Adapted from AIMA slides

Bayesian networks

Peter Antal antal@mit.bme.hu

Outline

- Naïve Bayesian networks
- Tree-augmented Naíve Bayesian networks
- Bayesian networks
- Special local models
 - Noisy-OR
 - Decision tree CPDs
 - Decision graph CPDs

Next lectures

- Knowledge engineering, KE, where do the numbers come from, ALARM, OC, bias
- Hidden Markov Models, HMM
- Causality
- DSS

The joint probability distribution Classical vs probabilistic logic

$P_1(X_1)$	 $P_k(X_k)$	KB	$P(X_1,X_1)$
0	0	0	.01
1	1	1	.1

Inference by enumeration, contd.

Every question about a domain can be answered by the joint distribution.

Typically, we are interested in the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

Then the required summation of joint entries is done by summing out the hidden variables:

$$P(Y \mid E = e) = \alpha P(Y,E = e) = \alpha \Sigma_h P(Y,E = e, H = h)$$

- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Conditional independence

"Probability theory=measure theory+independence" $I_P(X;Y|Z)$ or $(X \perp Y|Z)_P$ denotes that X is independent of Y given Z: P(X;Y|z)=P(Y|z) P(X|z) for all z with P(z)>0.

(Almost) alternatively, $I_P(X;Y|Z)$ iff P(X|Z,Y) = P(X|Z) for all z,y with P(z,y) > 0.

Other notations: $D_P(X;Y|Z) = def = \neg I_P(X;Y|Z)$

Contextual independence: for not all z.

Naive Bayesian network (NBN)

Decomposition of the joint:

$$P(Y,X_1,...,X_n) = P(Y)\prod_i P(X_i,|Y,X_1,...,X_{i-1})$$
 //by the chain rule = $P(Y)\prod_i P(X_i,|Y)$ // by the N-BN assumption 2n+1 parameteres!

Diagnostic inference:

$$P(Y|x_{i1},...,x_{ik}) = P(Y)\prod_{j}P(x_{ij},|Y) / P(x_{i1},...,x_{ik})$$

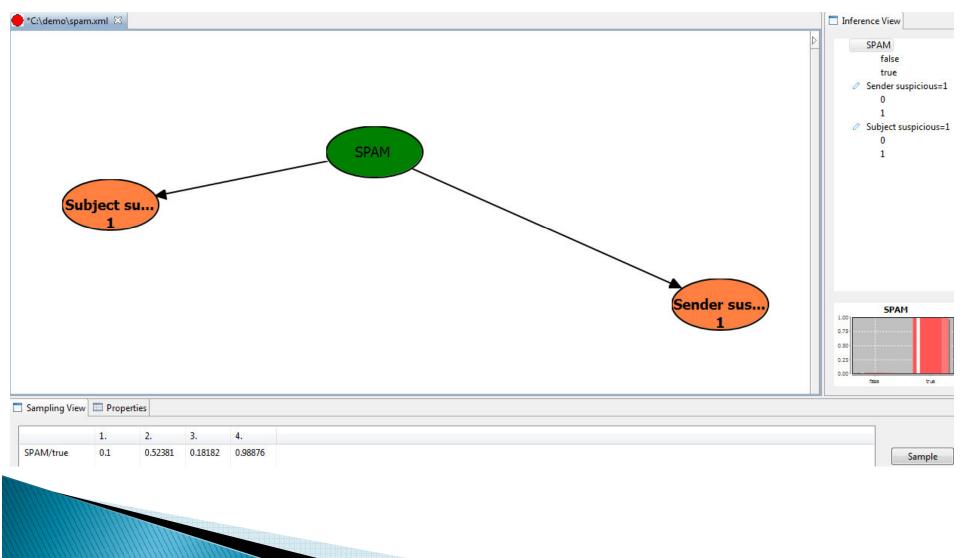
If Y is binary, then the odds

$$P(Y=1|x_{i1},...,x_{ik}) / P(Y=0|x_{i1},...,x_{ik}) = P(Y=1)/P(Y=0) \prod_{j} P(x_{ij},|Y=1) / P(x_{ij},|Y=0)$$
Flu
Coughing

p(Flu = present | Fever = absent, Coughing = present)

