
10/2/2015A.I. 1

Artificial Intelligence:
Constraint satisfaction problems

Peter Antal
antal@mit.bme.hu

mailto:antal@mit.bme.hu

A.I.2

10/

2/2

01

5

 Constraint satisfaction problem

 Search in games

 Chess and cognition

 The ménage problem
◦ the number of different ways in which it is possible

to seat a set of male-female couples at a dining
table so that men and women alternate and nobody
sits next to his or her partner.

10/2/2015A.I. 3

 Sit the guests around a round table with no
“incompatible guests” sitting next to each other ?
◦ Hamiltonian path/cycle (NP-complete):

 a path/cycle in a graph that visits each vertex exactly once.

◦ Eulerian path/cycle (<O(E2)):

 a trail/cycle in a graph which visits every edge exactly once.

10/2/2015A.I. 4

 Find the shortest tour visiting all cities exactly
once.

 Minimum spanning tree can be computed in O(n2) and is a lower
bound on the shortest (open) tour

10/2/2015A.I. 5

 A tessellation of the plane or of any other space is a
cover of the space by closed shapes, called tiles, that
have disjoint interiors.

 A Penrose tiling:
◦ It is non-periodic (lacks any translational symmetry).
◦ It is self-similar.
◦ It is a quasicrystal (as a physical structure).

 How can we find such exotic „patterns”?
 R.Penrose: Emperor’s new mind

10/2/2015A.I. 6

A.I.7

10/

2/2

01

5

 What is a CSP?
◦ Finite set of variables V1, V2, …, Vn

◦ Finite set of constraints C1, C2, …, Cm

◦ Nonempty domain of possible values for each variable
DV1, DV2, … DVn

◦ Each constraint Ci limits the values that variables can take, e.g., V1 ≠ V2

 A state is defined as an assignment of values to
some or all variables.

 Consistent assignment: assignment does not not
violate the constraints.

A.I.8

10/

2/2

01

5

 An assignment is complete when every variable
is mentioned.

 A solution to a CSP is a complete assignment
that satisfies all constraints.

 Some CSPs require a solution that maximizes
an objective function.

 Applications: Scheduling the time of
observations on the Hubble Space Telescope,
Floor planning, Map coloring, Cryptography

A.I. 910/2/2015

 Variables: WA, NT, Q, NSW, V, SA, T
 Domains: Di={red,green,blue}
 Constraints:adjacent regions must have different colors.

 E.g. WA  NT (if the language allows this)

 E.g. (WA,NT)  {(red,green),(red,blue),(green,red),…}

A.I. 1010/2/2015

 Solutions are assignments satisfying all constraints, e.g.

{WA=red,NT=green,Q=red,NSW=green,V=red,SA=blue,
T=green}

A.I. 1110/2/2015

 CSP benefits
◦ Standard representation pattern

◦ Generic goal and successor functions

◦ Generic heuristics (no domain specific
expertise).

 Constraint graph = nodes are variables, edges show constraints.
 Graph can be used to simplify search.

 e.g. Tasmania is an independent subproblem.

A.I.12

10/

2/2

01

5

 Discrete variables
◦ Finite domains; size d O(dn) complete assignments.

 E.g. Boolean CSPs, include. Boolean satisfiability (NP-
complete).

◦ Infinite domains (integers, strings, etc.)

 E.g. job scheduling, variables are start/end days for each
job

 Need a constraint language e.g StartJob1 +5 ≤ StartJob3.
 Linear constraints solvable, nonlinear undecidable.

 Continuous variables
◦ e.g. start/end times for Hubble Telescope observations.

◦ Linear constraints solvable in poly time by LP methods.

A.I.13

10/

2/2

01

5

 Unary constraints involve a single variable.
◦ e.g. SA  green

 Binary constraints involve pairs of variables.
◦ e.g. SA  WA

 Higher-order constraints involve 3 or more
variables.
◦ e.g. cryptharithmetic column constraints.

 Preference (soft constraints) e.g. red is better
than green often representable by a cost for
each variable assignment  constrained
optimization problems.

