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 Reminder

 A real-life example & demo for the homework

 Uncertainty

 Probability

 Syntax and Semantics

 Inference

 Independence and Bayes' Rule



 Certain goals can be 
reached in different 
ways.
◦ Some are better, have a higher 

utility.

 Utility function maps a 
(sequence of) state(s) 
onto a real number.

 Improves on goals:
◦ Selecting between conflicting 

goals
◦ Select appropriately between 

several goals based on 
likelihood of success.
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 What is rational at a given time depends on 
four things:
◦ Performance measure,

◦ Prior environment knowledge,

◦ Actions,

◦ Percept sequence to date (sensors). 

 DEF: A rational agent chooses whichever action 
maximizes the expected value of the 
performance measure given the percept 
sequence to date and prior environment 
knowledge.
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 Decision situation:
◦ Actions

◦ Outcomes

◦ Probabilities of outcomes

◦ Utilities/losses of 
outcomes

◦ Maximum Expected Utility 
Principle (MEU)

◦ Best action is the one 
with maximum 
expected utility
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 Decision situation:
◦ Actions

◦ Outcomes

◦ Probabilities of outcomes

◦ Utilities/losses of 
outcomes
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Actions ai Outcomes

ai

…

Probabilities

P(oj|ai)

Utilities, costs

U(oj), C(ai)

… …
Expected utilities

EU(ai) = ∑ P(oj|ai)U(oj)
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I. Variables/Nodes (concepts)

II. Values (descriptions)

III. Dependencies/Edges

IV. Parameters/Conditional probabilities

V. Utilities/losses

VI. Probabilistic inference

VII. Sensitivity of inference
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Let action At = leave for airport t minutes before flight
Will At get me there on time?

Problems:
1. partial observability (road state, other drivers' plans, etc.)
2. noisy sensors (traffic reports)
3. uncertainty in action outcomes (flat tire, etc.)
4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either
1. risks falsehood: “A25 will get me there on time”, or
2. leads to conclusions that are too weak for decision making:

“A25 will get me there on time if there's no accident on the 
bridge and it doesn't rain and my tires remain intact etc 
etc.”

(A1440 might reasonably be said to get me there on time but I'd 
have to stay overnight in the airport …)



 Default or nonmonotonic logic:

◦ Assume my car does not have a flat tire

◦ Assume A25 works unless contradicted by evidence

 Issues: What assumptions are reasonable? How to handle contradiction?



 Rules with fudge factors:

◦ A25 |→0.3 get there on time

◦ Sprinkler |→ 0.99 WetGrass

◦ WetGrass |→ 0.7 Rain

 Issues: Problems with combination, e.g., Sprinkler causes Rain??



 Probability

◦ Model agent's degree of belief

◦ Given the available evidence,

◦ A25 will get me there on time with probability 0.04



Probabilistic assertions summarize effects of

laziness: failure to enumerate exceptions, qualifications, etc.

ignorance: lack of relevant facts, initial conditions, etc.

Subjective (personal, Bayesian) probability (belief):

 Probabilities relate propositions to agent's own state of knowledge

e.g., P(A25 | no reported accidents) = 0.06

These are not assertions about the world

Probabilities of propositions change with new evidence:

e.g., P(A25 | no reported accidents, 5 a.m.) = 0.15



Suppose I believe the following:

P(A25 gets me there on time | …) = 0.04 
P(A90 gets me there on time | …) = 0.70 
P(A120 gets me there on time | …) = 0.95 
P(A1440 gets me there on time | …) = 0.9999 

 Which action to choose?


Depends on my preferences for missing flight vs. time 
spent waiting, etc.

◦ Utility theory is used to represent and infer preferences
◦
◦ Decision theory = probability theory + utility theory
◦



 Sources of uncertainty
◦ inherent uncertainty in the physical process;
◦ inherent uncertainty at macroscopic level;
◦ ignorance;
◦ practical omissions;

 Interpretations of probabilities:
◦ combinatoric;
◦ physical propensities;
◦ frequentist;
◦ personal/subjectivist;
◦ instrumentalist;

 The three „as if” theorems:
◦ Uncertainty by probabilities
◦ Preferences by utility function
◦ Optimal action by maximum expected utility principle
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Note: 

• Axioms in probability theory are the same (Kolmogorov)

• “Independence” and convergence of frequencies are empirical observations (e.g., 

„laws of large numbers” are consequences of some assumptions about 

independencies).



