Adapted from AIMA slides

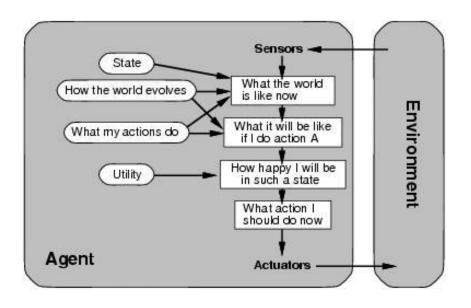
Uncertainty

Peter Antal antal@mit.bme.hu

Outline

- Reminder
- A real-life example & demo for the homework
- Uncertainty
- Probability
- Syntax and Semantics
- Inference
- Independence and Bayes' Rule

Agent types; utility-based



- Certain goals can be reached in different ways.
 - Some are better, have a higher utility.
- Utility function maps a (sequence of) state(s) onto a real number.
- Improves on goals:
 - Selecting between conflicting goals
 - Select appropriately between several goals based on likelihood of success.

Rationality

- What is rational at a given time depends on four things:
 - Performance measure,
 - Prior environment knowledge,
 - Actions,
 - Percept sequence to date (sensors).

DEF: A rational agent chooses whichever action maximizes the expected value of the performance measure given the percept sequence to date and prior environment knowledge.

Decision theory probability theory + utility theory

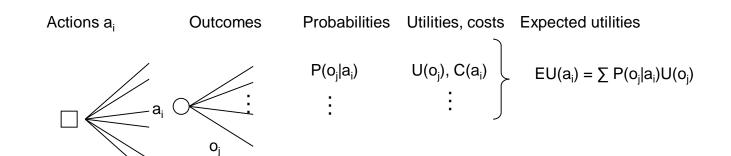
- Decision situation:
 - Actions
 - Outcomes
 - Probabilities of outcomes
 - Utilities/losses of outcomes
 - Maximum Expected Utility Principle (MEU)
 - Best action is the one with maximum expected utility

 a_i o_j $p(o_j | a_i)$ $U(o_j | a_i)$ $EU(a_i) = \sum_j U(o_j | a_i) p(o_j | a_i)$ $a^* = \operatorname{arg}\max_i EU(a_i)$

Decision theory probability theory + utility theory

- Decision situation:
 - Actions
 - Outcomes
 - Probabilities of outcomes
 - Utilities/losses of outcomes

 $\begin{array}{l}
a_i \\
o_j \\
p(o_j \mid a_i) \\
U(o_j \mid a_i)
\end{array}$



Bayesian network based decision support systems (DSS): Phases of construction

- I. Variables/Nodes (concepts)
- II. Values (descriptions)
- III. Dependencies/Edges
- N. Parameters/Conditional probabilities
- v. Utilities/losses
- vi. Probabilistic inference
- vII. Sensitivity of inference

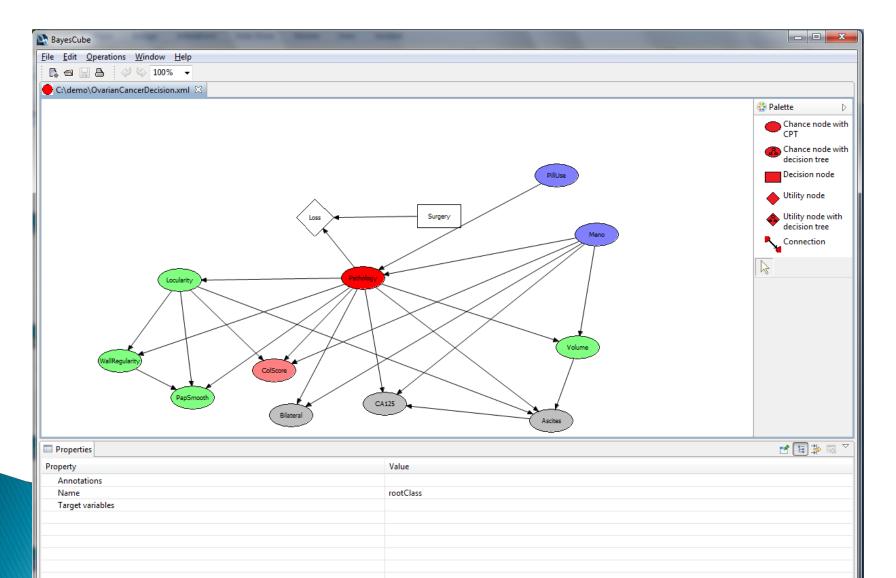
Decision support systems I. variables

RayesCube		
<u>File Edit Operations Window Help</u>		
🖡 🚭 🔚 🖴 🛷 🌭 100% 🔻		
C:\demo\OvarianCancerDecision.xml		
C:\demo\OvarianCancerDecision.xml X	PilUse Surgery	 Palette Chance node with CPT Chance node with decision tree Decision node Utility node Utility node with decision tree Connection
PapSmooth Bilateral CA	Volume A125 Asches	
Properties		2 🖪 🎲 🖾 🗸
	Value	
Annotations		
Name Target variables	rootClass	