A.I.14

10/

2/2

01

5

 The „knapsack”/backpack problem

 The travelling sales man problem

 The ménage problem

 The map coloring problem, the 3-SAT problem,...

10/2/2015A.I. 15

A.I.16

10/

2/2

01

5

 A CSP can easily expressed as a standard
search problem.

 Incremental formulation
◦ Initial State: the empty assignment {}.

◦ Successor function: Assign value to unassigned
variable provided that there is not conflict.

◦ Goal test: the current assignment is complete.

◦ Path cost: as constant cost for every step.

A.I.17

10/

2/2

01

5

 This is the same for all CSP’s !!!

 Solution is found at depth n (if there are n
variables).
◦ Hence depth first search can be used.

 Path is irrelevant, so optimization with complete
state representation can also be used.

 Branching factor b at the top level is nd.

 b=(n-l)d at depth l, hence n!dn leaves (only dn

complete assignments, O(nn), Stirling’s approx.).

A.I.18

10/

2/2

01

5

 CSPs are commutative.
◦ The order of any given set of actions has no effect

on the outcome.

◦ Example: choose colors for Australian territories
one at a time

 [WA=red then NT=green] same as [NT=green then
WA=red]

 All CSP search algorithms consider a single variable
assignment at a time  there are dn leaves.

A.I.19

10/

2/2

01

5

 Cfr. Depth-first search

 Chooses values for one variable at a time and
backtracks when a variable has no legal
values left to assign.

 Uninformed algorithm
◦ No good general performance (see table p. 143)

A.I.20

10/

2/2

01

5

function BACKTRACKING-SEARCH(csp) return a solution or failure

return RECURSIVE-BACKTRACKING({} , csp)

function RECURSIVE-BACKTRACKING(assignment, csp) return a solution or
failure

if assignment is complete then return assignment

var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

for each value in ORDER-DOMAIN-VALUES(var, assignment, csp) do

if value is consistent with assignment according to CONSTRAINTS[csp]
then

add {var=value} to assignment

result  RRECURSIVE-BACTRACKING(assignment, csp)

if result  failure then return result
remove {var=value} from assignment

return failure

A.I.21

10/

2/2

01

5

A.I.22

10/

2/2

01

5

A.I.23

10/

2/2

01

5

A.I.24

10/

2/2

01

5

A.I.25

10/

2/2

01

5

 Previous improvements  introduce
heuristics

 General-purpose methods can give huge
gains in speed:
◦ Which variable should be assigned next?

◦ In what order should its values be tried?

◦ Can we detect inevitable failure early?

◦ Can we take advantage of problem structure?

A.I. 2610/2/2015

var  SELECT-UNASSIGNED-VARIABLE(VARIABLES[csp],assignment,csp)

 A.k.a. most constrained variable heuristic („fail fast”)

 Rule: choose variable with the fewest legal moves

 Which variable shall we try first?

A.I. 2710/2/2015

 Use degree heuristic

 Rule: select variable that is involved in the largest
number of constraints on other unassigned variables.

 Degree heuristic is very useful as a tie breaker.

 In what order should its values be tried?

A.I. 2810/2/2015

 Least constraining value heuristic

 Rule: given a variable choose the least constraing value
i.e. the one that leaves the maximum flexibility for
subsequent variable assignments.

A.I. 2910/2/2015

 Can we detect inevitable failure early?
◦ And avoid it later?

 Forward checking idea: keep track of remaining legal
values for unassigned variables.

 Terminate search when any variable has no legal values.

A.I.30

10/

2/2

01

5

 A CSP is k-consistent if for any set of k-1
variables and for any consistent assignment to
those variables, a consistent value can always
be assigned to any kth variable.

 A graph is strongly k-consistent if
◦ It is k-consistent and

◦ Is also (k-1) consistent, (k-2) consistent, … all the way down to 1-
consistent.

 YET no free lunch: any algorithm for
establishing n-consistency must take time
exponential in n, in the worst case.

