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Outline

» Can we represent exactly (in)dependencies by a BN?
- From a causal model? Suff.&nec.?

» Can we interpret
- edges as causal relations
- with no hidden variables?
- in the presence of hidden variables?
> local models as autonomous mechanisms?

» Can we infer the effect of interventions?
» Optimal study design to infer the effect of interventions?




Motivation: from observational inference...

» In a Bayesian network, any query can be
answered corresponding to passive
observations: p(Q=q|E=e).

- What is the (conditional) probability of Q=g given
that £=e.

- Note that Q can preceed temporally E.

» Specification: p(X), p(Y|X)
» Joint distribution: p(X,Y)
» Inferences: p(X), p(Y), p(Y|X), p(X]Y)
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Motivation: to interventional inference...

Perfect intervention: do(X=x) as set X to x.
What is the relation of p(Q=q|E=e) and p(Q=qg|do(E=e))?

v Vv

» Specification: p(X), p(Y|X)
» Joint distribution: p(X,Y)
» Inferences:
» P(Y|X=x)=p(Y|do(X=x))
» P(X[Y=y)#p(X|do(Y=y))

What is a formal knowledge representation of a causal model?
What is the formal inference method?

v Vv
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Motivation: and to counterfactual inference

Imagery observations and interventions:

- We observed X=x, but imagine that x’ would have been observed: denoted as X’=x’.
- We set X=x, but imagine that x’ would have been set: denoted as do(X’=x’).

What is the relation of

> Observational p(Q=qg|E=e, X=x’)

> Interventional p(Q=q|E=e, do(X=x"))

- Counterfactual p(Q’=q’|Q=q, E=e, do(X=x), do(X’=x"))

v

v

» O: What is the probability that the patient recovers if he takes the drug x’.
I:What is the probability that the patient recovers if we prescribe* the drug x’.

» C: Given that the patient did not recovered for the drug x, what would have
been the probability that patient recovers if we had prescribed* the drug x’,
instead of x.

» ~C (time-shifted): Given that patient did not recovered for the drug x and he
has not respond well**, what is the probability that patient will recover if we
change the prescribed* drug x to x".

v

poe that the patient is fully compliant.

ither he will.
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Challenges in a complex domain

The domain is defined by the joint distribution
P(X;,..., X,|Structure,parameters)

. ?
1. Representation of parameteres T
,Ssmall number of parameters” quantitave
2. Representation of independencies ~ passive
,what is relevant for diagnosis qualitative (Observational)
3. Representation of causal relations /A i
clive
,what is the effect of a treatment” (interventional,
Representation of possible worlds imagery

(counterfactual)



Principles of causality

v vV v

strong association,
X precedes temporally Y,

Blausible explanation without alternative explanations
ased on confounding,

necessity (generally: if cause is removed, effect is
decreased or actually: y would not have been occurred
with that much probability if x had not been present),

sufficiency (generally: if exposure to cause is increased,
effect is increased or actually: y would have been occurred
with larger probability if x had been present).

Autonomous, transportable mechanism.

The probabilistic definition of causation formalizes many,
but for example not the counterfactual aspects.
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Conditional independence -of)

1,(X;Y|Z) or (X1LY|Z), denotes that X is independent
of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with
P(z)>0.

(Almost) alternatively, 1,(X;Y|2) iff
P(X|Z,Y)= P(X|Z) for all z,y with P(z,y)>0.

Other notations: D,(X;Y|Z) =def= 4 Ix(X;Y|Z)
Contextual independence: for not all z.




