
Social Studies of Science

42(1) 5 –30

© The Author(s) 2011

Reprints and permission: sagepub.

co.uk/journalsPermissions.nav

DOI: 10.1177/0306312711424596

sss.sagepub.com

Is chess the drosophila
of artificial intelligence?
A social history
of an algorithm

Nathan Ensmenger
School of Information, University of Texas at Austin, Austin, TX, USA

Abstract
Since the mid 1960s, researchers in computer science have famously referred to chess as the

‘drosophila’ of artificial intelligence (AI). What they seem to mean by this is that chess, like the

common fruit fly, is an accessible, familiar, and relatively simple experimental technology that

nonetheless can be used productively to produce valid knowledge about other, more complex

systems. But for historians of science and technology, the analogy between chess and drosophila

assumes a larger significance. As Robert Kohler has ably described, the decision to adopt drosophila

as the organism of choice for genetics research had far-reaching implications for the development

of 20th century biology. In a similar manner, the decision to focus on chess as the measure of both

human and computer intelligence had important and unintended consequences for AI research.

This paper explores the emergence of chess as an experimental technology, its significance in the

developing research practices of the AI community, and the unique ways in which the decision to

focus on chess shaped the program of AI research in the decade of the 1970s. More broadly, it

attempts to open up the virtual black box of computer software – and of computer games in

particular – to the scrutiny of historical and sociological analysis.

Keywords
artificial intelligence, computing, drosophila, experimental technology

In 1965, the Russian mathematician Alexander Kronrod, when asked to justify the expensive

computer time he was using to play correspondence chess at the Soviet Institute of Theoretical

and Experimental Physics, gave an explanation both prescient and prophetic: it was essential

that he, as a premier researcher in the burgeoning new discipline of artificial intelligence

(AI), be allowed to devote computer time to chess because ‘chess was the drosophila of

Corresponding author:

Nathan Ensmenger, School of Information, University of Texas at Austin, 1616 Guadalupe Street, Suite 2.202,

Austin, TX 78701, USA.

Email: nathan@ischool.utexas.edu

424596 SSSXXX10.1177/0306312711424596EnsmengerSocial Studies of Science

6 Social Studies of Science 42(1)

artificial intelligence’.1 What exactly Kronrod meant by this dramatic pronouncement is

not entirely clear. In 1965 there was hardly much of a field of AI – the term itself had been

invented less than a decade earlier – and there were few computers available at this time

capable of playing anything resembling real chess. The M-20 computer at Kronrod’s institute

was one of the few that could. But Kronrod’s assertion that chess was, indeed, the drosophila

of AI quickly became part of the foundational lore of the discipline. The analogy was first

made in print by the Nobel-prize winning economist Herbert Simon in 1973, and by the

end of the decade the metaphor was appearing consistently in the literature. More recently,

the ‘chess as drosophila’ metaphor has been extended even further to encompass both AI

and cognitive science (Rasskin-Gutman, 2009; Simon and Chase, 1973).2

Regardless of how true Kronrod’s grand claim about the centrality of chess to AI research

might have been in 1965, within a few decades it had become undeniable reality. By all of

the measures of contemporary scientific practice, computer chess has proven to be an

enormously productive experimental technology. Hundreds of academic papers have been

written about computer chess, thousands of working chess programs have been developed,

and millions of computer chess matches have been played. It is a rare discussion of AI,

whether historical, philosophical, or technical, that does not eventually come around to

chess-playing computers (Collins, 2010; Hofstadter, 2005; Searle, 1999). Chess figures

prominently in the iconography of the discipline, as a quick tour of the book jackets of its

major literature will readily testify (Ekbia, 2008; Nilsson, 1998; Russell and Norvig, 2009).

The 1997 victory of the IBM Deep Blue computer over Garry Kasparov continues to be

celebrated as one of the pivotal moments in the history of modern computing. In the same

way that Drosophila melanogaster dominates the history (and, to a lesser degree, the

practice) of the genetic sciences, chess dominates AI (Bramer, 1978; Coles, 1994; Franchi,

2005; Franchi et al., 2005; McCarthy, 1997; Rasskin-Gutman, 2009; Robinson, 1979; Ross,

2006; Schaeffer and Donskoy, 1989; Wells and Reed, 2005).

But what exactly does it mean to suggest that chess is the drosophila of AI? The specific

meaning of the analogy has never been more than superficially elaborated. What most

practitioners seem to mean by claiming chess as the drosophila of AI is simply that computer

chess, like drosophila, represented a relatively simple system that nevertheless could be

used to explore larger, more complex phenomena. Herbert Simon, for example, described

chess as a standardized experimental ‘test-bed’ that could be used to explore various hypoth-

eses (Simon et al., 1992). In this reductionist interpretation of the history of the genetic

sciences, Drosophila melanogaster, like Mendel’s peas or Darwin’s finches, was significant

largely in its role as a controlled microcosm in which to develop the more sophisticated

techniques to solve more difficult and significant problems. Similarly, the choice of chess

was, for Simon and his fellow computer scientists, solely a function of its intrinsic technical

characteristics: chess was the ideal experimental technology for AI because it was both

simple enough to be able to formalize mathematically and yet complicated enough to be

theoretically interesting (Newell et al., 1958; Shannon, 1950).

It would be a poor historian of science indeed, however, who failed to see in any evo-

cation of drosophila the opportunity to ask questions of deeper analytical significance. As

the work of Robert Kohler and others remind us, the choice of an experimental organism

(or in this case, technology) is never an epistemologically neutral decision (Burian, 1993;

Kohler, 1994; Waters, 2004). Not only are such decisions often driven by practical as well

as intellectual factors – the ease with which the human-friendly drosophila adapted itself

Ensmenger 7

to the lifecycle and ecosystem of the laboratory meant that other, less opportunistic organ-

isms, such as neurospora, were relegated to the sidelines – but they often have long-term

implications for the research agenda of a discipline that are unexpected and perhaps even

undesirable. The widespread adoption of drosophila as the experimental organism of

choice for early 20th century genetics research, for example, meant that certain research

agendas, such as transmission genetics, became dominant, while others, such as embryol-

ogy, were neglected (Mitman and Fausto-Sterling, 1992). In a similar manner, the success

of computer chess, and in particular an approach to computer chess based on deep-tree

searching and the minimax algorithm, came to dominate mid 20th century approaches to

AI research, overshadowing other problem domains and techniques. Unlike drosophila,

however, and despite its apparent productivity as an experimental technology, computer

chess ultimately produced little in terms of fundamental theoretical insights.

This paper explores the role of computer chess in defining the identity and research

agenda of AI over the course of the previous half-century. The central argument is that

the decision to focus on chess as a representative measure of both human and computer

intelligence had important and unintended consequences for the discipline. In choosing

chess over its various alternatives, AI researchers were able to tap into a long tradition of

popular chess culture, with its corresponding technical and theoretical literature, interna-

tional networks of enthusiasts and competitions, and well-developed protocols for docu-

menting, sharing, and analyzing data. Yet the brute-force computational techniques that

proved most suitable for winning computer chess tournaments distracted researchers from

more generalizable and theoretically productive avenues of AI research. The rise to domi-

nance of minimax algorithm-based techniques in particular transformed chess from a

quintessentially human intellectual activity into an exercise in deep searching and fast

alpha–beta pruning (Marsland, 1991). As a result, computers got much better at chess,

but increasingly no one much cared.

The point of this paper is not to give a definitive answer to the question of whether or

not chess was the drosophila of AI. Like most such analogies, this one holds true in certain

circumstances but in others breaks down. To a certain degree, what matters historically

is not so much the fundamental legitimacy of the comparison, but how practitioners have

made use of it. AI researchers themselves first proposed the relationship between chess

and drosophila, and they mobilized this claim early and often in the self-construction of

their discipline. If for no other reason, computer chess is significant in the history of AI

because AI researchers believe it to be significant. But the real similarities between chess

and drosophila are also illuminating, as they suggest new approaches for thinking about

the computer sciences in terms of the larger history of the experimental sciences.

The history of computer chess has immediate relevance to historians of computing,

cognitive science, operations research, and decision theory, as well as to scholars interested

in the more general question of how experimental technologies shape scientific practice.

But this paper also has a larger, more theoretical agenda: it represents an attempt to situate

the history of computer software – as an object of historical inquiry quite distinct from the

history of the computer itself – within the larger context of the history of science.

Despite numerous calls from historians of computing for further study of the history of

software, software thus far has proven remarkably resistant to historical analysis (Campbell-

Kelly, 2007; Ensmenger, 2009; Hashagen et al., 2002; Jesiek, 2006; Mahoney, 2008).

8 Social Studies of Science 42(1)

In part, this is a reflection of the inherently amorphous nature of software: unlike the

computer itself, which is obviously and tangibly technological, software is generally invis-

ible, ethereal, and ephemeral. In many cases, it exists only as a unique – and temporary –

arrangement of digital bits buried deeply within a tiny microprocessor. Certain aspects of

software, such as sorting algorithms, can be generalized and formalized as mathematical

abstractions, while others remain inescapably local and specific, subject to the particular

constraints imposed by corporate culture, informal industry standards, or government

regulations. In this sense, software sits uncomfortably at the intersection of science,

engineering, and business. Software is where the technology of computing meets social

relationships, organizational politics, and personal agendas (Ensmenger, 2010). As a result,

software is difficult to situate historiographically. To the extent that the history of science

has engaged with the history of software, it has treated it as the intellectual history of

computer science. But in the real world, in order to transform ideas into action, software

must necessarily become embodied: even the simplest algorithms, when translated from

Platonic ideals into the specific forms required to operate specific computers, in specific

socio-technical environments, become clearly constructed technological artifacts. Software

encompasses not only computers, codes, algorithms, and ideas, but also people, practices,

and networks of interaction. In this sense, software development is perhaps the ultimate

expression of what the sociologist John Law has called ‘heterogeneous engineering’

(Ensmenger, 2009; Law, 1987).