A.I.31

10/

2/2

01

5

 Use complete-state representation

 For CSPs
◦ allow states with unsatisfied constraints

◦ operators reassign variable values

 Variable selection: randomly select any
conflicted variable

 Value selection: min-conflicts heuristic
◦ Select new value that results in a minimum number of conflicts

with the other variables

A.I.32

10/

2/2

01

5

function MIN-CONFLICTS(csp, max_steps) return solution or failure

inputs: csp, a constraint satisfaction problem

max_steps, the number of steps allowed before giving up

current  an initial complete assignment for csp
for i = 1 to max_steps do

if current is a solution for csp then return current

var  a randomly chosen, conflicted variable from VARIABLES[csp]

value  the value v for var that minimizes CONFLICTS(var,v,current,csp)

set var = value in current

return faiilure

A.I. 3310/2/2015

 Use of min-conflicts heuristic in hill-climbing.

h=5 h=3 h=1

A.I. 3410/2/2015

 A two-step solution for an 8-queens problem using
min-conflicts heuristic.

 At each stage a queen is chosen for reassignment in its
column.

 The algorithm moves the queen to the min-conflict
square breaking ties randomly.

A.I. 3510/2/2015

 How can the problem structure help to find a solution
quickly?

 Subproblem identification is important:
◦ Coloring Tasmania and mainland are independent subproblems
◦ Identifiable as connected components of constrained graph.

 Improves performance

A.I. 3610/2/2015

 Suppose each problem has c variables out of a total of n.

 Worst case solution cost is O(n/c dc), i.e. linear in n
◦ Instead of O(d n), exponential in n

 E.g. n= 80, c= 20, d=2
◦ 280 = 4 billion years at 1 million nodes/sec.

◦ 4 * 220= .4 second at 1 million nodes/sec

A.I. 3710/2/2015

 Theorem: if the constraint graph has no loops then
CSP can be solved in O(nd 2) time

 Compare difference with general CSP, where worst
case is O(d n)

A.I. 3810/2/2015

 In most cases subproblems of a CSP are connected as a tree

 Any tree-structured CSP can be solved in time linear in the
number of variables.
◦ Choose a variable as root, order variables from root to leaves such that every node’s

parent precedes it in the ordering.

◦ For j from n down to 2, apply REMOVE-INCONSISTENT-VALUES(Parent(Xj),Xj)

◦ For j from 1 to n assign Xj consistently with Parent(Xj)

A.I. 3910/2/2015

 Can more general constraint graphs be reduced to trees?

 Two approaches:
◦ Remove certain nodes

◦ Collapse certain nodes

A.I. 4010/2/2015

 Idea: assign values to some variables so that the
remaining variables form a tree.

 Assume that we assign {SA=x}  cycle cutset
◦ And remove any values from the other variables that are inconsistent.

◦ The selected value for SA could be the wrong one so we have to try all of
them

A.I. 4110/2/2015

 This approach is worthwhile if cycle cutset is small.

 Finding the smallest cycle cutset is NP-hard
◦ Approximation algorithms exist

 This approach is called cutset conditioning.

A.I. 4210/2/2015

 Tree decomposition of the
constraint graph in a set of
connected subproblems.

 Each subproblem is solved
independently

 Resulting solutions are
combined.

 Necessary requirements:
◦ Every variable appears in at least one

of the subproblems.
◦ If two variables are connected in the

original problem, they must appear
together in at least one subproblem.

◦ If a variable appears in two
subproblems, it must appear in each
node on the path.

A.I.43

10/

2/2

01

5

 CSPs are a special kind of problem: states defined by
values of a fixed set of variables, goal test defined by
constraints on variable values

 Backtracking=depth-first search with one variable
assigned per node

 Variable ordering and value selection heuristics help
significantly

 Forward checking prevents assignments that lead to
failure.

 Constraint propagation does additional work to
constrain values and detect inconsistencies.

 The CSP representation allows analysis of problem
structure.

 Tree structured CSPs can be solved in linear time.
 Iterative min-conflicts is usually effective in practice.