The independence model of a
distribution

The independence map (model) M of a
distribution P is the set of the valid
independence triplets:

MP:{IP,] (X] ,Y'| |Z'|)!"'! IP,K(XK;YKlzK)}

If P(X,Y,Z) is a Markov chain, then O-O-@
Mp={D(X;Y), D(Y;2), 1(X;Z|Y)}
Normally/almost always: D(X;2)
Exceptionally: I(X;Z)




The independence map of a N-BN

 »

If P(Y,X,Z) Is a naive Bayesian network, then
Mp={D(X;Y), D(Y;2), I(X;Z]Y)}
Normally/almost always: D(X;Z)
Exceptionally: I(X;Z)




Bayesian networks
Directed acyclic graph (DAG)

- nodes - random variables/domain entities
- edges - direct probabilistic dependencies
(edges- causal relations

Local models - P(X;[Pa(X;)) |

Three interpretations@

3. Concise representation of joint

distributions
P(M,0O,D,S,T) =

P(M)P(O|M)P(D|O,

P(O|M)]

S|D)P(T|S,M)

1. Causal model

P:{IP,l(Xl;Yllz%;' .}

2. Graphical representation of
(in)dependencies



Inferring independencies from
structure: d-separation

1c(X;Y|Z) denotes that X is d-separated
(directed separated) from Y by Z in directed

graph G. .
o | O—1O0+O+0+0
o | OO0+ 1010
o | O—0 R OO

O O




d-separation and the global
Markov condition

Definition 7 A distribution F(X1,. .., X,) obeys the global Markov condition w.r.t. DAG G, if
VX, Y,ZCU (X LY|Z),; = (X LY|Z)p, (9)

where (X 1l Y|Z).; denotes that X andY are d-separated by Z, that is if every path p
between a node in X and a node in Y is blocked by Z as follows

1. either path p contains a node n. in Z with non-converging arrows (i.e. — n — or
— n —+),

2. or path p contains a node n. not in Z with converging arrows (i.e. — n +) and none of
its descendants of n is in Z.




Representation of independencies

D-separation provides a sound and complete, computationally efficient algorithm to read off
an (in)dependency model consisting the independencies that are valid in all distributions
Markov relative to G, thatisv¥ X, Y, Z CV

(X UL Y|Z); & (X LY|Z)p in all P Markov relative to G). (10)

For certain distributions exact representation is not possible by Bayesian networks, e.g.:
1. Intransitive Markov chain: X=>Y=>Z

2. Pure multivariate cause: {X,Z}=2>Y
3. Diamond structure:

P(X,Y,Z,V) with M={D(X;Z), D(X;Y), D(V;X), D(V;2),
[(V;YI{X,Z}), ICX;Z[{V,Y)).. }.




Association vs. Causation: Markov
chain

Causal models:

Markov chain

P(Xy,...)
Mp={I(Xi+1:Xi.1|X))}
Jfirst order Markov propertv”

Flow of time?



The building block of causality:
v-structure (arrow of time)

P(X),p(Z]X),p(Y|2)

O-O-®

P(X),p(Z[X,Y),p(Y)
P(X|2).p(2]Y).p(Y) “transitive” M # ,intransitive” M
@ @ @ .o @
P(X[2),p(2),p(Y|2)

m ,v-structure”

Mp={D(X;Z), D(Z;Y), D(X,Y), I(X;Y|2)} Mp={D(X;Z), D(Y;2), 1(X;Y), D(X;Y|Z) }

Often: present knowledge renders future states conditionally independent.
(confounding)

ver(?): present knowledge renders past states conditionally independent.

Qackward/atemporal confounding)




Interventional inference in causal
Bayesian networks

» (Passive, observational) inference
> P(Query|Observations)

» Interventionist inference
- P(Query|Observations, Interventions)

» Counterfactual inference
- P(Query| Observations, Counterfactual conditionals)




Interventions and graph surgery

If G is a causal model, then compute p(Y|do(X=x)) by
1. deleting the incoming edges to X
2. setting X=X
3. performing standard Bayesian network inference.

@ -

-




Summary

Can we represent exactly (in)dependencies by a BN?
» almost always

Can we interpret
- edges as causal relations
with no hidden variables?

compelled edges as a filter
in the presence of hidden variables?

Sometimes, e.g. confounding can be excluded in certain cases
in local models as autonomous mechanisms?
- apriori knowledge, e.g. Causal Markov Assumption

Can we infer the effect of interventions in a causal model?

» Graph surgery with standard inference in BNs
Optimal study design to infer the effect of interventions?

» With no hidden variables: yes, in a non-Bayesian framework

» In the presence of hidden variables: open issue

Suggested reading
> J. Pearl: Causal inference in statistics, 2009




