
EMBARGOED UNTIL 2PM U.S. EASTERN TIME ON THE THURSDAY BEFORE THIS DATE:

We have demonstrated the discovery of

physical laws, from scratch, directly from ex-

perimentally captured data with the use of a

computational search. We used the presented

approach to detect nonlinear energy conservation

laws, Newtonian force laws, geometric invari-

ants, and system manifolds in various synthetic

and physically implemented systems without

prior knowledge about physics, kinematics, or

geometry. The concise analytical expressions that

we found are amenable to human interpretation

and help to reveal the physics underlying the

observed phenomenon. Many applications exist

for this approach, in fields ranging from systems

biology to cosmology, where theoretical gaps

exist despite abundance in data.

Might this process diminish the role of future

scientists? Quite the contrary: Scientists may use

processes such as this to help focus on interesting

phenomena more rapidly and to interpret their

meaning.
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The Automation of Science
Ross D. King,1* Jem Rowland,1 Stephen G. Oliver,2 Michael Young,3 Wayne Aubrey,1

Emma Byrne,1 Maria Liakata,1 Magdalena Markham,1 Pınar Pir,2 Larisa N. Soldatova,1

Andrew Sparkes,1 Kenneth E. Whelan,1 Amanda Clare1

The basis of science is the hypothetico-deductive method and the recording of experiments in
sufficient detail to enable reproducibility. We report the development of Robot Scientist “Adam,”
which advances the automation of both. Adam has autonomously generated functional genomics
hypotheses about the yeast Saccharomyces cerevisiae and experimentally tested these hypotheses
by using laboratory automation. We have confirmed Adam’s conclusions through manual
experiments. To describe Adam’s research, we have developed an ontology and logical language.
The resulting formalization involves over 10,000 different research units in a nested treelike
structure, 10 levels deep, that relates the 6.6 million biomass measurements to their logical
description. This formalization describes how a machine contributed to scientific knowledge.

C
omputers are playing an ever-greater role

in the scientific process (1). Their use to

control the execution of experiments con-

tributes to a vast expansion in the production of

scientific data (2). This growth in scientific data,

in turn, requires the increased use of computers

for analysis and modeling. The use of computers

is also changing the way that science is described

and reported. Scientific knowledge is best ex-

pressed in formal logical languages (3). Only

formal languages provide sufficient semantic

clarity to ensure reproducibility and the free

exchange of scientific knowledge. Despite the

advantages of logic, most scientific knowledge is

expressed only in natural languages. This is now

changing through developments such as the

Semantic Web (4) and ontologies (5).

A natural extension of the trend to ever-greater

computer involvement in science is the concept of

a robot scientist (6). This is a physically imple-

mented laboratory automation system that exploits

techniques from the field of artificial intelligence

(7–9) to execute cycles of scientific experimenta-

tion. A robot scientist automatically originates

hypotheses to explain observations, devises exper-

iments to test these hypotheses, physically runs the

experiments by using laboratory robotics, inter-

prets the results, and then repeats the cycle.

High-throughput laboratory automation is trans-

forming biology and revealing vast amounts of

new scientific knowledge (10). Nevertheless, ex-

isting high-throughput methods are currently in-

adequate for areas such as systems biology. This

is because, even though very large numbers of

experiments can be executed, each individual ex-

periment cannot be designed to test a hypothesis

about amodel. Robot scientists have the potential

to overcome this fundamental limitation.

The complexity of biological systems neces-

sitates the recording of experimental metadata in

as much detail as possible. Acquiring these meta-

data has often proved problematic. With robot

scientists, comprehensive metadata are produced

as a natural by-product of the way they work.

Because the experiments are conceived and ex-

ecuted automatically by computer, it is possible

to completely capture and digitally curate all as-

pects of the scientific process (11, 12).

To demonstrate that the robot scientist meth-

odology can be both automated and be made

effective enough to contribute to scientific knowl-

edge, we have developed Robot Scientist “Adam”

(13) (Fig. 1). Adam’s hardware is fully automated

such that it only requires a technician to period-

ically add laboratory consumables and to remove

waste. It is designed to automate the high-

throughput execution of individually designed

microbial batch growth experiments in micro-

titer plates (14). Adam measures growth curves

(phenotypes) of selected microbial strains (geno-

types) growing in defined media (environments).

