
9/25/2015A.I. 1

Artificial Intelligence
Informed search

Peter Antal
antal@mit.bme.hu

mailto:antal@mit.bme.hu

 Informed = use problem-specific knowledge

 Which search strategies?
◦ Best-first search and its variants

 Heuristic functions?
◦ How to invent them

 Local search and optimization
◦ Hill climbing, local beam search, genetic algorithms,…

9/25/2015A.I. 2

 A problem is defined by:
◦ An initial state, e.g. Arad
◦ Successor function S(X)= set of action-state pairs

 e.g. S(Arad)={<Arad  Zerind, Zerind>,…}
intial state + successor function = state space

◦ Goal test, can be

 Explicit, e.g. x=‘at bucharest’
 Implicit, e.g. checkmate(x)

◦ Path cost (additive)

 e.g. sum of distances, number of actions executed, …

 c(x,a,y) is the step cost, assumed to be >= 0

A solution is a sequence of actions from initial to goal state.

Optimal solution has the lowest path cost.

9/25/2015A.I. Uninformed search 3

function TREE-SEARCH(problem,fringe) return a solution or failure

fringe  INSERT(MAKE-NODE(INITIAL-STATE[problem]), fringe)

loop do

if EMPTY?(fringe) then return failure

node  REMOVE-FIRST(fringe)

if GOAL-TEST[problem] applied to STATE[node] succeeds

then return SOLUTION(node)

fringe  INSERT-ALL(EXPAND(node, problem), fringe)

A strategy is defined by picking the order of
node expansion

9/25/2015A.I. 4

Criterion Breadth-

First

Uniform-

cost

Depth-First Depth-

limited

Iterative

deepening

Bidirectional

search

Complete? YES* YES* NO YES,

if l  d

YES YES*

Time bd+1 bC*/e bm bl bd bd/2

Space bd+1 bC*/e bm bl bd bd/2

Optimal? YES* YES* NO NO YES YES

A.I. Uninformed search 59/25/2015

1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

 The cardinality: 1019

 Any position can be solved in 20 or fewer
moves (where a half-twist is counted as a
single move)! (?how is it possible?)

 average branching factor is ~13.3

 Invented in 1974 by Ernő Rubik.

 Rubik's cube current world records
◦ http://www.youtube.com/watch?v=oC0B4b4J9Ys

 How can we guide the search process???

http://www.youtube.com/watch?v=oC0B4b4J9Ys

 General approach of informed search:
◦ Best-first search: node is selected for expansion based on an

evaluation function f(n) in TREE-SEARCH().

 Idea: evaluation function measures distance to
the goal.
◦ Choose node which appears best

 Implementation:

◦ fringe is queue sorted in decreasing order of desirability.

◦ Special cases: greedy search, A* search

9/25/2015A.I. 9

 [dictionary]“A rule of thumb, simplification,
or educated guess that reduces or limits the
search for solutions in domains that are
difficult and poorly understood.”
◦ h(n) = estimated cost of the cheapest path from

node n to goal node.

◦ If n is goal then h(n)=0

How to derive? (more information later)

9/25/2015A.I. 10

 hSLD=straight-line
distance heuristic.

 hSLD can NOT be
computed from the
problem description
itself

 In this example
f(n)=h(n)
◦ Expand node that is closest

to goal

= Greedy best-first search

A.I. 119/25/2015

 Assume that we want to use greedy search to
solve the problem of travelling from Arad to
Bucharest.

 The initial state=Arad

A.I. 129/25/2015

Arad (366)

 The first expansion step produces:
◦ Sibiu, Timisoara and Zerind

 Greedy best-first will select Sibiu.

A.I. 139/25/2015

Arad

Sibiu(253)

Timisoara

(329)

Zerind(374)

 If Sibiu is expanded we get:
◦ Arad, Fagaras, Oradea and Rimnicu Vilcea

 Greedy best-first search will select: Fagaras

A.I. 149/25/2015

Arad

Sibiu

Arad

(366)
Fagaras

(176)

Oradea

(380)

Rimnicu Vilcea

(193)

 If Fagaras is expanded we get:
◦ Sibiu and Bucharest

 Goal reached !!
◦ Yet not optimal (see Arad, Sibiu, Rimnicu Vilcea, Pitesti)

A.I. 159/25/2015

Arad

Sibiu

Fagaras

Sibiu

(253)

Bucharest

(0)

 Completeness: NO (cfr. DF-search)
◦ Check on repeated states

◦ Minimizing h(n) can result in false starts, e.g. Iasi to Fagaras.

A.I. 169/25/2015

 Completeness: NO (cfr. DF-search)

 Time complexity?
◦ Cfr. Worst-case DF-search

(with m is maximum depth of search space)

◦ Good heuristic can give dramatic improvement.