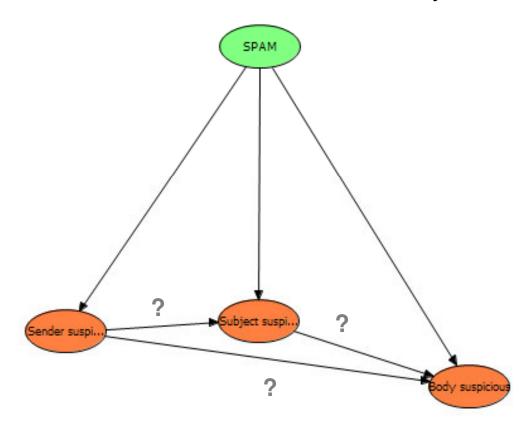
 $\propto p(Flu = present) p(Fever = absent | Flu = present) p(Coughing = present | Flu = present)$

SPAM filter by N-BN



SPAM filter by tree-augmented N-BN

More variables → increased chance of redundancy!



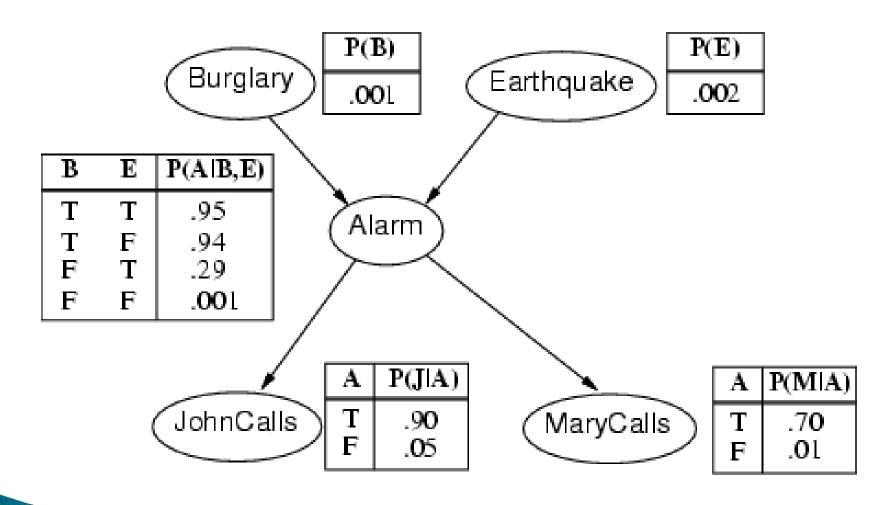
Bayesian networks

- A simple, graphical notation for conditional independence assertions and hence for compact specification of full joint distributions
- Syntax:
 - a set of nodes, one per variable
 - a directed, acyclic graph (link ≈ "directly influences")
 - a conditional distribution for each node given its parents:
 P (X_i | Parents (X_i))
- In the simplest case, conditional distribution represented as a conditional probability table (CPT) giving the distribution over X_i for each combination of parent values

Example

- I'm at work, neighbor John calls to say my alarm is ringing, but neighbor Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a burglar?
- Variables: Burglary, Earthquake, Alarm, JohnCalls, MaryCalls
- Network topology reflects "causal" knowledge:
 - A burglar can set the alarm off
 - An earthquake can set the alarm off
 - The alarm can cause Mary to call
 - The alarm can cause John to call

Example contd.



