Artificial Intelligence Intelligent agents

<u>Peter Antal</u> <u>antal@mit.bme.hu</u>

Outline

- Agents and environments.
- The concept of rational behavior.
- Environment properties.
- Agent structures.
- Decision theory.

Agents and environments

- Agents include human, robots, softbots, thermostats, etc.
- The agent function maps percept sequence to actions

$$f: P^* \to A$$

 An agent can perceive its own actions, but not always it effects.

Agents and environments

- The agent function will internally be represented by the agent program.
- The agent program runs on the physical architecture to produce f.

September 11, 2015

- Environment: square A and B
- Percepts: [location and content] e.g. [A, Dirty]
- Actions: left, right, suck, and no-op

Percept sequence	Action
[A,Clean]	Right
[A, Dirty]	Suck
[B, Clean]	Left
[B, Dirty]	Suck
[A, Clean],[A, Clean]	Right
[A, Clean],[A, Dirty]	Suck

function REFLEX-VACUUM-AGENT ([*location, status*]) return an action
if status == Dirty then return Suck
else if location == A then return Right
else if location == B then return Left

What is the right function? Can it be implemented in a small agent program?

The concept of rationality

- A rational agent is one that does the right thing.
 - Every entry in the table is filled out correctly.
- What is the right thing?
 - Approximation: the most *succesfull* agent.
 - Measure of success?
- Performance measure should be objective
 - E.g. the amount of dirt cleaned within a certain time.
 - E.g. how clean the floor is.
 - •

Performance measure according to what is wanted in the environment instead of how the agents should behave.

- What is rational at a given time depends on four things:
 - Performance measure,
 - Prior environment knowledge,
 - Actions,
 - Percept sequence to date (sensors).

DEF: A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date and prior environment knowledge.

- Rationality \neq omniscience
 - An omniscient agent knows the actual outcome of its actions.
- Rationality \neq perfection
 - Rationality maximizes *expected* performance, while perfection maximizes *actual* performance.

- The proposed definition requires:
 - Information gathering/exploration
 - To maximize future rewards
 - Learn from percepts
 - Extending prior knowledge
 - Agent autonomy
 - Compensate for incorrect prior knowledge

Environments

- To design a rational agent we must specify its task environment.
- PEAS description of the environment:
 - Performance
 - Environment
 - Actuators
 - Sensors

Environments

- E.g. Fully automated taxi:
 - PEAS description of the environment:
 - Performance
 - · Safety, destination, profits, legality, comfort
 - Environment
 - Streets/freeways, other traffic, pedestrians, weather,, ...
 - Actuators
 - Steering, accelerating, brake, horn, speaker/display,...
 - Sensors

. . .

• Video, sonar, speedometer, engine sensors, keyboard, GPS,

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??				
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

Fully vs. partially observable: an environment is full observable when the sensors can detect all aspects that are relevant to the choice of action.

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??				
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

Fully vs. partially observable: an environment is full observable when the sensors can detect all aspects that are relevant to the choice of action.

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

Deterministic vs. stochastic: if the next environment state is completely determined by the current state the executed action then the environment is deterministic.

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??				
Episodic??				
Static??				
Discrete??				
Single-agent??				

Deterministic vs. stochastic: if the next environment state is completely determined by the current state the executed action then the environment is deterministic.

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??				
Static??				
Discrete??				
Single-agent??				

Episodic vs. sequential: In an episodic environment the agent's experience can be divided into atomic steps where the agents perceives and then performs A single action. The choice of action depends only on the episode itself

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??				
Static??				
Discrete??				
Single-agent??				

Episodic vs. sequential: In an episodic environment the agent's experience can be divided into atomic steps where the agents perceives and then performs A single action. The choice of action depends only on the episode itself

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??	NO	NO	NO	NO
Static??				
Discrete??				
Single-agent??				

Static vs. dynamic: If the environment can change while the agent is choosing an action, the environment is dynamic. Semi-dynamic if the agent's performance changes even when the environment remains the same.

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??	NO	NO	NO	NO
Static??				
Discrete??				
Single-agent??				

Static vs. dynamic: If the environment can change while the agent is choosing an action, the environment is dynamic. Semi-dynamic if the agent's performance changes even when the environment remains the same.

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??	NO	NO	NO	NO
Static??	YES	YES	SEMI	NO
Discrete??				
Single-agent??				

Discrete vs. continuous: This distinction can be applied to the state of the environment, the way time is handled and to the percepts/actions of the agent.

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??	NO	NO	NO	NO
Static??	YES	YES	SEMI	NO
Discrete??				
Single-agent??				

Discrete vs. continuous: This distinction can be applied to the state of the environment, the way time is handled and to the percepts/actions of the agent.

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??	NO	NO	NO	NO
Static??	YES	YES	SEMI	NO
Discrete??	YES	YES	YES	NO
Single-agent??				

Single vs. multi-agent: Does the environment contain other agents who are also maximizing some performance measure that depends on the current agent's actions?

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??	NO	NO	NO	NO
Static??	YES	YES	SEMI	NO
Discrete??	YES	YES	YES	NO
Single-agent??				

Single vs. multi-agent: Does the environment contain other agents who are also maximizing some performance measure that depends on the current agent's actions?