And so this paper also represents an attempt to think seriously about software as a mate-

rial artifact; as a technology embedded in systems of practice and networks of exchange.

More specifically, it uses the history of the minimax algorithm, the computational equivalent

to the drosophila chromosome, to open at least partially the black box of software to the

light of historical and sociological inquiry. Buried deeply within most chess-playing computer

programs, rendered largely invisible by the literal black-box of a silicon-encased micropro-

cessor, the minimax algorithm can nevertheless be exposed to the scrutiny of historical and

sociological analysis. By revealing the social history of even the most seemingly straight-

forward applications of computer software (one of the many virtues of chess, after all, is

that it has unambiguous rules and well-established measures of success), this paper hopes

to exemplify a new approach to the history of software. Computer chess in this respect will

serve not as the drosophila of AI, but as the drosophila of the history of AI.

From Mechanical Turk to virtual fruit fly

The story of computer chess begins long before the invention of the first electronic com-

puters. The historical origins of the chess-playing machine – and of metaphysical specula-

tions about the relationship between mechanical chess and human intelligence – stretch

back well into the 18th century (Lohr, 2007; Standage, 2002). In 1770 the Hungarian

engineer Wolfgang von Kempelen constructed, as entertainment for the Empress Maria

Theresa, an Automaton Chess Player. Kempelen’s automaton, also known as the Mechanical

Turk (the humanoid portion of the machine was dressed in robes and a turban), could not

only play a strong game of chess against a human opponent, but could also solve certain

mathematical chess puzzles, such as the so-called Knight’s Tour.3

For 84 years the Mechanical Turk was exhibited throughout Europe, playing (and

defeating) such illustrious figures as Benjamin Franklin and Napoleon Bonaparte (and

Ensmenger 9

this despite the fact that Napoleon cheated). In 1783 it played a close game against

François-André Danican Philidor, widely considered by contemporaries to be the world’s

best human player. In 1818 an exhibition of the Turk, then owned by the aspiring mecha-

nician and musician Johann Mälzel, was visited in London by a youthful Charles Babbage,

who was reportedly entranced. After playing two games against the Turk, Babbage was

not only inspired to acquire his own automaton (albeit a dancer, not a chess player), but

also to sketch out his own plans for a chess-playing machine (New York Times, 1875;

Schaffer, 1996). He would later argue that chess was one of the compelling applications

for his (never-constructed) Analytical Engine (Babbage, 1864). In addition to inspiring

Babbage, the Turk also spawned numerous contemporary imitators, including the chess-

playing machines known as Ajeeb (‘The Egyptian’) and Mephisto (Jay, 2000).

The Mechanical Turk was not, in fact, an actual chess-playing machine, but rather an

elaborate hoax involving a hidden human player, an articulated mechanical arm, and a

series of magnetic linkages. But despite frequent attempts to uncover its secrets – including

an 1836 article by Edgar Allen Poe in which Poe transformed (some say plagiarized) a

contemporary exposé of Mälzel’s Automaton Chess Player and turned it into the model for

the modern detective novel – the Mechanical Turk largely retained its mysterious appeal

(Panek, 1976; Poe, 1836). It was not until the mid 20th century that a definitive account

of its inner workings was made public. In any case, the possibility, at least, of mechanical

chess remained a source of continual fascination, and was treated with serious attention by

engineers, futurists, philosophers, mathematicians, and cyberneticians (Ashby, 1952). In

1914, the Spanish engineer Leonardo Torres y Quevedo built the first actual chess-playing

machine, which was capable of king and rook against king endgames without any human

intervention (Randell, 1982).

The long-standing public fascination with chess-playing automata provides some context

for understanding the popular appeal of the chess-playing computer, and explains in part

why computer chess has played such a prominent role in the public presentation of AI

research. Automata in general problematized the boundary between the organic and the

artificial, and chess automata in particular raised questions about the distinctiveness of

human cognitive activities (Riskin, 2007; Sussman, 1999; Voskuhl, 2007). Chess was, in

this context, not just any game: the traditional province of kings (and scholars), chess had

long been recognized as the pinnacle of human intellectual accomplishment, requiring both

deliberate, carefully cultivated learning and strategy, as well as bold, creative, and coura-

geous flights of inspired brilliance. As such, chess-playing ability was widely considered

to be a strong indicator of more general intelligence. In fact, a broad range of thinkers,

from Goethe to Franklin, had made chess a metaphor for war, romance, politics, commerce,

sports, and just about every other complex human cognitive and social activity (Kasparov,

2007; Rasskin-Gutman, 2009; Shenk, 2006; Steiner, 1971).

Because chess was historically regarded as such an essentially human endeavor, the

ability of machines to play chess seemed to have fundamental metaphysical implications.

If a machine could emulate what was widely considered the summit of human intelligence,

namely the abstract reasoning associated with chess-playing ability, then was it not

possible that the essence, and not just the appearance, of humanity could eventually be

reproduced mechanically (Guterl, 1996; Husbands et al., 2008)? The frequent portrayal

of the first electronic computers as ‘giant brains’ made the connection between mind and

machine, exemplified by chess-playing computers, all the more obvious (Berkeley, 1949;

10 Social Studies of Science 42(1)

von Neumann, 1958; Yood, 2003). AI researchers would play explicitly on the broader

symbolic significance of chess. As Herbert Simon would famously declare in his 1973

defense of chess as drosophila, since chess was ‘the intellectual game par excellence’, by

devising a successful machine, ‘one would seem to have penetrated to the core of human

intellectual endeavor’ (Simon and Chase, 1973).

The specific origins of computer chess (as opposed to mechanical chess) are often traced

back to the mathematician Alan Turing. As early as 1946, Turing imagined a chess-playing

computer as one possible example of a ‘thinking’ machine (Turing, 1946), and there is

evidence that by 1948 he and his colleagues at the National Physical Laboratory were

discussing in very tangible terms a potential chess-playing machine.4 In 1953 Turing would

write the first chess-playing program (on paper, as no machine yet existed that could actu-

ally run his program), and much of Turing’s later speculations on the possibility of ‘machine

intelligence’ revolved around an imagined chess-playing computer (Turing, 1950, 1953).

But it was the mathematician Claude Shannon who wrote the very first article ever

published on the art of programming a computer to play chess. Like many subsequent

computer theorists, Shannon believed that chess was the ideal experimental technology for

AI because it was a) ‘sharply defined both in allowed operations (the moves) and in the

ultimate goal (checkmate)’ and b) ‘neither so simple as to be trivial nor too difficult for

satisfactory solution’ (Shannon, 1950). The discrete nature of chess – the fact that the posi-

tions on a chessboard could be easily described in terms of a simple 8 8 grid – also meant

that it was particularly compatible with the digital nature of modern electronic computing.

More significantly, however, since ‘chess is generally considered to require “thinking”’,

Shannon argued, ‘a solution to this problem will either force us to admit the possibility of

mechanized thinking or to further restrict our concept of “thinking”’ (Shannon, 1950). Like

many of his contemporaries, Shannon considered chess mastery to be an indicator of more

general human intelligence. It seemed to follow therefore that a computer that could play

chess was de facto intelligent – or at least capable of simulating a close approximation of

intelligence. (This neat side-stepping of long-standing metaphysical discussions about the

nature of the mind was characteristic of many AI researchers in this period.)

After briefly describing how a computer might represent internally the configuration

of positions on a chessboard, Shannon proposed several approaches to teaching it to play.

In theory, it would be possible to play a perfect game of chess, or to construct a machine

to do so, simply by following a relatively straightforward algorithm. Because chess is a

finite game, with a finite number of positions, each of which allows for a finite number

of moves, and because the rules of chess guarantee that every game must eventually end

in a win, draw, or loss, all of the possible combinations of moves and counter-moves (each

of which is technically known as a ‘ply’) can be laid out in advance as a branching tree

of decision points. By working backward from the end-points of this decision tree, the

optimal move for any given position could readily be computed. Other than the flip of the

coin that determined which player moves first, there are no random elements to a chess

match. Perfect information is available to both players at every step of the process. For

Shannon, therefore, chess was an entirely deterministic game: in theory, once a compre-

hensive decision tree was constructed, the outcome of any (and indeed every) possible

game could be calculated in advance. The ‘problem’ of chess could be then be considered

to have been solved conclusively.

Ensmenger 11

In practice, however, the perfect game of chess, while theoretically computable, is

effectively unattainable. The numbers involved in constructing even a partially complete

decision tree for chess quickly become astronomical – and intractable. Given an average

of 42 moves (84 plies) per game, with an average of 38 legal moves to consider per ply,

the typical master’s level chess match would require a total of 3884 (roughly 10134) positions

to be evaluated. Just to put this number (10134) into perspective, if every atom in the universe

(1075 of them) were a chess computer operating at the speed of Deep Blue (106 moves per

second), there still would not have been enough time since the Big Bang (1018 seconds) to

consider each of these combinations. Compared with such large numbers, even the expo-

nential growth in computer power promised by Moore’s Law ultimately proves insufficient.