Growth of cell cultures can be easily measured in

high-throughput, and growth curves are sensitive

to changes in genotype and environment.

We applied Adam to the identification of

genes encoding orphan enzymes in Saccharomy-

ces cerevisiae: enzymes catalyzing biochemical

reactions thought to occur in yeast, but for which

the encoding gene(s) are not known (15). To set

up Adam for this application required (i) a

comprehensive logical model encoding knowl-

edge of S. cerevisiae metabolism [~1200 open
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reading frames (ORFs), ~800 metabolites] (15),

expressed in the logic programming language

Prolog; (ii) a general bioinformatic database of

genes and proteins involved in metabolism; (iii)

software to abduce hypotheses about the genes

encoding the orphan enzymes, done by using a

combination of standard bioinformatic software

and databases; (iv) software to deduce experi-

ments that test the observational consequences of

hypotheses (based on the model); (v) software to

plan and design the experiments, which are based

on the use of deletion mutants and the addition of

selected metabolites to a defined growth medium;

(vi) laboratory automation software to physically

execute the experimental plan and to record the

data and metadata in a relational database; (vii)

software to analyze the data and metadata (gen-

erate growth curves and extract parameters); and

(viii) software to relate the analyzed data to the

hypotheses; for example, statistical methods are

required to decide on significance. Once this in-

frastructure is in place, no human intellectual inter-

vention is necessary to execute cycles of simple

hypothesis-led experimentation. [For more details

of the software, and its application to a related

functional genomics problem, see (16) and figs.

S1 and S2].

Adam formulated and tested 20 hypotheses

concerning genes encoding 13 orphan enzymes

(16) (Table 1). The weight of the experimental

evidence for the hypotheses varied (based on ob-

servations of differential growth), but 12 hypothe-

ses with no previous evidence were confirmed

with P < 0.05 for the null hypothesis.

Because Adam’s experimental evidence for its

conclusions is indirect, we tested Adam’s conclu-

sions with more direct experimental methods. The

enzyme 2-aminoadipate:2-oxoglutarate amino-

transferase (2A2OA) catalyzes a reaction in the

lysine biosynthetic pathways of fungi. Adam hy-

pothesized that three genes (YER152C, YJL060W,

and YGL202W) encode this enzyme and ob-

served results consistent with all three hypotheses

(Table 1). To test Adam’s conclusions, we pu-

rified the protein products of these genes and

used them in in vitro enzyme assays, which

confirmed Adam’s conclusions [supporting on-

line material (SOM)] (Fig. 2).

To further test Adam's conclusions, we ex-

amined the scientific literature on the 20 genes

investigated (Table 1) (16). This revealed the ex-

istence of strong empirical evidence for the cor-

rectness of six of the hypotheses; that is, the

enzymes were not actually orphans (Table 1).

The reason that Adam considered them to be

orphans was due to the use of an incomplete bio-

informatic database. These six genes therefore

constitute a positive control for Adam's meth-

odology. A possible error was also revealed

(Table 1) (SOM).

To better understand the reasons why the

identity of the genes encoding these enzymes has

remained obscure for so long, we investigated

their comparative genomics in detail (16). The

likely explanation is a combination of three com-

plicating factors: gene duplications with retention

of overlapping function, enzymes that catalyze

more than one related reaction, and existing func-

tional annotations. Adam’s systematic bioinformatic

and quantitative phenotypic analyzes were required

to unravel this web of functionality.

Use of a robot scientist enables all aspects of a

scientific investigation to be formalized in logic.