	Solitaire	Backgammom	Intenet shopping	Taxi
Observable??	FULL	FULL	PARTIAL	PARTIAL
Deterministic??	YES	NO	YES	NO
Episodic??	NO	NO	NO	NO
Static??	YES	YES	SEMI	NO
Discrete??	YES	YES	YES	NO
Single-agent??	YES	NO	NO	NO

The simplest environment is

- Fully observable, deterministic, episodic, static, discrete and single-agent.
- Most real situations are:
 - Partially observable, stochastic, sequential, dynamic, continuous and multi-agent.

Agent types

How does the inside of the agent work?

- Agent = architecture + program
- All agents have the same skeleton:
 - Input = current percepts
 - Output = action
 - Program = manipulates input to produce output
- Note difference with agent function.

Agent types

Function TABLE-DRIVEN_AGENT(*percept*) returns an action

static: *percepts*, a sequence initially empty *table*, a table of actions, indexed by percept sequence

append *percept* to the end of *percepts action* \leftarrow LOOKUP(*percepts*, *table*) **return** *action*

This approach is doomed to failure

Agent types

- Four basic kind of agent programs will be discussed:
 - Simple reflex agents
 - Model-based reflex agents
 - Goal-based agents
 - Utility-based agents

All these can be turned into learning agents.

Agent types; simple reflex

- Select action on the basis of *only the current* percept.
 - E.g. the vacuum-agent
- Large reduction in possible percept/action situations(next page).
- Implemented through condition-action rules
 - If dirty then suck

function REFLEX-VACUUM-AGENT ([*location, status*]) return an action
if status == Dirty then return Suck
else if location == A then return Right
else if location == B then return Left

Agent types; simple reflex

function SIMPLE-REFLEX-AGENT(percept) returns an action

static: rules, a set of condition-action rules

 $state \leftarrow INTERPRET-INPUT(percept)$ $rule \leftarrow RULE-MATCH(state, rule)$ $action \leftarrow RULE-ACTION[rule]$ return action

Will only work if the environment is *fully observable* otherwise infinite loops may occur.

Agent types; reflex and state

- To tackle *partially observable* environments.
 - Maintain internal state
- Over time update state using world knowledge
 - How does the world change.
 - How do actions affect world.
 - \Rightarrow Model of World

Agent types; reflex and state

function REFLEX-AGENT-WITH-STATE(*percept*) returns an action

static: *rules*, a set of condition-action rules *state*, a description of the current world state *action*, the most recent action.

state ← UPDATE-STATE(state, action, percept) $rule \leftarrow RULE-MATCH(state, rule)$ $action \leftarrow RULE-ACTION[rule]$ return action

Agent types; goal-based

- The agent needs a goal to know which situations are desirable.
 - Things become difficult when long sequences of actions are required to find the goal.
- Typically investigated in search and planning research.
- Major difference: future is taken into account
- Is more flexible since knowledge is represented explicitly and can be manipulated.

Agent types; utility-based

- Certain goals can be reached in different ways.
 - Some are better, have a higher utility.
- Utility function maps a (sequence of) state(s) onto a real number.
- Improves on goals:
 - Selecting between conflicting goals
 - Select appropriately between several goals based on likelihood of success.

September 11, 2015

Decision theory probability theory + utility theory

- Decision situation:
 - Actions
 - Outcomes
 - Probabilities of outcomes
 - Utilities/losses of outcomes
 - Maximum Expected Utility Principle (MEU)
 - Best action is the one with maximum expected utility

 a_i o_j $p(o_j | a_i)$ $U(o_j | a_i)$ $EU(a_i) = \sum_j U(o_j | a_i) p(o_j | a_i)$ $a^* = \arg\max_i EU(a_i)$

Decision theory probability theory + utility theory

- Decision situation:
 - Actions
 - Outcomes
 - Probabilities of outcomes
 - Utilities/losses of outcomes

 $\begin{array}{l}
a_i \\
o_j \\
p(o_j \mid a_i) \\
U(o_j \mid a_i)
\end{array}$

- What is rational at a given time depends on four things:
 - Performance measure,
 - Prior environment knowledge,
 - Actions,
 - Percept sequence to date (sensors).

DEF: A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date and prior environment knowledge.

Agent types; learning

- All previous agent– programs describe methods for selecting actions.
 - Yet it does not explain the origin of these programs.
 - Learning mechanisms can be used to perform this task.
 - Teach them instead of instructing them.
 - Advantage is the robustness of the program toward initially unknown environments.

September 11, 2015

Agent types; learning

- Learning element. introduce improvements in performance element.
 - Critic provides feedback on agents performance based on fixed performance standard.
- Performance element: selecting actions based on percepts.
 - Corresponds to the previous agent programs
- Problem generator: suggests actions that will lead to new and informative experiences.
 - Exploration vs. exploitation

Summary

- Agents interact with environments through actuators and sensors
- The agent function describes what the agent does in all circumstances.
- The performance measure evaluates the environment sequence.
- A perfectly rational agent maximizes expected performance.
- Environments are categorized along several dimensions:
 - observable? deterministic? episodic? static? discrete? single-agent?
- Several basic agent architectures exist:
 - reflex, reflex with state, goal-based, utility-based