Artificial Intelligence
Informed search

Peter Antal

.............

mailto:antal@mit.bme.hu

Outline

» Informed = use problem-specific knowledge

» Which search strategies?
- Best-first search and its variants

» Heuristic functions?
> How to invent them

» Local search and optimization
> Hill climbing, local beam search, genetic algorithms,...

A.l. 9/25/2015

Reminder (,symbols&search”):

single state problem formulation
» A problem is defined by:

> An initial state, e.g. Arad
> Successor function S(X)= set of action-state pairs

- e.9. S(Arad)={<Arad — Zerind, Zerind>,...}
intial state + successor function = state space
> Goal test, can be

- Explicit, e.g. x="at bucharest’
- Implicit, e.qg. checkmate(x)
> Path cost (additive)
- e.g. sum of distances, number of actions executed, ...
- c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state.
Optimal solution has the lowest path cost.

A.l. Uninformed search 9/25/2015

Reminder: tree-search

function TREE-SEARCH(problem, fringe) return a solution or failure

fringe <~ INSERT(MAKE-NODE(INITIAL-STATE[problem)), fringe)
loop do

if EMPTY?(fringe) then return failure

node <~ REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)
fringe <— INSERT-ALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of
node expansion

A.l. 9/25/2015

Reminder: main properties of
uninformed search algorithms

Criterion Breadth- Uniform- Depth-First Depth- Iterative Bidirectional
First cost limited deepening search
Complete? YES* YES* NO YES, YES YES*
ifl>d
Time pd+1 pC*/e pm b! hd pd/2
Space pd+1 pC*le bm bl bd /2
Optimal? YES* YES* NO NO YES YES

A.l. Uninformed search 5

Fifteen Puzzle

Rubik’s Cube

Rubik’s Cube

» The cardinality: 1012

» Any position can be solved in 20 or fewer
moves (where a half-twist is counted as a
single move)! (?how is it possible?)

» average branching factor is ~13.3

» Invented in 1974 by Erno Rubik.

» Rubik's cube current world records

» How can we guide the search process???

http://www.youtube.com/watch?v=oC0B4b4J9Ys

Best-first search

» General approach of informed search:

- Best-first search: node is selected for expansion based on an
evaluation function f(n) in TREE-SEARCH)().

» ldea: evaluation function measures distance to
the goal.

- Choose node which appears best
» Implementation:

> fringe is queue sorted in decreasing order of desirability.
- Special cases: greedy search, A* search

A.l. 9/25/2015

A heuristic function

» [dictionary]“A rule of thumb, simplification,
or educated guess that reduces or limits the
search for solutions in domains that are
difficult and poorly understood.”

> h(n) = estimated cost of the cheapest path from
node n to goal node.

- If nis goal then h(n)=0

How to derive? (more information later)

A.l. 9/25/2015

10

Romania with step costs in km

Arad
Bucharest
Crajova

Dobreta
Eforie
Fagaras
Giurgiu
Hirsova
Iaci

Lugoj

366
0
160
242
161
176
77
151
226
244

Mehadia
Neamt

Oradea

Pitesti
Rimmicu Vikcea
Sibiu
Timxsoara
Urzicem
Vaslm

Zerind

241
13
380
100
193
233
320

80
199
374

digstance heuristic.

» hgp can NOT be
computed from the
problem description
itself

» In this example
f(n)=h(n)

> Expand node that is closest
to goal

= Greedy best-first search

Al 11

Greedy search example

Arad (366)

D

» Assume that we want to use greedy search to
solve the problem of travelling from Arad to
Bucharest.

» The initial state=Arad

Al

12

Greedy search example

Arad
Sibiu(253) Zerind(374)
Timisoara
(329)

» The first expansion step produces:
> Sibiu, Timisoara and Zerind

» Greedy best-first will select Sibiu.

Al 13

Greedy search example

Arad

Fagaras Oradea Rimnicu Vilcea
(176) (380) (193)

» If Sibiu is expanded we get:
- Arad, Fagaras, Oradea and Rimnicu Vilcea

» Greedy best-first search will select: Fagaras

Al

14

Greedy search example

Arad

Sibiu ucharest
(253) (0)

» If Fagaras is expanded we get:
> Sibiu and Bucharest

» Goal reached !!
- Yet not optimal (see Arad, Sibiu, Rimnicu Vilcea, Pitesti)

Al

15

Greedy search, evaluation

» Completeness: NO (cfr. DF-search)

> Check on repeated states
> Minimizing h(n) can result in false starts, e.g. lasi to Fagaras.