 [1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli

◦ Subjectivist interpretation of probabilities

 [1718] The Doctrine of Chances, Abraham de Moivre

◦ the first textbook on probability theory

◦ Forward predictions

 „given a specified number of white and black balls in an urn, what is the probability of 

drawing a black ball?”

 his own death

 [1764, posthumous] Essay Towards Solving a Problem in the Doctrine of Chances, Thomas Bayes

◦ Backward questions: „given that one or more balls has been drawn, what can be said about the 

number of white and black balls in the urn”

 [1812], Théorie analytique des probabilités, Pierre-Simon Laplace

◦ General Bayes rule

 [1921]: Correlation and causation, S. Wright’s diagrams

 -1950 Frequentist statistics

◦ Ronald A. Fisher (J. Neyman and E. Pearson)

 [Bayesianism is a] „fallacious rubbish”

 His own approach was „Fiducial inference” ~ Bayesian statistics

 He used informed priors in genetics



 [1937], "La prévision: ses lois logiques, ses sources subjectives”, B. de 
Finetti
◦ Exchangeability (instead of independency)

 [1939] "Theory of probability„, Harold Jeffreys
 1950-: „Bayesian” statistics (as opposed to the „frequentist” school
◦ I.J. Good, B.O. Koopman, Howard Raiffa, Robert Schlaifer and Alan 

Turing
 [1979] Conditional Independence in Statistical Theory, A.P. Dawid
◦ Axiomatization of indepencies in multivariate distributions

 [1982] The decomposition of a multivariate distribution, S.Lauritzen
 [1988] Bayesian networks, J.Pearl
◦ Representation of independencies

 [1989] Exact general inference methods, S. Lauritzen

 … Markov Chain Monte Carlo methods – GPGPUs…



 Thomas Bayes (c. 1702 – 1761)
 Bayesian probability
 Bayes’ rule
 Bayesian statistics
 Bayesian decision
 Bayesian model averaging

 Bayesian networks
 Bayes factor
 Bayes error
 Bayesian „communication”
 ...
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 Joint distribution

 Conditional probability

 Independence, conditional independence

 Bayes rule

 Marginalization/Expansion

 Chain rule

 Expectation, variance



 Basic element: random variable

 Similar to propositional logic: possible worlds defined by assignment of values to 
random variables.

 Boolean random variables

 e.g., Cavity (do I have a cavity?)



 Discrete random variables

 e.g., Weather is one of <sunny,rainy,cloudy,snow>

 Domain values must be exhaustive and mutually exclusive

 Elementary proposition constructed by assignment of a value to a

 random variable: e.g., Weather = sunny, Cavity = false

 (abbreviated as cavity)

 Complex propositions formed from elementary propositions and standard logical 
connectives e.g., Weather = sunny  Cavity = false



 Atomic event: A complete specification of the state of 
the world about which the agent is uncertain



E.g., if the world consists of only two Boolean variables Cavity
and Toothache, then there are 4 distinct atomic events:

Cavity = false Toothache = false

Cavity = false  Toothache = true

Cavity = true  Toothache = false

Cavity = true  Toothache = true

 Atomic events are mutually exclusive and exhaustive



 For any propositions A, B



◦ 0 ≤ P(A) ≤ 1

◦ P(true) = 1 and P(false) = 0

◦ P(A  B) = P(A) + P(B) - P(A  B)

◦



 Prior or unconditional probabilities of propositions

 e.g., P(Cavity = true) = 0.1 and P(Weather = sunny) = 0.72 correspond to belief 
prior to arrival of any (new) evidence



 Probability distribution gives values for all possible assignments:

 P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)

 Joint probability distribution for a set of random variables gives the 
probability of every atomic event on those random variables

 P(Weather,Cavity) = a 4 × 2 matrix of values:



Weather = sunny rainy cloudy snow 

Cavity = true 0.144 0.02 0.016 0.02

Cavity = false 0.576 0.08 0.064 0.08



 Conditional or posterior probabilities


e.g., P(cavity | toothache) = 0.8

i.e., given that toothache is all I know

 (Notation for conditional distributions:


P(Cavity | Toothache) = 2-element vector of 2-element vectors)

 If we know more, e.g., cavity is also given, then we have


P(cavity | toothache,cavity) = 1

 New evidence may be irrelevant, allowing simplification, e.g.,


P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8
 This kind of inference, sanctioned by domain knowledge, is crucial




 Definition of conditional probability:

 P(a | b) = P(a  b) / P(b) if  P(b) > 0



 Product rule gives an alternative formulation:

 P(a  b) = P(a | b) P(b) = P(b | a) P(a)



 A general version holds for whole distributions, e.g.,

 P(Weather,Cavity) = P(Weather | Cavity) P(Cavity)

 (View as a set of 4 × 2 equations, not matrix mult.)