9/25/2015A.I. 17



O(bm)

 Completeness: NO (cfr. DF-search)

 Time complexity:

 Space complexity:
◦ Keeps all nodes in memory

9/25/2015A.I. 18



O(bm)



O(bm)

 Completeness: NO (cfr. DF-search)

 Time complexity:

 Space complexity:

 Optimality? NO
◦ Same as DF-search

9/25/2015A.I. 19



O(bm)



O(bm)

 Best-known form of best-first search.
 Idea: avoid expanding paths that are already

expensive.
 Evaluation function f(n)=g(n) + h(n)
◦ g(n) the cost (so far) to reach the node.
◦ h(n) estimated cost to get from the node to the

closest goal.
◦ f(n) estimated total cost of path through n to goal.

9/25/2015A.I. 20

 A* search uses an admissible heuristic
◦ A heuristic is admissible if it never overestimates

the cost to reach the goal (~optimistic).

Formally:

1. h(n) <= h*(n) where h*(n) is the true cost from n
2. h(n) >= 0 so h(G)=0 for any goal G.

e.g. hSLD(n) never overestimates the actual road distance

Theorem: If h(n) is admissible, A* using BEST-FIRST-
SEARCH() with selector function f(n)=h(n) is optimal.

9/25/2015A.I. 21

9/25/2015A.I. 22

 Find Bucharest starting at Arad
◦ f(Arad) = c(??,Arad)+h(Arad)=0+366=366

A.I. 239/25/2015

 Expand Arrad and determine f(n) for each node
◦ f(Sibiu)=c(Arad,Sibiu)+h(Sibiu)=140+253=393

◦ f(Timisoara)=c(Arad,Timisoara)+h(Timisoara)=118+329=447

◦ f(Zerind)=c(Arad,Zerind)+h(Zerind)=75+374=449

 Best choice is Sibiu

A.I. 249/25/2015

 Expand Sibiu and determine f(n) for each node
◦ f(Arad)=c(Sibiu,Arad)+h(Arad)=280+366=646

◦ f(Fagaras)=c(Sibiu,Fagaras)+h(Fagaras)=239+179=415

◦ f(Oradea)=c(Sibiu,Oradea)+h(Oradea)=291+380=671

◦ f(Rimnicu Vilcea)=c(Sibiu,Rimnicu Vilcea)+

h(Rimnicu Vilcea)=220+192=413

 Best choice is Rimnicu Vilcea

A.I. 259/25/2015

 Expand Rimnicu Vilcea and determine f(n) for each node
◦ f(Craiova)=c(Rimnicu Vilcea, Craiova)+h(Craiova)=360+160=526

◦ f(Pitesti)=c(Rimnicu Vilcea, Pitesti)+h(Pitesti)=317+100=417

◦ f(Sibiu)=c(Rimnicu Vilcea,Sibiu)+h(Sibiu)=300+253=553

 Best choice is Fagaras

A.I. 269/25/2015

 Expand Fagaras and determine f(n) for each node
◦ f(Sibiu)=c(Fagaras, Sibiu)+h(Sibiu)=338+253=591

◦ f(Bucharest)=c(Fagaras,Bucharest)+h(Bucharest)=450+0=450

 Best choice is Pitesti !!!

A.I. 279/25/2015

 Expand Pitesti and determine f(n) for each node
◦ f(Bucharest)=c(Pitesti,Bucharest)+h(Bucharest)=418+0=418

 Best choice is Bucharest !!!
◦ Optimal solution (only if h(n) is admissable)

 Note values along optimal path !!

A.I. 289/25/2015

 Suppose a suboptimal goal G2 in the queue.
 Let n be an unexpanded node on a shortest to optimal goal G.

f(G2) = g(G2) since h(G2)=0
> g(G) since G2 is suboptimal
>= f(n) since h is admissible

Since f(G2) > f(n), A* will never select G2 for expansion (i.e. for checking, but
note that G2 can be inside the queue).

A.I. 299/25/2015

 Discards new paths to repeated state.
◦ Previous proof breaks down

 Solution:
◦ Add extra bookkeeping i.e. keep only the path with

lowest cost.

◦ Ensure that optimal path to any repeated state is
always first followed.

 Extra requirement on h(n): consistency (monotonicity)

9/25/2015A.I. 30

 A heuristic is consistent if

 If h is consistent, we have

i.e. f(n) is non-decreasing along any path.