For the core organization of this formalization,

we used the ontology of scientific experiments:

EXPO (11, 12). This ontology formalizes generic

knowledge about experiments. For Adam, we

developed LABORS, a customized version of

EXPO, expressed in the description logic lan-

guage OWL-DL (17). Application of LABORS

produces experimental descriptions in the logic-

Fig. 1. The Robot Scien-
tist Adam. The advances
that distinguish Adam from
other complex laboratory
systems are the individual
design of the experiments
to test hypotheses and the
utilization of complex in-
ternal cycles. Adam’s basic
operations are selection of
specified yeast strains from
a library held in a freezer,
inoculation of these strains
into microtiter plate wells
containing rich medium,
measurement of growth
curves on rich medium,
harvesting of a defined
quantity of cells from each
well, inoculation of these
cells into wells containing
defined media (minimal syn-
thetic dextrose medium plus
up to four added metab-
olites from a choice of six),
and measurement of growth
curves on the specified me-
dia. To achieve this func-
tionality, Adam has the
following components: a,
an automated –20°C freezer;
b, three liquid handlers (one
of which can separately control 96 fluid channels simultaneously); c, three
automated +30°C incubators; d, two automated plate readers; e, three robot
arms; f, two automated plate slides; g, an automated plate centrifuge; h, an
automated plate washer; i, two high-efficiency particulate air filters; and j, a
rigid transparent plastic enclosure. There are also two bar code readers, seven
cameras, 20 environment sensors, and four personal computers, as well as the
software. Adam is capable of designing and initiating over a thousand new

strain and defined-growth-medium experiments each day (from a selection of
thousands of yeast strains), with each experiment lasting up to 5 days. The
design enables measurement of OD595nm for each experiment at least once
every 30 min (more often if running at less than full capacity), allowing ac-
curate growth curves to be recorded (typically we take over a hundred mea-
surements a day per well), plus associated metadata. See the supporting
online material for pictures and a video of Adam in action.
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programming language Datalog (18). In the course

of its investigations, Adam observed 6,657,024

optical density (OD595nm) measurements (form-

ing 26,495 growth curves). These data are held in

a MySQL relational database. Use of LABORS

resulted in a formalization of the scientific argu-

mentation involving over 10,000 different research

units (segments of experimental research). This

has a nested treelike structure, 10 levels deep, that

logically connects the experimental observations

to the experimental metadata. (Fig. 3). This struc-

ture resembles the trace of a computer program

and takes up 366 Mbytes (16). Making such

experimental structures explicit renders scien-

tific research more comprehensible, reproduc-

ible, and reusable. This paper may be considered

as simply the human-friendly summary of the

formalization.

Table 1. The orphan enzymes and Adam’s hypotheses. The hypothesized
genes are those which Adam abduced encoded an orphan enzyme. Prob.
is Adam’s Monte Carlo estimate of the probability of obtaining the
observed discrimination accuracy or better with a random labeling of
replicates. The discrimination is between the differences in growth curves
observed with the addition of specified metabolites to the wild type and
the deletant. Acc. is the highest accuracy for a metabolite species in
discriminating between the growth curves observed with the addition of
specified metabolites to the wild type and the deletant. No. is the number

of metabolites tested. Existing annotation is the summary from the
Saccharomyces Genome Database of the annotation of the ORF. Dry is the
summary of whether the annotated function is the same as predicted by
Adam. If a gene already has an associated function, we do not consider
this to be contradictory to Adam’s conclusions unless this function is
capable of explaining the observed growth phenotype, for example, BCY1.
ida indicates inferred from direct assay and iss, inferred from sequence or
structural similarity (5). Wet is the result of our manual enzyme assays.
See (16) for details.

Orphan enzyme
Hypothesized

gene
Prob. Acc. No. Existing annotation Dry Wet

Glucosamine-6-phosphate

deaminase (3.5.99.6)

YHR163W

(SOL3)

<10−4 97 8 6-Phosphogluconolactonase, ida – –

Glutaminase (3.5.1.2) YIL033C

(BCY1)

<10−4 92 11 Cyclic adenosine 3´,5´-

monophosphate (cAMP)–

dependent protein kinase

inhibitor, ida

✗ –

L-Threonine 3-

dehydrogenase

(1.1.1.103)

YDL168W

(SFA1)

<10−4 83 6 Alcohol dehydrogenase, ida – –

Purine-nucleoside

phosphorylase (2.4.2.1)