] Oradea

16

Greedy search, evaluation

» Completeness: NO (cfr. DF-search)

» Time complexity?
- Cfr. Worst-case DF-search O(b™)
(with m is maximum depth of search space)
- Good heuristic can give dramatic improvement.

A.l. 9/25/2015 17

Greedy search, evaluation

» Completeness: NO (cfr. DF-search)
» Time complexity: O(b™)
» Space complexity: O(p™)

- Keeps all nodes in memory

A.l. 9/25/2015

18

Greedy search, evaluation

» Completeness: NO (cfr. DF-search)
» Time complexity: O(b™)
» Space complexity: O(p™)
» Optimality? NO
- Same as DF-search

A.l. 9/25/2015

19

A* search

» Best-known form of best-first search.

» ldea: avoid expanding paths that are already
expensive.

» Evaluation function 7(n)=g(n) + h(n)
> g(n)the cost (so far) to reach the node.

> h(n) estimated cost to get from the node to the
closest goal.

> f(n) estimated total cost of path through nto goal.

A.l. 9/25/2015 20

A* search

» A* search uses an admissible heuristic

- A heuristic is admissible if it never overestimates
the cost to reach the goal (~optimistic).

Formally:
1. h(n) <= h*(n)where A*(n)is the true cost from n
2. h(n) >= 0so h(G)=0 for any goal G.

e.g. hg p(n) never overestimates the actual road distance

Theorem: If A(n)is admissible, A" using BEST-FIRST-
SEARCH () with selector function f(n)=h(n) is optimal.

A.l. 9/25/2015 21

Romania example

Al

9/25/2015

Eforie

22

A* search example

{2} The initial state

J66=0+366

» Find Bucharest starting at Arad
> f(Arad) = c(??,Arad)+h(Arad)=0+366=366

Al

23

A* search example

After expanding Arad {:_i.;d_d_:}
303=140+253 447=118+320 448=75+374

» Expand Arrad and determine 7(n)for each node
> f(Sibiu)=c(Arad,Sibiu)+h(Sibiu)=140+253=393
o f(Timisoara)=c(Arad,Timisoara)+h(Timisoara)=118+329=447
o f(Zerind)=c(Arad,Zerind)+h(Zerind)=75+374=449

» Best choice is Sibiu

Al

24

A* search example

ic] After expanding Sibin Arad
o -
{_smu“} Ch
447=118+320 440=754374

B46=280+366 415=238+176 G671=291+380 413=220+193

» Expand Sibiu and determine #(n) for each node
- f(Arad)=c(Sibiu,Arad)+h(Arad)=280+366=646
- f(Fagaras)=c(Sibiu,Fagaras)+h(Fagaras)=239+179=415
- f(Oradea)=c(Sibiu,Oradea)+h(Oradea)=291+380=671
> f(Rimnicu Vilcea)=c(Sibiu,Rimnicu Vilcea)+
h(Rimnicu Vilcea)=220+192=413
» Best choice is Rimnicu Vilcea

Al

25

A* search example

id) After empanding Rimnicu Wilcsa

< Aad
s ;,
= 447=118+320 440=75+4374

E#-E—EHDHEE 4-15—239+1Tﬁ G671= EQ'|+E|-E|D

525=366+160 417=317+100 553=300+253

» Expand Rimnicu Vilcea and determine 7(n)for each node
f(Craiova)=c(Rimnicu Vilcea, Craiova)+h(Craiova)=360+160=526

f(Pitesti)=c(Rimnicu Vilcea, Pitesti)+h(Pitesti)=317+100=417

f(Sibiu)=c(Rimnicu Vilcea,Sibiu)+h(Sibiu)=300+253=553

» Best choice is Fagaras

o

o

o

Al

26

A* search example

(e) After expanding Fagaras

< Aad
<’sa~,>
. 447=118+329 449=75+374

646_280+366 671 2014380

>

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

» Expand Fagaras and determine f(n)for each node
> f(Sibiu)=c(Fagaras, Sibiu)+h(Sibiu)=338+253=591

f(Bucharest)=c(Fagaras,Bucharest)+h(Bucharest)=450+0=450

» Best choice is Pitesti !l!

o

Al

A* search example

(f) After expanding Pitesti <1;;d_:_:‘>
’s@‘
447=118+329 440=754374
646-2&)-1»366 671 2014380 s -
o> Cd - @ G
591=338+4253 450=450+40 526_366+160 553—3(X)+253

- qmm) .‘ﬁm ..mrlm Vicza

418=41840 615=455+160 607=414+193

» Expand Pitesti and determine f(n) for each node
f(Bucharest)=c(Pitesti,Bucharest)+h(Bucharest)=418+0=418

» Best choice is Bucharest !!!
> Optimal solution (only if A(n)is admissable)

» Note values along optimal path !!