Theorem: If h(n) is consistent, A* using
GRAPH-SEARCH is optimal

9/25/2015A.I. 31



h(n)  c(n,a,n') h(n')



f (n')  g(n')  h(n')

 g(n)  c(n,a,n')  h(n')

 g(n)  h(n)

 f (n)

 A* expands nodes in order of increasing f value

 Contours can be drawn in state space
◦ Uniform-cost search adds circles.

◦ F-contours are gradually

Added:

1) nodes with f(n)<C*
2) Some nodes on the goal

Contour (f(n)=C*).

Contour i has all nodes

with f=fi, where fi < fi+1.

A.I. 329/25/2015

 Completeness: YES
◦ Since bands of increasing f are added

◦ Unless there are infinitly many nodes with f<f(G)

9/25/2015A.I. 33

 Completeness: YES

 Time complexity:
◦ Number of nodes expanded is still exponential in

the length of the solution.

9/25/2015A.I. 34

 Completeness: YES

 Time complexity: (exponential with path
length)

 Space complexity:
◦ It keeps all generated nodes in memory

◦ Hence space is the major problem not time

9/25/2015A.I. 35

 Completeness: YES

 Time complexity: (exponential with path
length)

 Space complexity:(all nodes are stored)

 Optimality: YES
◦ Cannot expand fi+1 until fi is finished.

◦ A* expands all nodes with f(n)< C*
◦ A* expands some nodes with f(n)=C*
◦ A* expands no nodes with f(n)>C*

Also optimally efficient (not including ties)

9/25/2015A.I. 36

 Some solutions to A* space problems (maintain
completeness and optimality)
◦ Iterative-deepening A* (IDA*)

 Here cutoff information is the f-cost (g+h) instead of
depth

◦ Recursive best-first search(RBFS)

 Recursive algorithm that attempts to mimic standard
best-first search with linear space.

◦ (simple) Memory-bounded A* ((S)MA*)

 Drop the worst-leaf node when memory is full

9/25/2015A.I. 37

 All previous algorithms use fixed strategies.

 Agents can learn to improve their search by
exploiting the meta-level state space.
◦ Each meta-level state is a internal (computational) state of a

program that is searching in the object-level state space.

◦ In A* such a state consists of the current search tree

 A meta-level learning algorithm from
experiences at the meta-level.

9/25/2015A.I. 38

 E.g for the 8-puzzle
◦ Avg. solution cost is about 22 steps (branching factor +/- 3)

◦ Exhaustive search to depth 22: 3.1 x 1010 states.

◦ A good heuristic function can reduce the search process.

A.I. 399/25/2015

 E.g for the 8-puzzle knows two commonly used heuristics

 h1 = the number of misplaced tiles
◦ h1(s)=8

 h2 = the sum of the distances of the tiles from their goal
positions (manhattan distance).
◦ h2(s)=3+1+2+2+2+3+3+2=18

A.I. 409/25/2015

 Effective branching factor b*
◦ Is the branching factor that a uniform tree of depth

d would have in order to contain N+1 nodes.

◦ Measure is fairly constant for sufficiently hard
problems.
 Can thus provide a good guide to the heuristic’s

overall usefulness.

 A good value of b* is 1.

9/25/2015A.I. 41



N 11 b*(b*) 2  ... (b*) d

 1200 random problems with solution lengths
from 2 to 24.

 If h2(n) >= h1(n) for all n (both admissible)

then h2 dominates h1 and is better for search

9/25/2015A.I. 42

 Admissible heuristics can be derived from the
exact solution cost of a relaxed version of the
problem:
◦ Relaxed 8-puzzle for h1 : a tile can move anywhere

As a result, h1(n) gives the shortest solution
◦ Relaxed 8-puzzle for h2 : a tile can move to any adjacent square.

As a result, h2(n) gives the shortest solution.

The optimal solution cost of a relaxed problem is
no greater than the optimal solution cost of the
real problem.

ABSolver found a useful heuristic for the Rubic
cube.

9/25/2015A.I. 43

 Admissible heuristics can also be derived from the solution
cost of a subproblem of a given problem.

 This cost is a lower bound on the cost of the real problem.

 Pattern databases store the exact solution for every possible
subproblem instance.
◦ The complete heuristic is constructed using the patterns in the DB

A.I. 449/25/2015

 Another way to find an admissible heuristic is
through learning from experience:
◦ Experience = solving lots of 8-puzzles

◦ An inductive learning algorithm can be used to
predict costs for other states that arise during
search.

9/25/2015A.I. 45

 Previously: systematic exploration of search
space.
◦ Path to goal is solution to problem

 YET, for some problems path is irrelevant.
◦ E.g 8-queens

 Different algorithms can be used
◦ Local search

9/25/2015A.I. 46

 Local search= use single current state and
move to neighboring states.