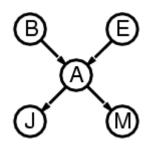
Compactness

- A CPT for Boolean X_i with k Boolean parents has 2^k rows for the combinations of parent values
- Each row requires one number p for $X_i = true$ (the number for $X_i = false$ is just 1-p)
- If each variable has no more than k parents, the complete network requires $O(n \cdot 2^k)$ numbers
- I.e., grows linearly with n, vs. $O(2^n)$ for the full joint distribution
- For burglary net, 1 + 1 + 4 + 2 + 2 = 10 numbers (vs. $2^5-1 = 31$)

Semantics

The full joint distribution is defined as the product of the local conditional distributions:

$$P(X_1, ..., X_n) = \pi_{i=1} P(X_i / Parents(X_i))$$



e.g.,
$$P(j \land m \land a \land \neg b \land \neg e)$$

$$= P(j \mid a) P(m \mid a) P(a \mid \neg b, \neg e) P(\neg b) P(\neg e)$$

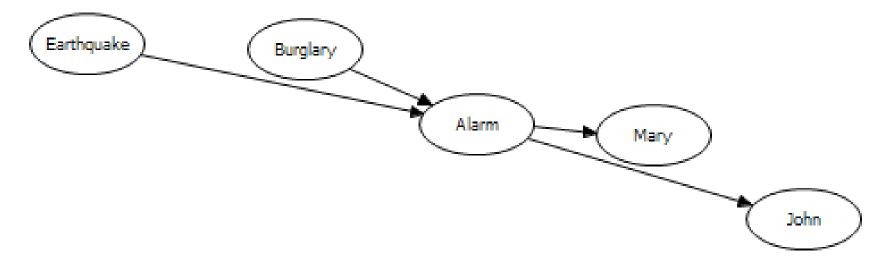
Constructing Bayesian networks

- ▶ 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n
 - add X_i to the network
 - select parents from X_1, \ldots, X_{i-1} such that $P(X_i \mid Parents(X_i)) = P(X_i \mid X_1, \ldots, X_{i-1})$

This choice of parents guarantees:

$$P(X_1, ..., X_n) = \pi_{i=1}^n P(X_i / X_1, ..., X_{i-1})$$
 //(chain rule)
= $\pi_{i=1}^n P(X_i / Parents(X_i))$ //(by construction)

(Re)constructing the example



- 1. Choose an ordering of variables X_1, \ldots, X_n
- 2. For i = 1 to n add X_i to the network select parents from X_1, \ldots, X_{i-1} such that $\mathbf{P}(X_i \mid Parents(X_i)) = \mathbf{P}(X_i \mid X_1, \ldots, X_{i-1})$

Noisy-OR

Noisy-OR distributions model multiple noninteracting causes

- 1) Parents $U_1 \dots U_k$ include all causes (can add leak node)
- 2) Independent failure probability q_i for each cause alone

$$\Rightarrow P(X|U_1...U_j, \neg U_{j+1}...\neg U_k) = 1 - \prod_{i=1}^j q_i$$

Cold	Flu	Malaria	P(Fever)	$P(\neg Fever)$
F	F	F	0.0	1.0
F	F	Т	0.9	0.1
F	T	F	0.8	0.2
F	T	T	0.98	$0.02 = 0.2 \times 0.1$
T	F	F	0.4	0.6
T	F	T	0.94	$0.06 = 0.6 \times 0.1$
Т	Т	F	0.88	$0.12 = 0.6 \times 0.2$
Т	Т	Т	0.988	$0.012 = 0.6 \times 0.2 \times 0.1$

Number of parameters linear in number of parents

BAYES CUBE (~BAYES EYE)

Summary

- Conditional independencies allows:
 - efficient representation of the joint probabilitity distribution,
 - efficient inference to compute conditional probabilites.
- Bayesian networks use directed acyclic graphs to represent
 - conditional independencies,
 - conditional parameters,
 - optionally, causal mechanisms (see Knowledge engineering lecture later!).
- Design of variables and order of the variables can drastically influence structure
 - (see Knowledge engineering lecture later!)
- Canonical conditional models can further increase efficiency.
- Suggested reading:
 - Charniak: Bayesian networks without tears, 1991