The full decision tree simply has too many branches to evaluate. There is not, and will

never be, a comprehensive computational solution to chess.

Faced with the impossibility of calculating the combinatoric possibilities of an entire

chess game, computer chess programs must necessarily evaluate only a more limited number

of moves. Shannon himself proposed two potential solutions for ‘pruning’ the decision

tree. The most obvious solution was to reduce the total number of moves that a computer

was required to ‘look ahead’. This would make the overall decision tree to be evaluated

smaller and more manageable, and therefore more amenable to straightforward computa-

tional approaches. Shannon called this approach a ‘Type-A’ solution, and considered it to

be a brute-force method that did not accurately reflect the ways in which human beings

played chess. He much preferred a ‘Type-B’ solution that used sophisticated heuristics to

trim the decision tree by privileging certain branches over others. Like human grandmasters,

Type-B solutions would focus only on the most promising lines of analysis, and would

recognize in patterns of positions more general principles of play that would reflect a more

truly intelligent approach to the problem of chess.

The sharp distinction Shannon drew between these two very different approaches –Type-A

and Type-B – anticipated a debate that would soon emerge within the discipline about the

relationship between artificial and natural intelligence. The lines of debate were drawn

along a number of different axes, some philosophical, others pragmatic, but the central

dilemma hinged around the question of whether it was necessary for AI to simulate (and

therefore understand) natural intelligence, or whether it was enough simply to replicate its

functionality (Collins, 1990; Dreyfus, 1992; Searle, 1999). In other words, was it important

that intelligent machines ‘think’ like humans, or was it sufficient that their behavior appeared

to be intelligent? Or to put it in terms of computer chess, does a computer that plays chess,

no matter how skillfully, ever truly ‘understand’ chess, and does it matter one way or

another? While this might seem at first to be a purely metaphysical distinction, the implica-

tions for both the computing and the cognitive sciences are significant: at stake are a set

of fundamental distinctions between the class of problems whose knowledge domains are

explicit (and therefore potentially comprehensible to a computer) and those whose knowl-

edge domains are tacit (and therefore difficult, if not impossible, to automate) (Brooks,

1990; Collins, 2010).

But while Shannon clearly favored the mimetic, Type-B approach to machine intelli-

gence, his paper described in detail only a functional Type-A solution, a brute force approach

built around the so-called minimax algorithm. Although Shannon believed that his, like all

other Type-A solutions, was doomed to be ‘both slow and a weak player’, in practice his

12 Social Studies of Science 42(1)

minimax approach proved unexpectedly powerful, and durable. Because the minimax

algorithm was relatively simple and easy to understand, it could be quickly and readily

implemented on a broad range of computer machinery. Its performance scaled linearly with

improvements in the underlying hardware. It was an algorithm that was amenable to tinker-

ing and remarkably resilient to programming errors. And, perhaps most importantly, minimax

played a pretty decent game of chess. As a result, the minimax approach disseminated

quickly and widely throughout the emerging computing community. By the end of the

1960s, minimax so dominated computer chess competitions that all other approaches were

effectively abandoned. By providing a well-defined solution (minimax-based computer

chess) to a poorly defined problem (machine intelligence), Shannon’s concrete and authori-

tative answer foreclosed for the time being any discussion about the underlying nature of

more fundamental questions.

How a computer sees a chess game

To understand the significance of the minimax algorithm in the subsequent history of AI,

it is necessary first to understand how a computer ‘sees’ a chess game.

To begin with, the computer must be programmed with a numeric representation of the

positions on the board. Fortunately for the early computer chess researchers, by the begin-

ning of the 20th century there were already well-established systems for describing and

recording chess games. The most widely used was the algebraic chess notation, which used

a unique letter–number pair to identify each square of a chessboard. In algebraic notation,

vertical files were labeled a–h, and horizontal ranks 1–8. Individual pieces were labeled

with an uppercase letter (in English, for example, K for king, Q for queen, B for bishop,

and so on), and moves were designated by a combination of piece and position. The nota-

tion Be5, for example, indicated that a move by a bishop to file e and rank 5. Which bishop

was moved depended on context and the column in which the move was noted (left column

is white, right column black).

Although most computers did not use algebraic chess notation as their internal repre-

sentation of the board, the fact that most human players were already familiar with symbolic

representations of chess made the transition between real and virtual chessboards much

easier. The specific internal implementation mattered little; what was important was that

the widespread use of notational systems meant that computer chess researchers had avail-

able to them an enormous amount of data – historical matches, opening books, end-game

solutions, puzzles, and post-game analysis – already translated into convenient, machine-

readable form. The use of chess notation to transform ephemeral local performances into

structured data allowed for the accumulation and codification of chess knowledge.5 The

widespread adoption of systems of chess notation also made it possible to play chess at a

distance: the combination of notational systems, communications networks, and protocols

for correspondence chess provided a context for the first man-versus-computer chess

tournaments, since the practice of playing chess against an unseen (and unknowable)

opponent had already been well developed.

In any case, once a computer has been provided with an internal representation of a

chessboard and a system for determining which legal moves are available to a given piece

in a given position, the process of constructing a decision tree can begin.

Ensmenger 13

Consider, for example, the two popular opening moves e4 and d4, which represent two

possible options for the first ply of a hypothetical game (see Figure 1).

In order to evaluate the relative strength of these two moves, the computer first gener-

ates a set of possible responses by black. These responses would represent the second

ply. In practice, the moves to be considered in the second ply would generally include

only a subset of all the possible legal moves as determined by a ‘plausible move genera-

tor’. The development of sophisticated plausible move generators was the key to Shannon’s

Type-B solutions, but even in Type-A solutions they are used (in much simplified form)

to reduce the total number of moves to be considered. The plausible move generator is

one of several components of minimax algorithm that were subject to constant experi-

mentation by enthusiasts.

The subset of plausible moves generated for the first and second plies is then arranged

into a decision tree, with each branch representing one possible combination of moves

and counter-moves (see Figure 2). The tree can be grown as needed simply by using the

plausible move generator to compute additional plies. The practical limit of the tree

depends on the available hardware; the Deep Blue computer, for example, evaluated a

tree that contained on average 17 to 18 plies.

Once a decision of the desired depth has been constructed, a numeric score is assigned

to the terminal node of each branch using an evaluation function. The evaluation function

attempts to rank the relative strength of the various final positions represented by the

terminal nodes. Most evaluation functions make use of some combination of the number

of pieces remaining and the strategic value of certain positions on the board to provide a

relative rank for each outcome. In general, positive numbers are used to represent posi-

tions favorable to white and negative numbers for positions favorable to black.

In a complete decision tree that traced all of the possible branches to their ultimate con-

clusion, the construction of the evaluation function is trivial: each match would conclude

with either a win, loss, or a draw. Such comprehensive trees are typically only computation-

ally feasible in the end-game; for practical reasons, most decision trees are necessarily

incomplete. For such partial trees, developing an evaluation function is much more compli-

cated, because it must incorporate some method for evaluating the relative strength of each

position, without reference to some known final conclusion. There is no single, optimal

Figure 1. The King’s Pawn (d4) and Queen’s Pawn (e4) opening sequences are common and
well documented in chess books.

14 Social Studies of Science 42(1)

technique for ranking relative positions: the construction of a robust evaluation function is

more of an art than a science, and as such, provides endless opportunities for tinkering.

One common technique used to develop an evaluation function is to assign each piece

remaining on the board a numeric value: 1 point for a pawn, 3 points for a knight or bishop,

5 points for a rook, and 9 points for a queen, an effectively infinite number of points for

the king. Other points might be rewarded for pieces that controlled tactically significant

positions. Although all such evaluations were inherently subjective, workable techniques

for ranking positions and outcomes were already well developed by the 1950s to facilitate

chess learning and analysis by human players. This is yet another example of how the

cultural history of chess made it an ideal experimental technology: computer chess research-

ers were able to leverage of the vast body of preexisting technique and literature that was

both quantitative and analytical without being deterministic (van den Herik et al., 2002).

The fact that most branches of a decision tree do not culminate in an objectively measur-

able outcome (win, loss, or draw), meant it was always possible that the application of a

given evaluation function would produce an outcome that was locally but not globally

optimal – meaning that the outcome represented what appeared to be a strong position, but

in the long term produced a losing outcome. This is known as the ‘horizon effect’. Given

the limits on the depth of the search tree, it is always possible that just over the horizon – the

next, un-evaluated move, for example – might lie a looming disaster. To a certain degree,

the horizon effect is similar to the problem of optimization in mathematics: although it is

usually possible to determine local extrema (maxima and minima) for a given function,

determining whether these are also global extrema is often analytically impossible. There

are strategies and heuristics than can be used to assure the likelihood that a local solution is

also a global optimum, but they are never infallible. Techniques for identifying how far over

the horizon to pursue stable position solutions, also known as quiescence search, represented

one of the few aspects of the minimax approach to computer chess not susceptible to mechani-

cal solution (see Figure 3). As such, quiescence search served as a site of innovation and

experimentation.