 Advantages:
◦ Use very little memory

◦ Find often reasonable solutions in large or infinite state spaces.

 Are also useful for pure optimization problems.
◦ Find best state according to some objective function.

◦ e.g. survival of the fittest as a metaphor for optimization.

9/25/2015A.I. 47

 The „knapsack”/backpack problem

 The travelling sales man problem

 The ménage problem

 The map coloring problem, the 3-SAT problem,...

9/25/2015A.I. 48

9/25/2015A.I. 49

 “is a loop that continuously moves in the
direction of increasing value”
◦ It terminates when a peak is reached.

 Hill climbing does not look ahead of the
immediate neighbors of the current state.

 Hill-climbing chooses randomly among the
set of best successors, if there is more than
one.

 Hill-climbing a.k.a. greedy local search

9/25/2015A.I. 50

function HILL-CLIMBING(problem) return a state that is a local
maximum

input: problem, a problem

local variables: current, a node.

neighbor, a node.

current  MAKE-NODE(INITIAL-STATE[problem])

loop do

neighbor  a highest valued successor of current
if VALUE [neighbor] ≤ VALUE[current] then return

STATE[current]

current  neighbor

9/25/2015A.I. 51

 8-queens problem (complete-state
formulation).

 Successor function: move a single queen to
another square in the same column.

 Heuristic function h(n): the number of pairs of
queens that are attacking each other (directly
or indirectly).

9/25/2015A.I. 52

a) shows a state of h=17 and the h-value for
each possible successor.

b) A local minimum in the 8-queens state space
(h=1).

A.I. 539/25/2015

a) b)

 Ridge = sequence of local maxima difficult for greedy
algorithms to navigate

 Plateaux = an area of the state space where the
evaluation function is flat.

 Gets stuck 86% of the time.

A.I. 549/25/2015

 Stochastic hill-climbing
◦ Random selection among the uphill moves.
◦ The selection probability can vary with the

steepness of the uphill move.

 First-choice hill-climbing
◦ cfr. stochastic hill climbing by generating

successors randomly until a better one is found.

 Random-restart hill-climbing
◦ Tries to avoid getting stuck in local maxima.

9/25/2015A.I. 55

 Escape local maxima by allowing “bad” moves.
◦ Idea: but gradually decrease their size and frequency.

 Origin: Physics, annealing

 Bouncing ball analogy:
◦ Shaking hard (= high temperature).

◦ Shaking less (= lower the temperature).

 If T decreases slowly enough, best state is
reached.

 Applied for VLSI layout, airline scheduling, etc.

9/25/2015A.I. 56

function SIMULATED-ANNEALING(problem, schedule) return a solution state

input: problem, a problem

schedule, a mapping from time to temperature

local variables: current, a node.

next, a node.

T, a “temperature” controlling the probability of downward
steps

current  MAKE-NODE(INITIAL-STATE[problem])

for t  1 to ∞ do

T  schedule[t]
if T = 0 then return current

next  a randomly selected successor of current

∆E  VALUE[next] - VALUE[current]

if ∆E > 0 then current  next

else current  next only with probability e∆E /T

9/25/2015A.I. 57

 Keep track of k states instead of one
◦ Initially: k random states

◦ Next: determine all successors of k states

◦ If any of successors is goal  finished
◦ Else select k best from successors and repeat.

 Major difference with random-restart search
◦ Information is shared among k search threads.

 Can suffer from lack of diversity.
◦ Stochastic variant: choose k successors at proportionallu to state

success.

9/25/2015A.I. 58

 Variant of local beam search with recombination.

A.I. 599/25/2015

function GENETIC_ALGORITHM(population, FITNESS-FN) return an individual

input: population, a set of individuals

FITNESS-FN, a function which determines the quality of the individual

repeat

new_population  empty set

loop for i from 1 to SIZE(population) do

x  RANDOM_SELECTION(population, FITNESS_FN)
y  RANDOM_SELECTION(population, FITNESS_FN)

child  REPRODUCE(x,y)

if (small random probability) then child  MUTATE(child)
add child to new_population

population  new_population
until some individual is fit enough or enough time has elapsed

return the best individual

9/25/2015A.I. 60

 Discrete vs. continuous environments
◦ Successor function produces infinitly many states.

 How to solve?
◦ Discretize the neighborhood of each state .
◦ Use gradient information to direct the local search

method.

◦ The Newton-Rhapson method

9/25/2015A.I. 61







x x f wheref 
f

x1
,
f

x2
,...









 Heuristic function

 Admissible heuristics and A*

 Optimization: simulated annealing method

 Suggested reading
◦ Prieditis: Machine Discovery of Effective Admissible

Heuristics, 1993

9/25/2015A.I. 62

