himself was defeated 

by a computer was irrelevant to his larger critique, but made for compelling rhetorical 

theater (Koschmann, 1996; Papert, 1968; McDermott, 1976). The establishment in 1980 

of the Fredkin Prize, which offered a US$100,000 bounty to the first computer program 

capable of beating a reigning world chess champion, would only accelerate this narrow 

focus on building machines that could defeat people.

The drama of the computer chess tournament played particularly well in the Cold War 

context. The very first game played between competing computer systems pitted the 

McCarthy–Kotok program against a Soviet system developed by Alexander Kronrod at 

Soviet Institute of Theoretical and Experimental Physics. Against the backdrop of the 

early 1970s confrontation between Bobby Fisher and Boris Spassky, the showdown between 

American and Soviet computing technology assumed a particular salience (Johnson, 2007; 

Schonberg, 1981). Throughout the 1960s and 1970s, international tournaments were held 

pitting American computers against their Soviet counterparts, both human and machine 

(Wall Street Journal, 1978) (see Figure 5). The culmination of this series would, of course, 

be the ultimate defeat of World Chess Champion Garry Kasparov by the IBM Deep Blue 

computer. Not only would such showdowns raise the profile and enhance the reputation 

of AI researchers; but they would also reinforce the association between human and 

machine cognition, at least as it applied to chess-playing ability.

Even without the Cold War theatrics, the computer chess tournament provided an 

opportunity for AI researchers to publicly demonstrate consistent and impressive progress. 

This was particularly valuable in the late 1970s, when the publication of the highly critical 

Lighthill Report by the British Research Council led to a reduction of funding for AI 

research worldwide (Crevier, 1992). Tournaments provided regular contact with a pas-

sionate community willing to tinker with and cultivate new technologies. This relationship 

proved particularly productive after the development of microcomputer technology in the 

late 1970s made it possible for thousands of amateur computer enthusiasts to make an 

additional hobby out of computer chess. The scalability of the minimax algorithm meant 

that even the most anemic microcomputers could play computer chess (in fact, chess was 
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often one of the few ‘real’ applications that these microcomputers could manage). The 

version of Microchess that Peter Jennings wrote for the Commodore, Apple II, and Atari 

line of microcomputers was the first microcomputer package to sell more than 50,000 

copies. The culture of mutual encouragement and code-sharing that characterized many 

of the early ‘homebrew’ computer clubs mirrored the similarly open ethos on the part of 

chess aficionados. The norms and practices of both communities encouraged tinkering 

and the voluntary dissemination of information. Variations of the minimax-based computer 

chess programs traveled quickly and easily within this hospitable environment, and by 

1977 the first International Computer Chess Association was established. Over the course 

of the next several decades, hundreds of microcomputer-based chess programs were 

developed by both amateurs and professionals.

Game over?

From a purely pragmatic perspective, it is easy to see why AI researchers so enthusiasti-

cally embraced chess as their discipline’s drosophila. The link between the ancient game 

of chess and the novel technology of electronic computing had proven productive from 

the very beginning. Within just a few years of the coining of the term ‘AI’ (at the 1956 

Dartmouth Conference), one of its leading proponents, Herbert Simon, had elevated chess 

to the top of the disciplinary research agenda. Although Simon’s bold prediction that 

‘within ten years a digital computer will be the world’s chess champion’ was seen at the 

time as being wildly optimistic, within 50 years AI had achieved this defining accomplish-

ment (Newell et al., 1958). Especially when compared with other areas of AI research, 

many of which had failed to develop, computer chess appeared to be an almost unalloyed 

success. By the early 1980s the Cray Blitz had achieved master status; in 1988 the com-

puter Deep Thought became the first computer to defeat a human grandmaster in a tourna-

ment; and on 11 May 1997, the IBM Deep Blue computer triumphed over the world chess 

champion Garry Kasparov, then (and now) the highest rated human player of all time.

Figure 5. Chess diplomacy, Wall Street Journal (1978).
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The dramatic victory of the Deep Blue over Kasparov would seem to represent an incon-

trovertible validation of the legitimacy of the computer chess approach to AI (Bloomfield 

and Vurdubakis, 2008; Hamilton, 2000; Newborn, 2003). The match bore all the hallmarks 

of what by then had become the standard modus operandi of computer chess research: a 

carefully staged (and well-publicized) showdown between man and machine; huge cash 

prizes (US$700,000 for the winner; US$400,000 for second place); and grand claims made 

about the supposed relationship between chess ability and general intelligence. Kasparov, 

who had a long history of playing against computers, was perhaps the ideal opponent for 

Deep Blue. In the years between 1986 and 2005, Kasparov was almost continuously ranked 

as the world’s number one player, a record nearly three times as long as that of his closest 

rival, Anatoly Karpov. A more worthy opponent for Deep Blue – and a more definitive test 

of its abilities – could scarcely be imagined. And when, in game six of a six-game match, 

Deep Blue forced Kasparov to resign after just 19 moves, the aspirations of Herbert Simon 

and his fellow computer chess enthusiasts appeared to have finally been realized.