It is important to note that the development of the evaluation function is the only aspect

of implementing the minimax approach to computer chess that requires any substantial

Figure 2. A truncated decision tree for the opening moves e4 and d4 with the evaluation
function applied to the terminal leaves.

Ensmenger 15

chess ability or knowledge. The remaining steps of the algorithm were entirely mechanical.

There is some evidence, in fact, that the less the computer ‘knew’ about chess, the better

it performed (Schaeffer and Donskoy, 1989). This made the minimax approach exemplified

by computer chess very different from other approaches to AI, such as rule-based expert

systems or Bayesian statistics-based inference engines, which emphasized domain-

specific knowledge. Computerized chess-machines might act intelligently, but they were

intrinsically (and perhaps even necessarily) ignorant.

Once the decision tree is constructed and the evaluation function used to apply a numeric

ranking to each of its terminal nodes (or ‘leaves’), the application of the minimax algorithm

is essentially mechanical. Only the terminal nodes needed to be evaluated, as the minimax

algorithm itself would fill in all the intermediate nodal values, saving both time and process-

ing power. Beginning at the terminal nodes, the algorithm works backward through the

decision tree, assigning optimal values to each decision branch by alternatively maximizing

or minimizing the outcome. If a decision point at a given level of the tree (for example, ply x)

represents a move for black, the algorithm assumes that the player will always follow the

branch that minimizes the score at the subsequent node (ply x 1). The white player, con-

sidering the set of branches earlier in the decision tree (ply x–1), would therefore know that

the maximal outcome possible at that level is limited to the minimum of the level above. At

each branch black will minimize, and white will maximize. By alternating between maxi-

mizing and minimizing strategies at each level of the decision tree, and ‘backing up’ these

optimal outcomes to the previous branch level, the entire tree can be populated quickly and

efficiently with numeric rankings. This is an entirely mechanical process that does not require

the application of the computationally expensive evaluation function: the ranking of each

node is determined by the optimum response (for the opposing player) at the following level.

Once all of the rankings have been assigned, the first player to move (in this case white)

would simply walk through the tree, maximizing and minimizing alternatives. Given a

Figure 3. The Horizon Effect: White has a win in 10 moves, but a search depth of less than 20
plies will fail to reveal it. Example, with permission, from Brudno (2000).

16 Social Studies of Science 42(1)

well-defined decision tree with unambiguous numeric rankings at the terminal nodes, and

two players each with access to full information (a characteristic feature of chess – as

opposed to, say, poker) the entire decision-making process can be reduced to a simple

search process whose effectiveness relies almost solely on the brute force application of

computational power. More significantly, the performance of the minimax search algorithm

scales linearly with processing power. Build a faster computer, and you automatically

have a better performing chess machine.

The multiple virtues of minimax

Although Claude Shannon published his important early paper on computer chess in 1950,

it was not until 1957 that the first working chess program was implemented. There was a

brief period of experimentation with alternatives to the Type-A minimax algorithms. For

example, IBM programmer and chess player Alex Bernstein pursued a selective pruning

Type-B strategy. However, the minimax algorithm soon emerged as the dominant approach

to computer chess (Bernstein and Roberts, 1958). In 1958, Allan Newell, Herbert Simon,

and Clifford Shaw modified the minimax algorithm to include a technique called alpha–

beta pruning (which appears to have been invented simultaneously by at least several others,

including John McCarthy). This program allowed entire branches to be quickly eliminated

from the search process. The combination of the minimax algorithm with the alpha–beta

pruning technique significantly reduced the total number of branches of the decision tree

that need to be considered, which made it possible to play chess on almost any computer,

including the earliest microcomputers. It also made the minimax algorithm faster, more

robust, and generally more powerful than its competitors. After the Chess 4.0 program,

which was based on minimax and alpha–beta pruning technology, won the first Association

for Computing Machinery (ACM) computer chess championships in the early 1970s,

alternative Type-B approaches were almost completely abandoned.

Many features of the minimax algorithm made it particularly well-suited to the applica-

tion of computer chess. To begin with, it was easy to understand and to program, even on

(when viewed with hindsight) primitive and low-powered equipment. The Microchess

program, for example, written by Peter Jennings in 1976 for the MOS Technology 6502

microprocessor, could fit into a mere 1024 bytes of memory. The relative ease with which

the minimax algorithm could be implemented allowed chess programs based on it to dis-

seminate rapidly throughout the electronic computing ecosystem. Like a hardy weed or

the adventurous fruit fly, the minimax algorithm was a fit competitor in many environments.

And once established, it proved difficult to replace or eradicate.

In addition to being easy to program, the performance of the minimax algorithm scaled

linearly with improvements in hardware. This meant that every improvement in computer

hardware translated directly into faster, more powerful chess engines. With each new

generation of computer hardware, chess systems based on the minimax algorithm became

immediately, impressively – and above all measurably – better. This is not true of every

computer algorithm, much less of every approach to AI. Compared with their competitors,

researchers in computer chess were able to demonstrate constant progress, no small con-

sideration for a field that generally failed to live up to its audacious claims and predictions.

Every year minimax-based chess programs would win more tournaments and defeat more

highly ranked human players.

Ensmenger 17

The minimax algorithm also allowed for easy tinkering. Not only was it simple to imple-

ment, but it also was resilient to errors. In other words, it was easy to modify but difficult

to break. Chess programs built around minimax were inherently modular, meaning that

their component parts were relatively independent of one another. Once the basic minimax

algorithm was up and running, the other elements of the system – the evaluation function,

the plausible move generator, and the quiescence search – could be isolated with ease and

experimented upon. The evaluation function was a particular site of much innovation, and

incremental improvements drawn from chess theory, historical matches, or personal experi-

ence were relatively simple both to implement and test. The quiescence search, which

helped alleviate the risks of the horizon effect, was similarly amenable to experiment and

improvement. The plausible move generator proved more resistant to fundamental innova-

tion, but nevertheless allowed for small, incremental improvements without threatening

the stability of the larger system.

Finally, the minimax algorithm worked. The technique of deep searching in a decision

tree proved effective when applied to the problem of computer chess. Although it would

take decades before computers could approach the level of play achieved by the very best

human players, even the early systems played a respectable game. Like Bridges’ and

Sturtevant’s early chromosomal maps of Drosophila melanogaster, chess programs based

on the minimax algorithm were over-simplifications of reality. However, they were rela-

tively easy to develop, provided clear value, and over time could be consistently refined

and improved. It is no coincidence that the first published claim that chess was the dro-

sophila of AI appeared just as the practice of computer chess stabilized around the minimax

algorithm.

Cultures of chess and computing

Although the multiple virtues of the minimax algorithm explain much about why minimax

quickly became the dominant approach to computer chess, they do not, in and of themselves,

explain how and why computer chess came to be seen as the drosophila of AI. Most of the

earliest computer chess researchers justified their choice of experimental technology on

the basis of its internal characteristics: according to them, chess was ideal because it was

a simple game with straightforward rules that could be readily formalized. And it is true

that, unlike other AI research agendas at the time (such as machine translation), chess

provided a well-defined problem domain, with unambiguous rules and clear objectives and

measures of success. But chess was not the only game in town with these particular virtues,

as early flirtations by AI researchers with alternatives such as checkers, Nim, and Go made

apparent. The choice of any of these (particularly Go) might have shaped the research

agenda of the discipline in a very different direction (Brown, 1979; Dowsey, 1973; Schaeffer,

2001). Chess did have some unique advantages over its competitors, but these were not

necessarily inherent in the structure of the game. Its ultimate triumph has to do with very

specific material and social practices that had developed around chess over the course of

the previous century. Again, consider Robert Kohler’s explanation for the rise to dominance

of the actual drosophila: although the specific characteristics of the drosophila genome

were significant, so too were the features of the species and its lifecycle that fit well within

the academic environment and culture. It was the combination of organism, culture, and

practice that made drosophila so successful. So too with computer chess.

18 Social Studies of Science 42(1)

One obvious advantage of chess was that it was well-known and popular. This was not

true of alternatives such as Go, which despite being one of the most ancient of board games,

was not widely played outside of Asia. Perhaps more significantly, however, chess was

also generally recognized as a complex, creative game that required strategy and planning;

thus, the ability to play good chess was widely considered to be a strong indicator of more

general intelligence. Chess was a prestigious activity, long associated with intellectuals,

artists, and individual genius, as well as a grand metaphor for other complex human cogni-

tive and social activities (Kasparov, 2007; Shenk, 2006; Steiner, 1971; Rasskin-Gutman,

2009). The presumed broader significance of chess made it particularly symbolic for AI

researchers: recall, for example, Herbert Simon’s claim that ‘if one could devise a success-

ful chess machine, one would seem to have penetrated to the core of human intellectual

endeavor’ (Simon and Chase, 1973). Because chess was historically regarded as such an

essentially human endeavor, the ability of machines to play chess seemed to have funda-

mental metaphysical implications.

Chess also happened to be a game with a unique and idiosyncratic historical association

with mathematics and computing. Many of the mathematicians who worked on computer

chess, including Turing and Shannon, were avid amateur players. And as I have written

about elsewhere, chess-playing ability has long been associated with programming ability

(Ensmenger, 2010). Many of the early advertisements for programming positions empha-

sized chess and musical aptitude, and several of the IBM Corporation’s earliest programmers

were chess players, including one US Open Chess champion. ‘Look for the chess player,

the solver of mathematical puzzles’, advised one representative contemporary article on

the selection of computing personnel (O’Shields, 1965). Throughout the 1950s and 1960s

the ability to play chess was embodied early on in the hiring practices of the computer

industry through the use of aptitude tests and personality profiles, and so many computer prac-

titioners brought with them an interest in the game that it quickly became self-perpetuating.