Al

28

Optimality of A*(standard proof)

}X\RT
rd
G

~ xez

» Suppose a suboptimal goal G, in the queue.
» Let nbe an unexpanded node on a shortest to optimal goal G.

f(G,) =g(G,) since h(G,)=0
> g(G) since G, is suboptimal
>=f(n) since Ais admissible

Since A(G,) > f(n), A* will never select G, for expansion (i.e. for checking, but
note that G, can be inside the queuef.

Al

29

BUT ... graph search

» Discards new paths to repeated state.
> Previous proof breaks down

» Solution:

- Add extra bookkeeping i.e. keep only the path with
lowest cost.

> Ensure that optimal path to any repeated state is
always first followed.

- Extra requirement on A(n). consistency (monotonicity)

A.l. 9/25/2015

30

Consistency

» A heuristic is consistent if
h(n)<c(n,a,n")+ h(n'") ’(/)
» If h is consistent, we have @\ hie)
f(n')=g(n')+ h(n')
=g(n)+c(n,a,n')+ h(n')
> o(n) + h(n) @
> f(n)
i.e. f(n) is non-decreasing along any path.

Theorem: If A(n)is consistent, A *using
RAPH-SEARCH is optimal

h(n))

A.l. 9/25/2015 31

Optimality of A*(more usefull)

» A* expands nodes in order of increasing fvalue

» Contours can be drawn in state space
> Uniform-cost search adds circles.

> F-contours are gradually
Added:

1) nodes with f(n)<C*

2) Some nodes on the goal
Contour (f(n)=C>.

Contour 7 has all nodes
with f=f, where f, < f,,,.

Al 32

A* search, evaluation

» Completeness: YES
> Since bands of increasing fare added
- Unless there are infinitly many nodes with f<f(G)

A.l. 9/25/2015

33

A* search, evaluation

» Completeness: YES

» Time complexity:

- Number of nodes expanded is still exponential in
the length of the solution.

A.l. 9/25/2015

34

A* search, evaluation

» Completeness: YES

» Time complexity: (exponential with path
length)

» Space complexity:
> |t keeps all generated nodes in memory
- Hence space is the major problem not time

A.l. 9/25/2015

35

A* search, evaluation

» Completeness: YES

» Time complexity: (exponential with path
length)

» Space complexity:(all nodes are stored)
» Optimality: YES

> Cannot expand £, until 7 is finished.
- A* expands all nodes with f(n)< C*
- A* expands some nodes with 7(n)=C*
- A* expands no nodes with 7(n)>C*

Also optimally efficient (not including ties)

A.l. 9/25/2015

36

Memory-bounded heuristic search

» Some solutions to A* space problems (maintain

completeness and optimality)
> Iterative-deepening A* (IDA¥%)
- Here cutoff information is the /~cost (g+#A) instead of
depth
- Recursive best-first search(RBFS)

- Recursive algorithm that attempts to mimic standard
best-first search with linear space.
> (simple) Memory-bounded A* ((S)MA¥)
- Drop the worst-leaf node when memory is full

A.l. 9/25/2015 37

Learning to search better

» All previous algorithms use fixed strategies.

» Agents can learn to improve their search by

exploiting the meta-/evel state space.

- Each meta-level state is a internal (computational) state of a
program that is searching in the object-/evel state space.

> In A* such a state consists of the current search tree
» A meta-level learning algorithm from
experiences at the meta-level.

A.l. 9/25/2015

38

Heuristic functions

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

» E.g for the 8-puzzle

> Avg. solution cost is about 22 steps (branching factor +/- 3)
- Exhaustive search to depth 22: 3.1 x 1010 states.

> A good heuristic function can reduce the search process.