But after the initial flurry of sensationalist coverage in the popular press (Kasparov’s 

defeat represented ‘The Brain’s Last Stand’, according to the cover of Newsweek on 5 May 

1997, and the book jacket of a popular book by computer scientist Monty Newborn (2003) 

declared it ‘not just a triumph, but a rare, pivotal watershed beyond all other triumphs: 

Orville Wright’s first flight, NASA’s landing on the moon’), questions began to emerge 

about what, if anything, this apparently ultimate accomplishment actually signified.

Certainly Deep Blue was a symbol of the remarkable progress made in computer tech-

nology over the previous four decades: the 30 processors that formed the heart of the 

machine were capable of 11,380,000,000 floating point operations per second, making it 

one of the top 300 supercomputers in the entire world at the time. Each processor contained 

16 customized chips designed to perform chess-specific functions such as move generation 

and position evaluation. Running on these 30 parallel processors (a total of 480 customized 

chips), the minimax algorithm used by Deep Blue was capable of evaluating 200 million 

positions per second (which translated into an average search depth of six to eight moves).

But was all this power proof of the existence of true AI? IBM had spent millions of 

dollars on Deep Blue, a machine that only played a grand total of six games (too few to 

even gain it an Elo rating) against a single opponent before it was dismantled. In fact, the 

machine was disassembled immediately after its narrow victory over Garry Kasparov, 

and its internal workings have never been revealed to the satisfaction of the research 

community – an important but unintended consequence, perhaps, of the competitive 

tournament system and the increasing reliance on cash prizes to fund system development. 

In any case, to many observers, Deep Blue’s brute force approach to computer chess – along 

with its narrowly specialized ‘Kasporov Killer’ techniques – was too single-minded to 

suggest any meaningful general intelligence (Aleksander, 2001; Ekbia, 2008). ‘My God, 

I used to think chess required thought’, reflected the noted cognitive scientist Douglas 

Hofstadter in response to the Deep Blue victory: ‘Now, I realize it doesn’t. It doesn’t mean 

Kasparov isn’t a deep thinker, just that you can bypass deep thinking in playing chess, the 

way you can fly without flapping your wings’ (quoted in Weber, 1996). In a 1997 response 

to the Deep Blue victory published in the journal Science, John McCarthy, the founding 

father of both AI and competitive computer chess, publicly lamented the degree to which 

computer chess had been led astray by the will-o-wisp of tournament victories: ‘Computer 
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chess has developed much as genetics might have if the geneticists had concentrated their 

efforts starting in 1910 on breeding racing Drosophila. We would have some science, but 

mainly we would have very fast fruit flies’ (McCarthy, 1997: 1518).

At the heart of McCarthy’s critique is the perception that, although computer chess was 

productive in that it encouraged constant experimentation, it produced no new theories – 

either about human cognitive processes or theoretical computer science. In their influential 

1958 paper arguing for the centrality of chess in the study of machine-based intelligence, 

Herbert Simon and Allen Newell had stressed that it was essential not only that the computer 

made good moves, but that it made them for the right reasons. Computer chess was, for 

Simon and Newell, valuable only to the degree that it represented a ‘deliberate attempt to 

simulate human thought processes’ (Newell et al., 1958). This lofty goal was soon aban-

doned in the quest to build stronger tournament performers. Other than making incremental 

improvements to the minimax algorithm, computer chess failed to deliver on its larger 

promise as a tool for exploring the underlying mechanisms of human intelligence. The 

sociologist Harry Collins (2010: 108) has called the triumph of chess-playing computers  

a ‘hollow victory’, in that it caused AI to stray from its original focus on directly modeling 

human intelligence. According to these and other critics, the lofty original goals of AI, 

which were to mimic general intelligence, had been increasingly narrowed by the discipline’s 

investment in computer chess, and in particular an approach to chess that emphasized deep 

searching through a decision tree using the minimax algorithm (Kasparov, 2010; Nareyek, 

2004). And so, even as chess-playing computers were reaching the highest levels of human 

accomplishment, the choice of chess began to be seen as limiting rather than productive 

(Hedberg, 1997; Horgan, 1999; Munakata, 1996)