It was simply assumed within this community that chess mastery was synonymous with

generalized intelligence.

The existence of an extensive body of historical and theoretical literature on chess also

greatly facilitated its adoption by computer enthusiasts. This was made possible by, and

encouraged the standardization of, a comprehensive system of symbolic notation that

allowed chess researchers to ‘seed’ their system with reliable data, and to validate its per-

formance against a wide variety of opponents and situations. Books of standard chess

openings could be stored as pre-computed solutions to the most common early sequences

of moves, for example, and popular end-game puzzles could be used to prove the effective-

ness of quiescence search algorithms. Any modifications made to a chess engine could be

quickly tested against the standardized sequences of historical games and puzzles. In addi-

tion, well-established systems of chess notation facilitated the development of protocols

for playing correspondence chess and other forms of chess-at-a-distance. The popularity

of correspondence chess accustomed players to playing remotely against unseen, unknown

opponents separated in space and time. This familiarity with playing chess by mail (and

wire) smoothed the eventual transition to playing chess against a computer opponent.

In addition to systems of notation, the chess community had established by the middle of

the 20th century a well-developed system for ranking the relative strength of its players.

During the 1950s this was the Harkness system. By the 1960s, the Elo rating system, named

Ensmenger 19

after the Hungarian-born physicist Arpad Elo, had been formally adopted by the US Chess

Federation. The details of these systems are irrelevant. What matters is that they provided

clear numerical benchmarks for measuring performance and improvement. Against such

benchmarks, it was possible for computer chess programs to make continual and measurable

progress – a clear advantage that chess had over other problem domains in AI research, where

such unambiguous measures of performance were generally not available. In science, as in

other disciplines, success speaks volumes and, given the larger context in which AI found

itself in the late 1960s and 1970s, the ability of computer chess programs to demonstrate

continual and convincing progress, often in sensational fashion, helped elevate computer

chess to its paradigmatic status as the experimental technology of AI. There were no equivalent

accomplishments for researchers working on natural language processing or deductive rea-

soning programs. In terms of public perceptions of success, at least, chess was clearly king.

These numeric systems of ratings were enabled and reinforced by an extended network

of chess tournaments that regularly took place throughout the world. Chess tournaments

provided forums for players to establish their reputations and improve their ratings. They

had well-developed protocols for determining winners and resolving disputes, and provided

a community of practitioners that encouraged both competition and cooperation (Peterson,

1983). Chess tournaments enabled enthusiasts to cultivate their skills, validate their experi-

ences and obsessions, and share information. Human chess tournaments became the model

for the first computer chess tournaments, the very first of which were held in the mid 1960s

(see Figure 4). By the late 1960s computers were able to cross over into the conventional

Figure 4. Scoreboard, ACM National Computer Chess Competition, 1979. Courtesy of the
Computer History Museum.

20 Social Studies of Science 42(1)

chess tournament circuit, and in 1967 the MacHack Six, a system developed by Richard

Greenblatt and others at MIT, became the first computer to defeat a human player in official

tournament play (Greenblatt et al., 1967; Levy, 1976).

Computer chess tournaments also served as a form of public spectacle. From the earli-

est origins of computer chess, chess matches between human and computer have been

sensationalized as the ultimate embodiment of The Clash Between Men and Machine.

The public staging of these matches capitalized on the dramatic conventions of the tradi-

tional chess tournament, including, in at least one case, formal evening wear (at least on

the part of the human opponent). AI enthusiasts made the most of such performances.

When the MIT philosopher Hubert Dreyfus (1965) mocked the limitations of contemporary

chess engines (one of which had recently been defeated by a 10-year-old human opponent)

in his sweeping critique of AI, AI researchers staged a match between Dreyfus and the

state-of-the-art MacHack program. Dreyfus, who never claimed to be skilled player, was

soundly defeated. ‘A Ten Year Old Can Beat the Machine–Dreyfus: But the Machine Can

Beat Dreyfus’ triumphed the Bulletin of the Association of Computing Machinery’s Special

Interest Group in AI, and the so-called ‘Dreyfus affair’ was widely mobilized to deflect

criticism of the discipline (McCorduck, 1979). The fact that Dreyfus himself was defeated

by a computer was irrelevant to his larger critique, but made for compelling rhetorical

theater (Koschmann, 1996; Papert, 1968; McDermott, 1976). The establishment in 1980

of the Fredkin Prize, which offered a US$100,000 bounty to the first computer program

capable of beating a reigning world chess champion, would only accelerate this narrow

focus on building machines that could defeat people.

The drama of the computer chess tournament played particularly well in the Cold War

context. The very first game played between competing computer systems pitted the

McCarthy–Kotok program against a Soviet system developed by Alexander Kronrod at

Soviet Institute of Theoretical and Experimental Physics. Against the backdrop of the

early 1970s confrontation between Bobby Fisher and Boris Spassky, the showdown between

American and Soviet computing technology assumed a particular salience (Johnson, 2007;

Schonberg, 1981). Throughout the 1960s and 1970s, international tournaments were held

pitting American computers against their Soviet counterparts, both human and machine

(Wall Street Journal, 1978) (see Figure 5). The culmination of this series would, of course,

be the ultimate defeat of World Chess Champion Garry Kasparov by the IBM Deep Blue

computer. Not only would such showdowns raise the profile and enhance the reputation

of AI researchers; but they would also reinforce the association between human and

machine cognition, at least as it applied to chess-playing ability.

Even without the Cold War theatrics, the computer chess tournament provided an

opportunity for AI researchers to publicly demonstrate consistent and impressive progress.

This was particularly valuable in the late 1970s, when the publication of the highly critical

Lighthill Report by the British Research Council led to a reduction of funding for AI

research worldwide (Crevier, 1992). Tournaments provided regular contact with a pas-

sionate community willing to tinker with and cultivate new technologies. This relationship

proved particularly productive after the development of microcomputer technology in the

late 1970s made it possible for thousands of amateur computer enthusiasts to make an

additional hobby out of computer chess. The scalability of the minimax algorithm meant

that even the most anemic microcomputers could play computer chess (in fact, chess was

Ensmenger 21

often one of the few ‘real’ applications that these microcomputers could manage). The

version of Microchess that Peter Jennings wrote for the Commodore, Apple II, and Atari

line of microcomputers was the first microcomputer package to sell more than 50,000

copies. The culture of mutual encouragement and code-sharing that characterized many

of the early ‘homebrew’ computer clubs mirrored the similarly open ethos on the part of

chess aficionados. The norms and practices of both communities encouraged tinkering

and the voluntary dissemination of information. Variations of the minimax-based computer

chess programs traveled quickly and easily within this hospitable environment, and by

1977 the first International Computer Chess Association was established. Over the course

of the next several decades, hundreds of microcomputer-based chess programs were

developed by both amateurs and professionals.

Game over?

From a purely pragmatic perspective, it is easy to see why AI researchers so enthusiasti-

cally embraced chess as their discipline’s drosophila. The link between the ancient game

of chess and the novel technology of electronic computing had proven productive from

the very beginning. Within just a few years of the coining of the term ‘AI’ (at the 1956

Dartmouth Conference), one of its leading proponents, Herbert Simon, had elevated chess

to the top of the disciplinary research agenda. Although Simon’s bold prediction that

‘within ten years a digital computer will be the world’s chess champion’ was seen at the

time as being wildly optimistic, within 50 years AI had achieved this defining accomplish-

ment (Newell et al., 1958). Especially when compared with other areas of AI research,

many of which had failed to develop, computer chess appeared to be an almost unalloyed

success. By the early 1980s the Cray Blitz had achieved master status; in 1988 the com-

puter Deep Thought became the first computer to defeat a human grandmaster in a tourna-

ment; and on 11 May 1997, the IBM Deep Blue computer triumphed over the world chess

champion Garry Kasparov, then (and now) the highest rated human player of all time.

Figure 5. Chess diplomacy, Wall Street Journal (1978).

22 Social Studies of Science 42(1)

The dramatic victory of the Deep Blue over Kasparov would seem to represent an incon-

trovertible validation of the legitimacy of the computer chess approach to AI (Bloomfield

and Vurdubakis, 2008; Hamilton, 2000; Newborn, 2003). The match bore all the hallmarks

of what by then had become the standard modus operandi of computer chess research: a

carefully staged (and well-publicized) showdown between man and machine; huge cash

prizes (US$700,000 for the winner; US$400,000 for second place); and grand claims made

about the supposed relationship between chess ability and general intelligence. Kasparov,

who had a long history of playing against computers, was perhaps the ideal opponent for

Deep Blue. In the years between 1986 and 2005, Kasparov was almost continuously ranked

as the world’s number one player, a record nearly three times as long as that of his closest

rival, Anatoly Karpov. A more worthy opponent for Deep Blue – and a more definitive test

of its abilities – could scarcely be imagined. And when, in game six of a six-game match,

Deep Blue forced Kasparov to resign after just 19 moves, the aspirations of Herbert Simon

and his fellow computer chess enthusiasts appeared to have finally been realized.