YLR209C

(PNP1)

<10−4 82 11 Purine-nucleoside

phosphorylase, ida

✓ –

2-Aminoadipate

transaminase (2.6.1.39)

YGL202W

(ARO8)

<10−4 80 3 Aromatic–amino acid

transaminase, ida

✓ ✓

5,10-Methenyltetrahydrofolate

synthetase (6.3.3.2)

YER183C

(FAU1)

<10−4 80 4 5,10 Formyltetrahydrofolate

cyclo-ligase, ida

✓ –

Glucosamine-6-phosphate

deaminase (3.5.99.6)

YNR034W

(SOL1)

<10−4 79 2 Possible role in tRNA export – –

Pyridoxal kinase (2.7.1.35) YPR121W

(THI22)

<10−4 78 1 Phosphomethylpyrimidine

kinase, iss

– –

Mannitol-1-phosphate

5-dehydrogenase (1.1.1.17)

YNR073C <10−4 78 6 Putative mannitol

dehydrogenase, iss

– –

1-Acylglycerol-3-phosphate

O-acyltransferase

(2.3.1.51)

YDL052C

(SLC1)

0.0001 80 6 1-Acylglycerol-3-phosphate

O-acyltransferase ida

✓ –

Glucosamine-6-phosphate

deaminase (3.5.99.6)

YGR248W

(SOL4)

0.0002 78 2 6-Phosphogluconolactonase, ida – –

Maleylacetoacetate

isomerase (5.2.1.2)

YLL060C

(GTT2)

0.0003 76 3 Glutathione S-transferase, ida – –

Serine O-acetyltransferase

(2.3.1.30)

YJL218W 0.0005 78 2 Unknown function – –

L-Threonine

3-dehydrogenase

(1.1.1.103)

YLR070C

(XYL2)

0.0052 75 6 Xylitol dehydrogenase, ida – –

2-Aminoadipate

transaminase (2.6.1.39)

YJL060W

(BNA3)

0.0084 73 3 Kynurenine

aminotransferase, ida

– ✓

Pyridoxal kinase (2.7.1.35) YNR027W 0.0259 76 2 Involved in bud-site

selection, iss

– –

Polyamine oxidase

(1.5.3.11)

YMR020W

(FMS1)

0.0289 78 4 Polyamine oxidase, ida ✓ –

2-Aminoadipate

transaminase (2.6.1.39)

YER152C 0.0332 74 3 Uncharacterized – ✓

L-Aspartate oxidase

(1.4.3.16)

YJL045W 0.1300 72 1 Succinate dehydrogenase

isozyme, iss

– –

Purine-nucleoside

phosphorylase (2.4.2.1)

YLR017W

(MEU1)

0.1421 72 6 Methylthioadenosine

phosphorylase, ida

✓ –
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A major motivation for the formalization of

experimental knowledge is the expectation that

such knowledge is more easily reused to answer

other scientific questions. To test this, we investi-

gated whether we could reuse Adam’s functional

genomic research (16). An example question

investigated was the relative growth rates (mmax)

in rich and defined media of the deletion strains

compared with those of the wild type. What

was observed, in both media, was a skewed dis-

tribution, with a few deletants having a much

lower mmax than that of the wild type, but most

having a slightly higher mmax. These observations

question the common assumption that wild-type

S. cerevisiae is optimized for mmax and provide

quantitative test data for yeast systems biology

models (19).

It could be argued that the scientific knowl-

edge “discovered” by Adam is implicit in the

formulation of the problem and is therefore not

novel. This argument that computers cannot

originate anything is known as Lady Lovelace’s

objection (20): “The Analytical Engine has no

pretensions to originate anything. It can do

whatever we know how to order it to perform”

(her italics). We accept that the knowledge

automatically generated by Adam is of a modest

kind. However, this knowledge is not trivial, and

in the case of the genes encoding 2A2OA, it

sheds light on, and perhaps solves, a 50-year-old

puzzle (21).

Adam is a prototype and could be greatly

improved. Its hardware and software are “brittle,”

so although Adam is capable of running for a few

days without human intervention, it is advisable

to have a technician nearby in case of problems.