Al

39

Heuristic functions

7 2 4 1 2

5 6 3 4 5

8 3 1 6 7 8
Start State Goal State

» E.g for the 8-puzzle knows two commonly used heuristics

» h; = the number of misplaced tiles
> h,(s)=8

» h, = the sum of the distances of the tiles from their goal
positions (manhattan distance).
o hy(s)=3+14+2+2+2+3+3+2=18

Al

Heuristic quality

» Effective branching factor b*

- |s the branching factor that a uniform tree of depth
d would have in order to contain N+ 17 nodes.

N+1=14+b*+(b%)* + ...+ (b%)°

- Measure is fairly constant for sufficiently hard
problems.

- Can thus provide a good guide to the heuristic’s
overall usefulness.

- A good value of b* is 1.

A.l. 9/25/2015

41

Heuristic quality and dominance

» 1200 random problems with solution lengths

from 2 to 24.

| Search Cost Effective Branching Factor

4| IDS A(hy) A*(hs) IDS A*(hy) A(hs) |
2 10 6 6 245 1.79 1.79
4 112 13 12 287 1.48 1.45
6 680 20 18 2.73 1.34 1.30
8 6384 39 25 2.80 1.33 1.24
10 47127 93 39 2.79 1.38 1.22
12 || 3644035 227 73 278 1.42 1.24
| 14 i 539 113 = 1.44 1.23
16 = 1301 211 1.45 1.25
18 = 3056 363 1.46 1.26
20 7276 676 1.47 1.27
22 18094 1219 1.48 1.28

24 l 39135 64l | 1.48 1.26 |

_ ——

v If A,(n) >= h,(n) for all n(both ac
then A, dominates h; and is better for search

missible)

A.l. 9/25/2015

42

Inventing admissible heuristics

» Admissible heuristics can be derived from the
exact solution cost of a relaxed version of the
problem:

- Relaxed 8-puzzle for A;: a tile can move anywhere

As a result, A#,(n) gives the shortest solution
- Relaxed 8-puzzle for A, : a tile can move to any adjacent square.

As a result, A,(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is
f;reater than the optimal solution cost of the
rea problem.
ABSolver found a useful heuristic for the Rubic

cube.

A.l. 9/25/2015

43

Inventing admissible heuristics

» Admissible heuristics can also be derived from the solution
cost of a subproblem of a given problem.

» This cost is a lower bound on the cost of the real problem.

» Pattern databases store the exact solution for every possible
subproblem instance.

> The complete heuristic is constructed using the patterns in the DB

* 2 4 1 2
* * 3 4 *
* 3 1 * * *

Start State Goal State

Al

44

Inventing admissible heuristics

» Another way to find an admissible heuristic is
through learning from experience:

- Experience = solving lots of 8-puzzles

> An inductive learning algorithm can be used to
predict costs for other states that arise during
search.

A.l. 9/25/2015

45

Local search and optimization

» Previously: systematic exploration of search
space.
> Path to goal is solution to problem

» YET, for some problems path is irrelevant.
- E.g 8-queens

» Different algorithms can be used ¥
- Local search

A.l. 9/25/2015

Local search and optimization

» Local search= use single current state and
move to neighboring states.

» Advantages:

- Use very little memory
- Find often reasonable solutions in large or infinite state spaces.

» Are also useful for pure optimization problems.

- Find best state according to some objective function.
- e.g. survival of the fittest as a metaphor for optimization.

A.l. 9/25/2015

47

Combinatorial optimization problems

» The ,knapsack”/backpack problem

» The travelling sales man problem

—

23; Helsinki
llllllll

» The ménage problem | B

48: Edinburgh 47: Copenhagen

1
46: Minsk

49: Dublin
Lours 8. Margo 18: Amsterdam : Berlin 35; Warsa w
5Q: Cat@fLond®n
1: Brusse 5: Kiev

Margo's guest

1 Milce M
2
Milce M’z guest

AAAAAA

he ma:;coloring problem, the 3-SAT pro

A.l. 9/25/2015 48

Thilisi

lem,...
(=B VP2V Py) A(=P ;v By) A(=Pyy v By)

Local search and optimization

A.l. 9/25/2015

Hill-climbing search

» “is a loop that continuously moves in the
direction of increasing value”
> |t terminates when a peak is reached.

» Hill climbing does not look ahead of the
immediate neighbors of the current state.