But after the initial flurry of sensationalist coverage in the popular press (Kasparov’s

defeat represented ‘The Brain’s Last Stand’, according to the cover of Newsweek on 5 May

1997, and the book jacket of a popular book by computer scientist Monty Newborn (2003)

declared it ‘not just a triumph, but a rare, pivotal watershed beyond all other triumphs:

Orville Wright’s first flight, NASA’s landing on the moon’), questions began to emerge

about what, if anything, this apparently ultimate accomplishment actually signified.

Certainly Deep Blue was a symbol of the remarkable progress made in computer tech-

nology over the previous four decades: the 30 processors that formed the heart of the

machine were capable of 11,380,000,000 floating point operations per second, making it

one of the top 300 supercomputers in the entire world at the time. Each processor contained

16 customized chips designed to perform chess-specific functions such as move generation

and position evaluation. Running on these 30 parallel processors (a total of 480 customized

chips), the minimax algorithm used by Deep Blue was capable of evaluating 200 million

positions per second (which translated into an average search depth of six to eight moves).

But was all this power proof of the existence of true AI? IBM had spent millions of

dollars on Deep Blue, a machine that only played a grand total of six games (too few to

even gain it an Elo rating) against a single opponent before it was dismantled. In fact, the

machine was disassembled immediately after its narrow victory over Garry Kasparov,

and its internal workings have never been revealed to the satisfaction of the research

community – an important but unintended consequence, perhaps, of the competitive

tournament system and the increasing reliance on cash prizes to fund system development.

In any case, to many observers, Deep Blue’s brute force approach to computer chess – along

with its narrowly specialized ‘Kasporov Killer’ techniques – was too single-minded to

suggest any meaningful general intelligence (Aleksander, 2001; Ekbia, 2008). ‘My God,

I used to think chess required thought’, reflected the noted cognitive scientist Douglas

Hofstadter in response to the Deep Blue victory: ‘Now, I realize it doesn’t. It doesn’t mean

Kasparov isn’t a deep thinker, just that you can bypass deep thinking in playing chess, the

way you can fly without flapping your wings’ (quoted in Weber, 1996). In a 1997 response

to the Deep Blue victory published in the journal Science, John McCarthy, the founding

father of both AI and competitive computer chess, publicly lamented the degree to which

computer chess had been led astray by the will-o-wisp of tournament victories: ‘Computer

Ensmenger 23

chess has developed much as genetics might have if the geneticists had concentrated their

efforts starting in 1910 on breeding racing Drosophila. We would have some science, but

mainly we would have very fast fruit flies’ (McCarthy, 1997: 1518).

At the heart of McCarthy’s critique is the perception that, although computer chess was

productive in that it encouraged constant experimentation, it produced no new theories –

either about human cognitive processes or theoretical computer science. In their influential

1958 paper arguing for the centrality of chess in the study of machine-based intelligence,

Herbert Simon and Allen Newell had stressed that it was essential not only that the computer

made good moves, but that it made them for the right reasons. Computer chess was, for

Simon and Newell, valuable only to the degree that it represented a ‘deliberate attempt to

simulate human thought processes’ (Newell et al., 1958). This lofty goal was soon aban-

doned in the quest to build stronger tournament performers. Other than making incremental

improvements to the minimax algorithm, computer chess failed to deliver on its larger

promise as a tool for exploring the underlying mechanisms of human intelligence. The

sociologist Harry Collins (2010: 108) has called the triumph of chess-playing computers

a ‘hollow victory’, in that it caused AI to stray from its original focus on directly modeling

human intelligence. According to these and other critics, the lofty original goals of AI,

which were to mimic general intelligence, had been increasingly narrowed by the discipline’s

investment in computer chess, and in particular an approach to chess that emphasized deep

searching through a decision tree using the minimax algorithm (Kasparov, 2010; Nareyek,

2004). And so, even as chess-playing computers were reaching the highest levels of human

accomplishment, the choice of chess began to be seen as limiting rather than productive

(Hedberg, 1997; Horgan, 1999; Munakata, 1996)

The problem with chess, however, was not so much the game itself, but rather the par-

ticular way in which the game had come to be defined by the minimax algorithm. The way

in which a minimax-based machine plays chess is not at all like the way a human plays

chess; in many respects, the two are playing an entirely different game. If anything, the

brute-force approach to computer chess highlighted the growing divide between AI and

the human cognitive sciences. A growing body of research on human chess players indicated

that human players rarely thought ahead more than one or two moves, relying instead on

perception, pattern recognition, and the use of heuristics. Chess, as it was played by humans,

turned out to be an even more complex cognitive activity than was imagined by the early

artificial researchers (Wagner and Scurrah, 1971). As a result, computer chess came to be

seen as increasingly distinct from human chess (Peterson, 1997; Westphal et al., 2002;

Searle, 1999). Computers played computer chess, and did it quite well, but chess as played

by computers was not a game of much general interest. In terms of advancing a larger

research agenda, chess – or at least chess as understood by the vast majority of chess-playing

computers – was increasingly considered a dead-end for AI (Levinson et al., 1991; Schank,

1991) Mikhail Donsky and Jonathan Schaeffer went so far as to refer to the rise to domi-

nance of the minimax approach as AI’s ‘fall from grace’, suggesting that it was ‘unfortunate

that computer chess was given such a powerful idea so early in its formative stages’

(Schaeffer and Donskoy, 1989: 3). While blind searching through a decision tree might

have been easy to implement, and while it scaled well with improvements in hardware and

performed well in chess tournaments, it had limited applicability to other problem domains.

The power of minimax had channeled research energy in computer chess into increasingly

24 Social Studies of Science 42(1)

narrow problem-specific solutions, to the point that Deep Blue computer has sometimes

been described not so much as a chess-playing computer, but a playing-chess-against-Garry

Kasparov computer.

For the growing number of critics of computer chess as a research agenda, the failure of

chess to produce new theories of either computation or cognition suggested that chess was

not, in fact, the drosophila that AI had hoped for. In recent years this dissatisfaction with the

theoretical productivity of chess has led to renewed interest in a search for new experimental

organisms. Of particular interest are Asian games such as Go, which are generally resistant

to brute-force, Type-A solutions. Even the top rated Go-playing computers currently play

at only the level of an advanced amateur, and the high level of branching in the decision

tree for Go make minimax-based approaches largely irrelevant, even when combined with

the most sophisticated techniques for alpha–beta pruning. Some researchers hope that alter-

native games such as Go might prove a more suitable experimental technology for producing

theories in AI, which are more applicable to more general problem domains (Hendler, 2006;

Müller, 2002). Others, such as Rodney Brooks, have argued that AI’s obsession with

games – and not any particular game – is the more fundamental problem, and that the discipline

needs to shift its focus from the manipulation of symbolic systems towards interaction with

the physical environment (Brooks, 1990).

Conclusions

If, as many AI researchers appeared to believe, the primary measure of an experimental

organism was its ability to produce fundamental theory, then chess was probably not the

drosophila of AI. Despite the impressive productivity of the computer chess researchers,

the research agenda that computer chess encouraged was simply too narrow to be sustain-

able. It was as if drosophila-based genetics research had never advanced beyond the

mapping of the drosophila chromosome. Chromosome mapping was, of course, an impor-

tant contribution made by the drosophilists to genetics research, but as mapping techniques

became increasingly routine, interest in drosophila stagnated. It was only with the intro-

duction of new wild varieties of drosophila into the laboratory, and the migration of the

drosophilists out of it, that the drosophila was reinvented as an experimental technology

for investigating population genetics. Computer chess had no such second act. Although

attempts were made to introduce variation into the game (by changing the rules slightly

to discourage brute-force approaches), computer chess continued to pursue the very nar-

row goals defined almost solely in terms of tournament victories (and, consequentially,

dominated by brute-force search algorithms such as the minimax).

On the other hand, as historians of science well know, the significance of even the real

drosophila is not so narrowly reductionist. Certainly one reason why Drosophila melanogaster

was so central to the history of genetics was its role in the production of new theoretical

insights – but equally important were the ways in which its lifecycle and natural history

fit so conveniently into the social and cultural landscape of the contemporary genetics

laboratory. As Robert Kohler’s work clearly reveals, the science and the organism were

mutually constitutive: just as genetics as a science was reoriented around the theories and

Ensmenger 25

methodologies most well-suited to the biology of the drosophila, drosophila as a species

was reconfigured as a technology for producing new knowledge about complex physiologi-

cal or biological systems. And in the same way that genetic scientists transformed the wild

and highly variable fruit fly into the standardized organism Drosophila melanogaster,

physically reconstructing it to conform to the fundamental principles of genetic mapping

(Kohler, 1994: 78), so too did AI researchers redefine how chess was played, and what it

meant to be an ‘intelligent’ chess player. In this respect, the parallels between chess and

drosophila are impossible to ignore. The history of AI, and of the cognitive sciences more

broadly, is incomprehensible without reference to its primary experimental technology.