The integration of Adam’s artificial intelligence

(AI) software also needs to be enhanced so that it

works seamlessly. To extend Adam, we have de-

veloped software to enable external users to pro-

pose hypotheses and experiments, and we plan to

automatically publish the logical descriptions of

automated experiments. The idea is to develop a

way of enabling teams of human and robot sci-

entists to work together. The greatest research

challenge will be to improve the scientific in-

telligence of the software. We have shown that a

simple form of hypothesis-led discovery can be

automated.What remain to be determined are the

limits of automation.
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Priming in Systemic Plant Immunity
Ho Won Jung,1 Timothy J. Tschaplinski,2 Lin Wang,3* Jane Glazebrook,3 Jean T. Greenberg1†

Plants possess inducible systemic defense responses when locally infected by pathogens.
Bacterial infection results in the increased accumulation of the mobile metabolite azelaic
acid, a nine-carbon dicarboxylic acid, in the vascular sap of Arabidopsis that confers local and
systemic resistance against the pathogen Pseudomonas syringae. Azelaic acid primes plants to
accumulate salicylic acid (SA), a known defense signal, upon infection. Mutation of the AZELAIC
ACID INDUCED 1 (AZI1) gene, which is induced by azelaic acid, results in the specific loss of
systemic immunity triggered by pathogen or azelaic acid and of the priming of SA induction in
plants. Furthermore, the predicted secreted protein AZI1 is also important for generating vascular
sap that confers disease resistance. Thus, azelaic acid and AZI1 are components of plant systemic
immunity involved in priming defenses.

W
hole plant immunity, called systemic

acquired resistance (SAR), often de-

velops after localized foliar infections

by diverse pathogens. In this process, leaves dis-

tal to the localized infection become primed to

activate a stronger defense response upon sec-

ondary infection (1). Leaves infected with SAR-

inducing bacteria produce vascular sap, called

petiole exudate, which confers disease resistance

to previously unexposed (naïve) plants (2, 3). This

indicates that amobile systemic signal(s) is involved

in SAR (4). Although the hormone jasmonic acid

(JA) accumulates to a high level in petiole exu-

dates from leaves infected with SAR-inducing

bacteria, JA does not seem to be the critical sig-

nal for SAR (5, 6). Instead, SAR and the pro-

duction of active exudates require the DIR1

protein, a predicted secreted protein and puta-

tive signal carrier in the lipid transfer protein fam-

ily, and other proteins involved in glycerolipid

biosynthesis (2, 3, 7). Additionally, SAR and

exudate-induced resistance appears to require the

phenolic metabolite salicylic acid (SA) (3, 8) and

possibly methylsalicylate (MeSA) and its methyl

1Department of Molecular Genetics and Cell Biology, The Uni-
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Fig. 1. Azelaic acid specifically confers resistance to Pseudomonas syringae. (A)
Azelaic acid–induced resistance is concentration-dependent. Plants were sprayed with 1,
10, 100, and 1000mMazelaic acid in 5mMMES (pH5.6) or 5mMMES (pH5.6) alone 2
days before infection with P. syringae pv.maculicola strain PmaDG3 (OD600 = 0.0001).
(B) Induced resistance is time-dependent. Plants sprayedwith5mMMESor 1mMazelaic
acid for the time periods indicated were subsequently inoculated with PmaDG3. (C)
5 mM MES or 1 mM azelaic acid was injected into local leaves. Two days later, either
local or systemic leaves were infected with PmaDG3. (D) Dicarboxylic acids (1 mM) of
different carbon-chain lengths were applied to Arabidopsis. M, 5 mMMes; C8, suberic
acid; C9, azelaic acid; C10, sebacic acid. (E) Mobility of deuterium-labeled azelaic acid
[HOOC(CD2)7COOH] injected into WT leaves. Azelaic acid amounts were determined
in petiole exudates (left) and distal leaves (right) after local injection with 1 mM
azelaic acid. *P < 0.05; **P < 0. 01; t test. Error bars indicate SE.
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