The problem with chess, however, was not so much the game itself, but rather the par-

ticular way in which the game had come to be defined by the minimax algorithm. The way 

in which a minimax-based machine plays chess is not at all like the way a human plays 

chess; in many respects, the two are playing an entirely different game. If anything, the 

brute-force approach to computer chess highlighted the growing divide between AI and 

the human cognitive sciences. A growing body of research on human chess players indicated 

that human players rarely thought ahead more than one or two moves, relying instead on 

perception, pattern recognition, and the use of heuristics. Chess, as it was played by humans, 

turned out to be an even more complex cognitive activity than was imagined by the early 

artificial researchers (Wagner and Scurrah, 1971). As a result, computer chess came to be 

seen as increasingly distinct from human chess (Peterson, 1997; Westphal et al., 2002; 

Searle, 1999). Computers played computer chess, and did it quite well, but chess as played 

by computers was not a game of much general interest. In terms of advancing a larger 

research agenda, chess – or at least chess as understood by the vast majority of chess-playing 

computers – was increasingly considered a dead-end for AI (Levinson et al., 1991; Schank, 

1991) Mikhail Donsky and Jonathan Schaeffer went so far as to refer to the rise to domi-

nance of the minimax approach as AI’s ‘fall from grace’, suggesting that it was ‘unfortunate 

that computer chess was given such a powerful idea so early in its formative stages’ 

(Schaeffer and Donskoy, 1989: 3). While blind searching through a decision tree might 

have been easy to implement, and while it scaled well with improvements in hardware and 

performed well in chess tournaments, it had limited applicability to other problem domains. 

The power of minimax had channeled research energy in computer chess into increasingly 
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narrow problem-specific solutions, to the point that Deep Blue computer has sometimes 

been described not so much as a chess-playing computer, but a playing-chess-against-Garry 

Kasparov computer.

For the growing number of critics of computer chess as a research agenda, the failure of 

chess to produce new theories of either computation or cognition suggested that chess was 

not, in fact, the drosophila that AI had hoped for. In recent years this dissatisfaction with the 

theoretical productivity of chess has led to renewed interest in a search for new experimental 

organisms. Of particular interest are Asian games such as Go, which are generally resistant 

to brute-force, Type-A solutions. Even the top rated Go-playing computers currently play 

at only the level of an advanced amateur, and the high level of branching in the decision 

tree for Go make minimax-based approaches largely irrelevant, even when combined with 

the most sophisticated techniques for alpha–beta pruning. Some researchers hope that alter-

native games such as Go might prove a more suitable experimental technology for producing 

theories in AI, which are more applicable to more general problem domains (Hendler, 2006; 

Müller, 2002). Others, such as Rodney Brooks, have argued that AI’s obsession with 

games – and not any particular game – is the more fundamental problem, and that the discipline 

needs to shift its focus from the manipulation of symbolic systems towards interaction with 

the physical environment (Brooks, 1990).

Conclusions

If, as many AI researchers appeared to believe, the primary measure of an experimental 

organism was its ability to produce fundamental theory, then chess was probably not the 

drosophila of AI. Despite the impressive productivity of the computer chess researchers, 

the research agenda that computer chess encouraged was simply too narrow to be sustain-

able. It was as if drosophila-based genetics research had never advanced beyond the 

mapping of the drosophila chromosome. Chromosome mapping was, of course, an impor-

tant contribution made by the drosophilists to genetics research, but as mapping techniques 

became increasingly routine, interest in drosophila stagnated. It was only with the intro-

duction of new wild varieties of drosophila into the laboratory, and the migration of the 

drosophilists out of it, that the drosophila was reinvented as an experimental technology 

for investigating population genetics. Computer chess had no such second act. Although 

attempts were made to introduce variation into the game (by changing the rules slightly 

to discourage brute-force approaches), computer chess continued to pursue the very nar-

row goals defined almost solely in terms of tournament victories (and, consequentially, 

dominated by brute-force search algorithms such as the minimax).

On the other hand, as historians of science well know, the significance of even the real 

drosophila is not so narrowly reductionist. Certainly one reason why Drosophila melanogaster 

was so central to the history of genetics was its role in the production of new theoretical 

insights – but equally important were the ways in which its lifecycle and natural history 

fit so conveniently into the social and cultural landscape of the contemporary genetics 

laboratory. As Robert Kohler’s work clearly reveals, the science and the organism were 

mutually constitutive: just as genetics as a science was reoriented around the theories and 
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methodologies most well-suited to the biology of the drosophila, drosophila as a species 

was reconfigured as a technology for producing new knowledge about complex physiologi-

cal or biological systems. And in the same way that genetic scientists transformed the wild 

and highly variable fruit fly into the standardized organism Drosophila melanogaster, 

physically reconstructing it to conform to the fundamental principles of genetic mapping 

(Kohler, 1994: 78), so too did AI researchers redefine how chess was played, and what it 

meant to be an ‘intelligent’ chess player. In this respect, the parallels between chess and 

drosophila are impossible to ignore. The history of AI, and of the cognitive sciences more 

broadly, is incomprehensible without reference to its primary experimental technology.