The shaping influence of computer chess on AI, cognitive science, and a series of related

decision sciences is, of course, of immediate concern to historians of those disciplines. The

more general lesson to be drawn from this story is methodological, not historical, and is

more widely applicable. The most lasting insight of the work on drosophila in the history

of science has been to reveal the close relationship between theory and practice, between

researcher and subject, between organism and technology. The goal of this paper has been

to explore similar relationships within the history of computing. It is a constant temptation

when contemplating the pervasive presence of computers and computer-based technologies

in our modern society, to regard them in the terms defined by the academic discipline of

computer science. To a computer scientist, what is essential about a computer is that it is

programmable (Mahoney, 2002). What is important is the software, not the machine, and

software itself is generally seen as being uniquely, and almost infinitely, protean. Unlike

traditional technologies, which need to be demolished or disassembled before than can be

rebuilt or replaced, software can be rewritten using only a keyboard. As Lawrence Lessig

(1999) has suggested, within the virtual worlds contained within a computer, code is the

ultimate law. The fundamental literary nature of computer programming – software is, after

all, in its most basic incarnation simply a series of written instructions – suggests that

software systems are effectively ideas made incarnate, mere abstractions that can readily

be modified to suit a changing social, technical, and intellectual environment. ‘The pro-

grammer, like the poet, works only slightly removed from pure-thought stuff’, famously

declared the computer scientist Frederick Brooks: ‘He builds his castles in the air, from

air, creating by exertion of the imagination’ (Brooks, 1975: 7).

But in working software systems, which include the heterogeneous environment in

which computer code is necessarily situated, it is often impossible to isolate the artifact

from its social, economic, and political context. Despite the fact that the material costs

associated with building software are low (in comparison with traditional, physical systems),

the degree to which software is embedded in larger socio-technical systems makes starting

from scratch almost impossible. To the degree that writing software does resemble literary

production, the product is less an original poem than a palimpsest. This was clearly true of

the practitioners of computer chess: the durability of the minimax algorithm wedded the

discipline to a very specific, and ultimately very narrow, technological trajectory. Despite

the ease with which software systems can, in theory, be readily rewritten, breaking free

from this established trajectory proved extraordinarily difficult. The emphasis on tourna-

ment play and spectacular man-versus-machine confrontations, which did much to generate

enthusiasm for the discipline, also encouraged computer chess researchers to privilege

26 Social Studies of Science 42(1)

constant and incremental improvements (Bramer, 1978; Robinson, 1979). This meant an

increasing investment in Type-A strategies built around the minimax algorithm and alpha–

beta pruning. No other technique could reliably deliver tournament victories. Minimax

foreclosed other avenues of research, such as Type-B strategies that more closely mimicked

the way in which human beings played chess. And although these Type-B strategies were

more representative and more generalizable approaches to planning and cognition, they

rarely produced machines that won tournaments. In theory computer chess researchers

could pursue any number of software solutions to the problem of modeling human intel-

ligence; in practice, they almost invariably settled on minimax.

It is the extraordinary durability of the minimax algorithm that makes the history of chess

as the drosophila of AI relevant and interesting to the larger history of science and technol-

ogy. Despite their seemingly intangibility, algorithms are anything but ephemeral or immate-

rial. Like all technological inventions, they are fundamentally human (and social) constructions,

and as such embody and enable specific values, agendas, and possibilities. As the practice

of science comes to rely more and more on the use of computers and computer-based tech-

nologies, the history of software will become as much a part of the history of modern science

as instruments, laboratories, published papers, and social practices. It is essential, therefore,

that we develop the tools and methodologies for studying software that incorporate an

appropriate level of historical, sociological, and technological sophistication.

Notes

1. Kronrod would ultimately lose the directorship of the Institute because of complaints by physicists

that he was squandering computer resources.

2. Although using science citation tracking is out-of-fashion in Science and Technology Studies as

a measure of the influence of ideas, in this case some basic figures seem relevant. According to

Neil Charness, the paper has been cited in the literature more than 981 times since 1973. A scientific

paper is generally considered a classic if it is cited more than 200 times. By that standard, the

Simon paper is an absolute blockbuster. See Charness (1992).

3. The Knight’s Tour required a player to ‘tour’ a single knight around the entire board, touching

each position exactly one time.

4. AM Turing, letter to Jack Good, 18 September 1948, King’s College Cambridge Archive.

5. For example, a specific series of games played between Bobby Fisher and Boris Spassky in 1972

could be codified via notation in the generalized opening theory known as the Poisoned Pawn

Variation of the Najdorf Sicilian.

References

Aleksander I (2001) How to Build a Mind: Toward Machines with Imagination. New York: Columbia

University Press.

Ashby WR (1952) Can a mechanical chess-player outplay its designer? British Journal for the

Philosophy of Science 3(9): 44–57.

Babbage C (1864) Passages from the Life of a Philosopher. London: Longman, Roberts, & Green.

Berkeley EC (1949) Giant Brains; or, Machines that Think. New York: Wiley.

Bernstein A and de V Roberts M (1958) Computer v chess-player. Scientific American 198: 96–105.

Bloomfield BP and Vurdubakis T (2008) IBM’s chess players: On AI and its supplements. Information

Society 24(2): 69–82.

Ensmenger 27

Bramer M (1978) Advances in computer chess. SIGART Bulletin 67: 14.

Brooks FP (1975) The Mythical Man-Month: Essays on Software Engineering. New York: Addison-

Wesley.

Brooks R (1990) Elephants don’t play chess. Robotics and Autonomous Systems 6: 3–15.

Brown DJH (1979) Computer games – Is Go harder than chess? Personal Computing 3(12): 81–83.

Brudno M (2000) Competitions, controversies, and computer chess. Unpublished paper, Department

of Computer Science, University of Toronto. Available at: www.cs.toronto.edu/~brudno/essays/

cchess.pdf (accessed 15 July 2011).

Burian RM (1993) How the choice of experimental organism matters: Epistemological reflections

on an aspect of biological practice. Journal of the History of Biology 26(2): 351–367.

Campbell-Kelly M (2007) The history of the history of software. Annals of the History of Computing,

IEEE 29(4): 40–51.

Charness N (1992) The impact of chess on cognitive science. Psychological Research 54: 4–9.

Coles LS (1994) Computer chess: The drosophila of AI. AI Expert 9: 25–32.

Collins HM (1990) Artificial Experts: Social Knowledge and Intelligent Machines. Cambridge,

MA: MIT Press.

Collins HM (2010) Tacit and Explicit Knowledge. Chicago: University of Chicago Press.

Crevier D (1992) AI: The Tumultuous History of the Search for Artificial Intelligence. New York:

Basic Books.

Dowsey S (1973) Go and the computer. Go Review 13(3): 72–74.

Dreyfus H (1965) Alchemy and Artificial Intelligence. RAND Paper P-3244. Santa Monica, CA:

RAND Corporation.

Dreyfus H (1992) Response to Collins, artificial experts. Social Studies of Science 22(4): 717–726.

Ekbia H (2008) Artificial Dreams: The Quest for Non-Biological Intelligence. Cambridge: Cambridge

University Press.

Ensmenger N (2009) Software as history embodied. Annals of the History of Computing, IEEE 31(1):

88–91.

Ensmenger N (2010) The Computer Boys Take Over: Computers, Programmers, and the Politics of

Technical Expertise. Cambridge, MA: MIT Press.

Franchi S (2005) Chess, games, and flies. Essays in Philosophy 6(1). Available at: http://commons.

pacificu.edu/eip/vol6/iss1/6 (accessed 21 July 2011).

Franchi S and Güzeldere G (eds) (2005) Mechanical Bodies, Computational Minds: Artificial Intel-

ligence from Automata to Cyborgs. Cambridge, MA: MIT Press.

Greenblatt R, Eastlake D III and Crocker S (1967) The Greenblatt chess program. Proceedings of the

AfiPs Fall Joint Computer Conference, Vol. 31: 801–810.

Guterl F (1996) Silicon gambit. Discover, June, pp. 49–56.

Hamilton SN (2000) The last chess game: Computers, media events, and the production of spec-

tacular intelligence. Canadian Review of American Studies 30(3): 339.

Hashagen U, Keil-Slawik R and Norberg AL (2002) History of Computing – Software Issues.

New York: Springer-Verlag.

Hedberg S (1997) Smart games: Beyond the deep blue horizon. IEEE Expert 12(4): 15–18.

Hendler J (2006) Computers play chess; humans play go. IEEE Intelligent Systems 21: 2–3.

Hofstadter D (2005) Moore’s Law, artificial evolution, and the fate of humanity. In: Booker L,

Forrest S, Mitchell M and Riolo R (eds) Perspectives on Adaptation in Natural and Artificial

Systems. New York: Oxford University Press, 163–198.

Horgan J (1999) The undiscovered mind: How the human brain defies replication, medication, and

explanation. Psychological Science 10(6):470–474.

Husbands P, Holland O and Wheeler M (eds) (2008) The Mechanical Mind in History. Cambridge,

MA: MIT Press.

28 Social Studies of Science 42(1)

Jay R (2000) The automaton chess player, the invisible girl, and the telephone. Jay’s Journal of

Anomalies 4(4).

Jesiek B (2006) The sociotechnical boundaries of hardware and software: A humpty-dumpty history.

Bulletin of Science, Technology & Society 26(6): 497–509.

Johnson D (2007) White King and Red Queen: How the Cold War Was Fought on the Chessboard.

London: Atlantic Books.

Kasparov G (2007) How Life Imitates Chess: Making the Right Moves, from the Board to the

Boardroom. New York: Bloomsbury.