Decision support systems II. values

BayesCube	
<u>File Edit Operations Window H</u> elp	
C:\demo\OvarianCancerDecision.xml 🛛	🗖 Inference View 📃
Pilus Los Los Eucolary Pilus true Mero	 Ascites no yes Bilateral no yes CA125 ~35 35-65 65~= ColScore No Minimal moderate very-strong Locularity uni unis multi
Volume Volume Volume PapSmooth Bilateral CA125 Ascites	Loss u=-5.03
Sampling View Properties	
	Sample Rem. columns Remove all

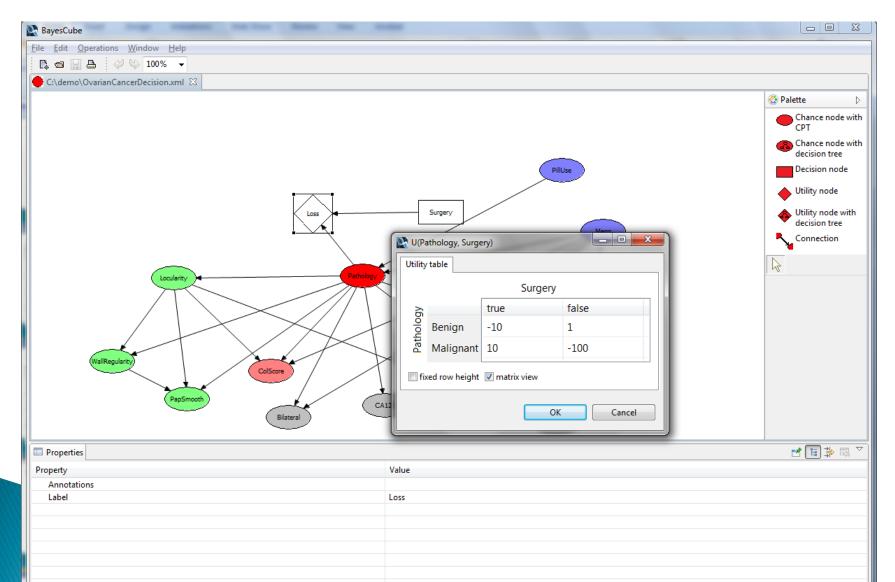
Decision support systems III. dependencies



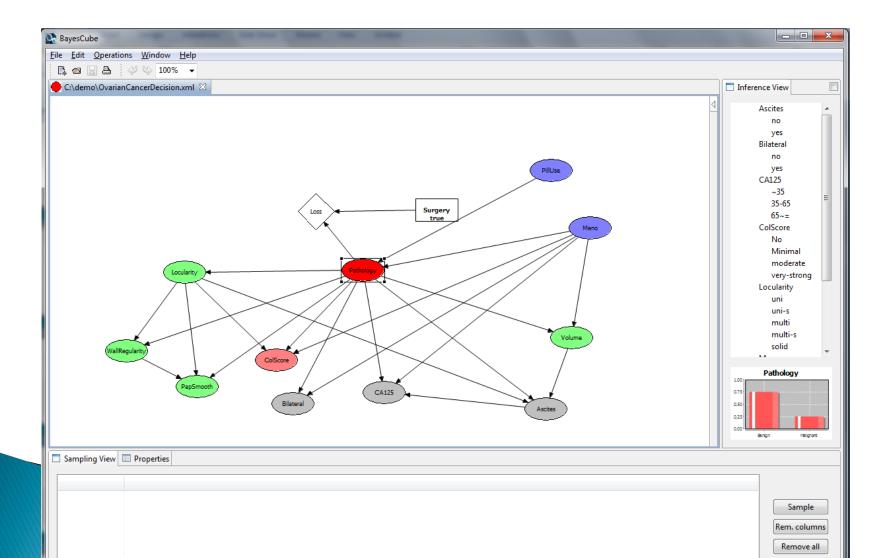
Decision support systems IV. Conditional probabilites