The shaping influence of computer chess on AI, cognitive science, and a series of related 

decision sciences is, of course, of immediate concern to historians of those disciplines. The 

more general lesson to be drawn from this story is methodological, not historical, and is 

more widely applicable. The most lasting insight of the work on drosophila in the history 

of science has been to reveal the close relationship between theory and practice, between 

researcher and subject, between organism and technology. The goal of this paper has been 

to explore similar relationships within the history of computing. It is a constant temptation 

when contemplating the pervasive presence of computers and computer-based technologies 

in our modern society, to regard them in the terms defined by the academic discipline of 

computer science. To a computer scientist, what is essential about a computer is that it is 

programmable (Mahoney, 2002). What is important is the software, not the machine, and 

software itself is generally seen as being uniquely, and almost infinitely, protean. Unlike 

traditional technologies, which need to be demolished or disassembled before than can be 

rebuilt or replaced, software can be rewritten using only a keyboard. As Lawrence Lessig 

(1999) has suggested, within the virtual worlds contained within a computer, code is the 

ultimate law. The fundamental literary nature of computer programming – software is, after 

all, in its most basic incarnation simply a series of written instructions – suggests that 

software systems are effectively ideas made incarnate, mere abstractions that can readily 

be modified to suit a changing social, technical, and intellectual environment. ‘The pro-

grammer, like the poet, works only slightly removed from pure-thought stuff’, famously 

declared the computer scientist Frederick Brooks: ‘He builds his castles in the air, from 

air, creating by exertion of the imagination’ (Brooks, 1975: 7).

But in working software systems, which include the heterogeneous environment in 

which computer code is necessarily situated, it is often impossible to isolate the artifact 

from its social, economic, and political context. Despite the fact that the material costs 

associated with building software are low (in comparison with traditional, physical systems), 

the degree to which software is embedded in larger socio-technical systems makes starting 

from scratch almost impossible. To the degree that writing software does resemble literary 

production, the product is less an original poem than a palimpsest. This was clearly true of 

the practitioners of computer chess: the durability of the minimax algorithm wedded the 

discipline to a very specific, and ultimately very narrow, technological trajectory. Despite 

the ease with which software systems can, in theory, be readily rewritten, breaking free 

from this established trajectory proved extraordinarily difficult. The emphasis on tourna-

ment play and spectacular man-versus-machine confrontations, which did much to generate 

enthusiasm for the discipline, also encouraged computer chess researchers to privilege 
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constant and incremental improvements (Bramer, 1978; Robinson, 1979). This meant an 

increasing investment in Type-A strategies built around the minimax algorithm and alpha–

beta pruning. No other technique could reliably deliver tournament victories. Minimax 

foreclosed other avenues of research, such as Type-B strategies that more closely mimicked 

the way in which human beings played chess. And although these Type-B strategies were 

more representative and more generalizable approaches to planning and cognition, they 

rarely produced machines that won tournaments. In theory computer chess researchers 

could pursue any number of software solutions to the problem of modeling human intel-

ligence; in practice, they almost invariably settled on minimax.

It is the extraordinary durability of the minimax algorithm that makes the history of chess 

as the drosophila of AI relevant and interesting to the larger history of science and technol-

ogy. Despite their seemingly intangibility, algorithms are anything but ephemeral or immate-

rial. Like all technological inventions, they are fundamentally human (and social) constructions, 

and as such embody and enable specific values, agendas, and possibilities. As the practice 

of science comes to rely more and more on the use of computers and computer-based tech-

nologies, the history of software will become as much a part of the history of modern science 

as instruments, laboratories, published papers, and social practices. It is essential, therefore, 

that we develop the tools and methodologies for studying software that incorporate an 

appropriate level of historical, sociological, and technological sophistication.

Notes

1. Kronrod would ultimately lose the directorship of the Institute because of complaints by physicists 

that he was squandering computer resources.

2. Although using science citation tracking is out-of-fashion in Science and Technology Studies as 

a measure of the influence of ideas, in this case some basic figures seem relevant. According to 

Neil Charness, the paper has been cited in the literature more than 981 times since 1973. A scientific 

paper is generally considered a classic if it is cited more than 200 times. By that standard, the 

Simon paper is an absolute blockbuster. See Charness (1992).

3. The Knight’s Tour required a player to ‘tour’ a single knight around the entire board, touching 

each position exactly one time.

4. AM Turing, letter to Jack Good, 18 September 1948, King’s College Cambridge Archive.

5. For example, a specific series of games played between Bobby Fisher and Boris Spassky in 1972 

could be codified via notation in the generalized opening theory known as the Poisoned Pawn 

Variation of the Najdorf Sicilian.
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