 Chain rule is derived by successive application of product rule:

 P(X1, …,Xn) = P(X1,...,Xn-1) P(Xn | X1,...,Xn-1)

= P(X1,...,Xn-2) P(Xn-1 | X1,...,Xn-2) P(Xn | X1,...,Xn-1)

= …

= πi= 1^n P(Xi | X1, … ,Xi-1)



 Every question about a domain can be answered by 
the joint distribution.

 Start with the joint probability distribution:


 For any proposition φ, sum the atomic events 
where it is true: P(φ) = Σω:ω╞φ P(ω)





 Start with the joint probability distribution:


 For any proposition φ, sum the atomic events where it 
is true: P(φ) = Σω:ω╞φ P(ω)



 P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2




 Start with the joint probability distribution:


 For any proposition φ, sum the atomic events where it 
is true: P(φ) = Σω:ω╞φ P(ω)



 P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2




 Start with the joint probability distribution:


 Can also compute conditional probabilities:


P(cavity | toothache) = P(cavity  toothache)
P(toothache)

= 0.016+0.064
0.108 + 0.012 + 0.016 + 0.064

= 0.4



 Denominator can be viewed as a normalization constant α


P(Cavity | toothache) = α, P(Cavity,toothache) 
= α, [P(Cavity,toothache,catch) + P(Cavity,toothache, catch)]
= α, [<0.108,0.016> + <0.012,0.064>] 
= α, <0.12,0.08> = <0.6,0.4>

General idea: compute distribution on query variable by fixing 
evidence variables and summing over hidden variables



Typically, we are interested in the posterior joint distribution of the 
query variables Y given specific values e for the evidence 
variables E

Let the hidden variables be H = X - Y – E

Then the required summation of joint entries is done by summing out 
the hidden variables:

P(Y | E = e) = αP(Y,E = e) = αΣhP(Y,E= e, H = h)

 The terms in the summation are joint entries because Y, E and H
together exhaust the set of random variables

 Obvious problems:

1. Worst-case time complexity O(dn) where d is the largest arity

2. Space complexity O(dn) to store the joint distribution

3. How to find the numbers for O(dn) entries?



 A and B are independent iff
P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B) = P(A) P(B)

P(Toothache, Catch, Cavity, Weather)
= P(Toothache, Catch, Cavity) P(Weather)

 32 entries reduced to 12; for n independent biased coins, 
O(2n) →O(n)



 Absolute independence powerful but rare
 A and B are conditionally independent iff

P(A|B) = P(A)    or P(B|A) = P(B)     or P(A, B|C) = P(A|C) P(B|C)
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An algebraic triviality

A scientific research paradigm

A practical method for inverting causal knowledge to diagnostic tool.
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 Decision situation:
◦ Actions

◦ Outcomes

◦ Probabilities of outcomes

◦ Utilities/losses of 
outcomes

 QALY, micromort

◦ Maximum Expected Utility 
Principle (MEU)

 Best action is the one with 
maximum expected utility
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Actions ai

(which experiment)

Outcomes

(e.g. dataset)

ai

…
Probabilities

P(oj|ai)

Utilities, costs

U(oj), C(ai)

… …

Expected utilities

EU(ai) = ∑ P(oj|ai)U(oj|ai)



 Outperforms diagnosticians with moderate 
expertise (~evaluating <1000 cases).

 400 parameteres, estimated in 40 hours

 (D.Timmerman and P.Antal.,2000)

http://mitpc40.mit.bme.hu/~balazs/BayesCube_131014_win64_alpha.zip
http://mitpc40.mit.bme.hu/~balazs/BayesCube_131014_win64_alpha.zip


 Probability is a rigorous formalism for uncertain knowledge.

 The subjective/Bayesian interpretation of probabilities avoids 
the necessity of repeatability.

 Joint probability distribution specifies probability of every 
atomic event.

 Queries can be answered by summing over atomic events.

 Suggested reading:
◦ Malakoff: Bayes Offers a `New’ Way to Make Sense of Numbers, Science, 1999

◦ Efron: Bayes’ Theorem in the 21st Century, Science, 2013

◦ Charniak: Bayesian networks without tears, 1991