» Hill-climbing chooses randomly among the
set of best successors, if there is more than

one.
» Hill-climbing a.k.a. greedy local search

A.l. 9/25/2015

50

Hill-climbing search

function HILL-CLIMBING(problem) return a state that is a local
maximum

input: prob/em, a problem
local variables: current, a node.
neighbor, a node.

current < MAKE-NODE(INITIAL-STATE[problem])
loop do
neighbor < a highest valued successor of current

if VALUE [neighborl < VALUE[current] then return
STATE[currend

current <— neighbor

A.l. 9/25/2015

51

Hill-climbing example

» 8—queens problem (complete-state
formulation).

» Successor function: move a single queen to
another square in the same column.

» Heuristic function A(n). the number of pairs of
gueens that are attacking each other (directly
or indirectly).

A.l. 9/25/2015 52

Hill-climbing example

a)

b)

18.14 13.14

16 15 - 14 - 16
14 . 18 15 . 14
16

14

16
17

w 16
W8] = 551 W J5S) W
WS s W

14 17.14.18
A

18

a) shows a state of h=17 and the h-value for
each possible successor.

b) A local minimum in the 8-queens state space
(h=1).

Drawbacks

objective

\ \ \

» Ridge = sequence of local maxima difficult for greedy
algorithms to navigate

» Plateaux = an area of the state space where the
evaluation function is flat.

» Gets stuck 86% of the time.

Al

54

Hill-climbing variations

» Stochastic hill-climbing
- Random selection among the uphill moves.

- The selection probability can vary with the
steepness of the uphill move.

» First-choice hill-climbing
- cfr. stochastic hill climbing by generating

successors randomly until a better one is found.

» Random-restart hill-climbing
> Tries to avoid getting stuck in local maxima.

A.l. 9/25/2015

55

Simulated annealing

» Escape local maxima by allowing “bad” moves.

- ldea: but gradually decrease their size and frequency.
» Origin: Physics, annealing

» Bouncing ball analogy:

- Shaking hard (= high temperature).
> Shaking less (= lower the temperature).

» If T decreases slowly enough, best state is
reached.

» Applied for VLSI layout, airline scheduling, etc.

A.l. 9/25/2015

56

Simulated annealing

function SIMULATED-ANNEALING(problem, schedule) return a solution state
input: problem, a problem
schedule, a mapping from time to temperature
local variables: current, a node.
next, a node.

7, a “temperature” controlling the probability of downward
steps

current < MAKE-NODE(INITIAL-STATE[problem])
fort < 1 to o do
T « schedulel {
if 7 = Othen return current
next <— a randomly selected successor of current
AE <« VALUE[nexd - VALUE[currend
if AE > 0 then current « next
else current < next only with probability e4¢/7

A.l. 9/25/2015

57

Local beam search

» Keep track of k& states instead of one

> Initially: Kk random states
- Next: determine all successors of k states
> If any of successors is goal — finished
- Else select k best from successors and repeat.
» Major difference with random-restart search

- Information is shared among k search threads.

» Can suffer from lack of diversity.

- Stochastic variant: choose k successors at proportionallu to state
success.

A.l. 9/25/2015

58

Genetic algorithms

» Variant of local beam search with recombination.

Selection
of parents

Reproduction

/
/'/ .
.///'
Population
of offspring |
Replacement

Al 59

Genetic algorithm

function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual
input: population, a set of individuals
FITNESS-FN, a function which determines the quality of the individual
repeat
new._population < empty set
loop for i from 1 to SIZE(popu/ation) do

X « RANDOM_SELECTION(population, FITNESS_FN)
y <« RANDOM_SELECTION(population, FITNESS_FN)

child <~ REPRODUCE(x, y)
if (small random probability) then child « MUTATE(child)
add child to new_population
population <« new._population
until some individual is fit enough or enough time has elapsed
return the best individual

A.l. 9/25/2015 60

Local search in continuous spaces

» Discrete vs. continuous environments
> Successor function produces infinitly many states.
» How to solve?

- Discretize the neighborhood of each state

- Use gradient information to direct the local search
method.

+0
- The Newton-Rhapson method F
X < X+ aVf whererz{ : ,}
dcl &2

A.l. 9/25/2015 61

Summary

» Heuristic function
» Admissible heuristics and A*
» Optimization: simulated annealing method

» Suggested reading

- Prieditis: Machine Discovery of Effective Admissible
Heuristics, 1993

A.l. 9/25/2015

62