s 🔚 📇 🥔 😂 100% 👻		P(CA125 Meno, Ascites, Pathole	ogy)		
emo\OvarianCancerDecision.xml 🛛		(Meno, Ascites, Patholog	~35	35-65	65~=
		(Pre, no, Benign)	0.83	0.14	0.03
		(Pre, no, Malignant)	0.25	0.25	0.5
		(Pre, yes, Benign)	0.7	0.15	0.15
		(Pre, yes, Malignant)	0.05	0.15	0.8
	\wedge	(Hyst, no, Benign)	0.925	0.05	0.025
<	Loss Surgery	(Hyst, no, Malignant)	0.35	0.1	0.55
		(Hyst, yes, Benign)	0.8	0.1	0.1
		(Hyst, yes, Malignant)	0.1	0.2	0.7
Locularity +	Pathology	(Post, no, Benign)	0.93	0.05	0.02
		(Post, no, Malignant)	0.35	0.1	0.55
	$\langle \rangle$	(Post, yes, Benign)	0.8	0.1	0.1
		(Post, yes, Malignant)	0.09	0.19	0.72
(WalRegularity) PapSmooth Bilatera	CA125	sample size/probability in fixe	ed row height	ОК	Canc
perties				J	1
ty	Value				
notations up	Progression				
el	CA125				

Decision support systems V. utilities/losses



Decision support systems VI. inference



13

Decision support systems VII. Sensitivity of inference

BayesCube	
<u>File Edit Operations Window H</u> elp	
C:\demo\OvarianCancerDecision.xml 😔 Sensitivity of Inference Diagram 🔀	
C\demo\UvarianCancerDecision.xml Sensitivity of Inference Diagram 23	

Uncertainty

Let action A_t = leave for airport t minutes before flight Will A_t get me there on time?

Problems:

- 1. partial observability (road state, other drivers' plans, etc.)
- 2. noisy sensors (traffic reports)
- 3. uncertainty in action outcomes (flat tire, etc.)
- 4. immense complexity of modeling and predicting traffic

Hence a purely logical approach either

- 1. risks falsehood: " A_{25} will get me there on time", or
- 2. leads to conclusions that are too weak for decision making:
- "*A*₂₅ will get me there on time if there's no accident on the bridge and it doesn't rain and my tires remain intact etc etc."

(A₁₄₄₀ might reasonably be said to get me there on time but I'd have to stay overnight in the airport ...)

Methods for handling uncertainty

- Default or nonmonotonic logic:
 - Assume my car does not have a flat tire
 - Assume A₂₅ works unless contradicted by evidence
- Issues: What assumptions are reasonable? How to handle contradiction?
- Rules with fudge factors:
 - $A_{25} / \rightarrow_{0.3}$ get there on time
 - Sprinkler /→ 0.99 WetGrass
 - WetGrass /→ 0.7 Rain
- Issues: Problems with combination, e.g., Sprinkler causes Rain??
- Probability
 - Model agent's degree of belief
 - Given the available evidence,
 - A₂₅ will get me there on time with probability 0.04

Probability

Probabilistic assertions summarize effects of

laziness: failure to enumerate exceptions, qualifications, etc. ignorance: lack of relevant facts, initial conditions, etc.

Subjective (personal, Bayesian) probability (belief):

 Probabilities relate propositions to agent's own state of knowledge e.g., P(A₂₅ | no reported accidents) = 0.06
 These are not assertions about the world

Probabilities of propositions change with new evidence:

e.g., $P(A_{25} | no reported accidents, 5 a.m.) = 0.15$

Making decisions under uncertainty

Suppose I believe the following:

Which action to choose?

Depends on my preferences for missing flight vs. time spent waiting, etc.

- Utility theory is used to represent and infer preferences
- 0
- **Decision theory** = probability theory + utility theory
- 0

Interpretations of probability

Sources of uncertainty

- inherent uncertainty in the physical process;
- inherent uncertainty at macroscopic level;
- ignorance;
- practical omissions;

Interpretations of probabilities:

- combinatoric;
- physical propensities;
- frequentist;
- personal/subjectivist;
- instrumentalist;
- The three "as if" theorems:
 - Uncertainty by probabilities
 - Preferences by utility function

Optimal action by maximum expected utility principle

Note:

- Axioms in probability theory are the same (Kolmogorov)
- "Independence" and convergence of frequencies are empirical observations (e.g., laws of large numbers" are consequences of some assumptions about independencies).

$$\lim_{N \to \infty} \frac{N_A}{N} = \lim_{N \to \infty} \hat{p}_N(A) = p(A) ? p(A \mid \xi)$$