Kasparov G (2010) The chess master and the computer. The New York Review of Books 57(2) (11

February). Available at: www.nybooks.com/articles/archives/2010/feb/11/the-chess-master-

and-the-computer/ (accessed 21 July 2011).

Kohler R (1994) Lords of the Fly: Drosophila Genetics and the Experimental Life. Chicago:

University of Chicago Press.

Koschmann T (1996) Of Hubert Dreyfus and dead horses: Some thoughts on Dreyfus’ What

Computers Still Can’t Do. Artificial Intelligence 80(1): 129–141.

Law J (1987) Technology and heterogeneous engineering: The case of the Portuguese expansion. In:

Bijker WE, Hughes, TP and Pinch T (eds) The Social Construction of Technical Systems: New

Directions in the Sociology and History of Technology. Cambridge, MA: MIT Press, 111–134.

Lessig L (1999) Code, and Other Laws of Cyberspace. New York: Basic Books.

Levinson R, Hsiung-Hsu F, Schaeffer J, Marsland TA and Wilkins DE (1991) The current and future

role of chess in artificial intelligence and machine learning research. In: Proceedings of the 1991

International Joint Conference on Artificial Intelligence, pp. 547–552.

Levy DNL (1976) Chess and Computers. Woodland Hills, CA: Computer Science Press.

Lohr R (2007) The Secrets of the Chess Machine. New York: Fig Tree.

McCarthy J (1997) AI as sport. Science 276(5318): 1518–1519.

McCorduck P (1979) Machines Who Think: A Personal Inquiry into the History and Prospects of

Artificial Intelligence. San Francisco, CA: W.H. Freeman.

McDermott D (1976) Artificial intelligence meets natural stupidity. ACM SIGART Newsletter,

pp. 4–9. Available at: www.neurosecurity.com/articles/AI/AIMeetsNaturalStupidity.pdf

(accessed 23 July 2011).

Mahoney M (2002) Software: The self-programming machine. In: Akera A and Nebeker F (eds)

From 0 to 1: An Authoritative History of Modern Computing. New York: Oxford University

Press, 91–100.

Mahoney MS (2008) What makes the history of software hard. Annals of the History of Computing,

IEEE 30(3): 8–18.

Marsland TA (1991) Computer chess and search. Technical Report TR 91-10, Department of

Computing Science, University of Alberta.

Mitman G and Fausto-Sterling A (1992) Whatever happened to planaria? C.M. Child and the phys-

iology of inheritance. In: Clark AE and Fujimura JH (eds) The Right Tools for the Job: At Work

in Twentieth-Century Life Science. Princeton, NJ: Princeton University Press, 172–197.

Müller M (2002) Computer Go. Artificial Intelligence 124: 145–179.

Munakata T (1996) Thoughts on Deep Blue vs. Kasparov. Communications of the ACM 39(7): 91–92.

Nareyek A (2004) Computer games – boon or bane for AI research? Computer Science Department,

Carnegie Mellon University. Available at: www.ai-center.com/publications/nareyek-ki04.pdf

(accessed 23 July 2011).

New York Times (1875) Babbage and a chess automaton. New York Times, 21 November, p. 3.

Newborn M (2003) Deep Blue: An Artificial Intelligence Milestone. New York: Springer.

Newell A, Shaw J and Simon H (1958) Chess-playing programs and the problem of complexity.

IBM Journal of Research and Development 2(4): 320–335.

Ensmenger 29

Nilsson (1998) Artificial Intelligence: A New Synthesis. San Francisco, CA: Morgan Kaufmann

Publishers.

O’Shields J (1965). Selection of EDP personnel. Personnel Journal 44(9): 472–474.

Panek LL (1976) ‘Maelzel’s chess-player’, Poe’s first detective mistake. American Literature 48(3):

370–372.

Papert S (1968) The artificial intelligence of Hubert L. Dreyfus: A budget of fallacies. AI Memo

154, Computer Science and Artificial Intelligence Lab, MIT. Available at: http://hdl.handle.

net/1721.1/6084 (accessed 21 July 2011).

Peterson I (1983) Playing chess bit by bit. Science News 124(15): 236–237.

Peterson I (1997) Silicon champions of the game. Science News 152(5): 76–78.

Poe EA (1836) Maelzel’s chess player. Southern Literary Messenger 2:318–326.

Randell B (1982) From analytical engine to electronic digital computer: The contributions of Ludgate,

Torres, and Bush. Annals of the History of Computing 4(4): 327–341.

Rasskin-Gutman D (2009) Chess Metaphors: Artificial Intelligence and the Human Mind. Cambridge,

MA: MIT Press.

Riskin J (ed.) (2007) Genesis Redux: Essays in the History and Philosophy of Artificial Life. Chicago:

University of Chicago Press.

Robinson AL (1979) Tournament competition fuels computer chess. Science 204(4400): 1396–1398.

Ross P (2006) The expert mind. Scientific American 295(2): 64–71.

Russell S and Norvig P (2009) Artificial Intelligence: A Modern Approach, third edition. New York:

Prentice-Hall.

Schaeffer J (2001) A gamut of games. AI Magazine 22(3): 29–46.

Schaeffer J and Donskoy M (1989) Perspectives on falling from grace. Journal of the International

Computer Chess Association 12(3): 259–268.

Schaffer S (1996) Babbage’s dancer and the impressarios of mechanism. In: Spufford F and Uglow

J (eds) Cultural Babbage: Time, Technology and Invention. London: Faber, 53–80.

Schank R (1991) Where’s the AI? AI Magazine 12(4): 38–49.

Schonberg H (1981, September 27) Cold war in the world of chess. New York Times. Available at

www.nytimes.com/1981/09/27/magazine/cold-war-in-the-world-of-chess.html (accessed 31

August 2011).

Searle J (1999) I married a computer. New York Review of Books, 8 April, 34–38.

Shannon C (1950) Programming a computer for playing chess. Philosophical Magazine 41(314)

256–75.

Shenk D (2006) The Immortal Game: A History of Chess or How 32 Carved Pieces on a Board Illu-

minated Our Understanding of War, Art, Science, and the Human Brain. New York: Doubleday.

Simon H and Chase W (1973) Skill in chess. American Scientist 61: 393–403.

Simon H, Simon HA, Schaeffer J and Schaeffer J (1992) The game of chess. In: Aumann RJ and

Hart S (eds) Handbook of Game Theory with Economic Applications, Volume I of Handbooks

in Economics. London: Elsevier Science, 1–17.

Standage T (2002) The Turk: The Life and Times of the Famous Eighteenth-Century Chess-Playing

Machine. New York: Walker.

Steiner G (1971) A death of kings. In: Steiner G, Extraterritorial. Cambridge, MA: Athaneum Press,

47–57.

Sussman M (1999) Performing the intelligent machine: Deception and enchantment in the life of

the automaton chess player. TDR (1988–) 43(3): 81–96.

Turing AM (1946) Proposed electronic calculator (National Physical Laboratory report, 1946). In:

Carpenter BE and Doran RW (eds) A.M. Turing’s ACE Report of 1946 and Other Papers.

Cambridge, MA: MIT Press.

Turing AM (1950) Computing machinery and intelligence. Mind 49: 433–460.

30 Social Studies of Science 42(1)

Turing AM (1953) Digital computers applied to games. In: Bowden BV (ed.) Faster than Thought:

A Symposium on Digital Computing Machines. London: Pitman, 286–297.

Van den Herik HJ, Uiterwijk JWHM and van Rijswijck J (2002) Games solved: Now and in the

future. Artificial Intelligence 134: 277–311.

Von Neumann J (1958) The Computer and the Brain. New Haven, CT: Yale University Press.

Voskuhl A (2007) Producing objects, producing texts: Accounts of android automata in late

18th-century Europe. Studies in History and Philosophy of Science 38: 422–444.

Wagner D and Scurrah M (1971) Some characteristics of human problem-solving in chess. Cognitive

Psychology 2(4): 454–478.

Wall Street Journal (1978) Chess diplomacy. Wall Street Journal, 14 November, p. 20.

Waters CK (2004) What was classical genetics? Studies in History and Philosophy of Science 35:

783–809.

Weber B (1996) Mean chess-playing machine tears at meaning of thought. New York Times, 19

February. Available at: www.rci.rutgers.edu/~cfs/472_html/Intro/NYT_Intro/ChessMatch/

MeanChessPlaying.html (accessed 24 July 2011).

Wells S and Reed C (2005) A drosophila for computational dialectics. Proceedings of the Interna-

tional Conference on Autonomous Agents and Multi-Agent Systems (doi 10.1145/1082473.1082724):

1263–1264.

Westphal J, Hitterdale L, Cahn SM, Verhaegh M, Stevens CW, Machan TR and Yates S (2002)

Letters to the editor. Proceedings and Addresses of the American Philosophical Association

75(5): 173–182.

Yood C (2003) Attack of the giant brains. Online Research: Penn State 24(3). Available at: www.

rps.psu.edu/0309/brains.html (accessed 23 July 2001).

Biographical note

Nathan Ensmenger is an assistant professor in the School of Information at the University

of Texas at Austin and the author of The Computer Boys Take Over: Computers,

Programmers, and the Politics of Technical Expertise (MIT Press, 2010). His other pub-

lications include articles on gender in computing, the history of software, and healthcare

informatics. His current project focuses on the development and use of computerized

decision tools in medicine, public policy, and finance.