A chronology

- [1713] Ars Conjectandi (The Art of Conjecture), Jacob Bernoulli
 - Subjectivist interpretation of probabilities
- [1718] The Doctrine of Chances, Abraham de Moivre
 - the first textbook on probability theory
 - Forward predictions
 - "given a specified number of white and black balls in an urn, what is the probability of drawing a black ball?"
 - his own death
- [1764, posthumous] Essay Towards Solving a Problem in the Doctrine of Chances, Thomas Bayes
 - **Backward questions**: "given that one or more balls has been drawn, what can be said about the number of white and black balls in the urn"
- > [1812], Théorie analytique des probabilités, Pierre-Simon Laplace
 - General Bayes rule
- [1921]: Correlation and causation, S. Wright's diagrams
- -1950 Frequentist statistics
 - Ronald A. Fisher (J. Neyman and E. Pearson)
 - [Bayesianism is a] "fallacious rubbish"
 - His own approach was "Fiducial inference" ~ Bayesian statistics
 - He used informed priors in genetics

A chronology (cont'd)

- [1937], "La prévision: ses lois logiques, ses sources subjectives", B. de Finetti
 - Exchangeability (instead of independency)
- [1939] "Theory of probability,, Harold Jeffreys
- > 1950-: "Bayesian" statistics (as opposed to the "frequentist" school
 - I.J. Good, B.O. Koopman, Howard Raiffa, Robert Schlaifer and Alan Turing
- [1979] Conditional Independence in Statistical Theory, A.P. Dawid
 Axiomatization of indepencies in multivariate distributions
- [1982] The decomposition of a multivariate distribution, S.Lauritzen
- [1988] Bayesian networks, J.Pearl
 - Representation of independencies
- [1989] Exact general inference methods, S. Lauritzen
- Markov Chain Monte Carlo methods GPGPUs...

Bayes-omics

Thomas Bayes (c. 1702 – 1761)

- Bayesian probability
- Bayes' rule
- Bayesian statistics
- Bayesian decision
- Bayesian model averaging

 $p(Model | Data) \propto p(Data | Model) p(Model)$

 $= \sum p(pred. | Model_i) p(Model_i | data)$

ng $a^* = \arg \max_i \sum_j U(o_j) p(o_j | a_i)$

p(prediction | data) =

- Bayesian networks
- Bayes factor
- Bayes error
- Bayesian "communication"

Probability theory: concepts for the course

- Joint distribution
- Conditional probability
- Independence, conditional independence
- Bayes rule
- Marginalization/Expansion
- Chain rule
- Expectation, variance

Syntax

- Basic element: random variable
- Similar to propositional logic: possible worlds defined by assignment of values to random variables.
- Boolean random variables
- e.g., *Cavity* (do I have a cavity?)
- Discrete random variables
- e.g., *Weather* is one of *<sunny,rainy,cloudy,snow>*
- Domain values must be exhaustive and mutually exclusive
- Elementary proposition constructed by assignment of a value to a
- random variable: e.g., Weather = sunny, Cavity = false
- (abbreviated as ¬*cavity*)
- Complex propositions formed from elementary propositions and standard logical connectives e.g., Weather = sunny v Cavity = false

Syntax

- Atomic event: A complete specification of the state of the world about which the agent is uncertain
 - E.g., if the world consists of only two Boolean variables *Cavity* and *Toothache*, then there are 4 distinct atomic events:

 $Cavity = false \land Toothache = false$ $Cavity = false \land Toothache = true$ $Cavity = true \land Toothache = false$ $Cavity = true \land Toothache = true$

Atomic events are mutually exclusive and exhaustive

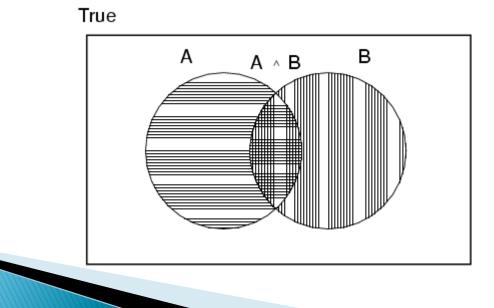
Axioms of probability

For any propositions A, B

$$\circ 0 \leq \mathsf{P}(\mathcal{A}) \leq 1$$

0

- P(true) = 1 and P(false) = 0
- $\circ \mathsf{P}(\mathcal{A} \lor \mathcal{B}) = \mathsf{P}(\mathcal{A}) + \mathsf{P}(\mathcal{B}) \mathsf{P}(\mathcal{A} \land \mathcal{B})$



Prior probability

- Prior or unconditional probabilities of propositions
- e.g., P(*Cavity* = true) = 0.1 and P(*Weather* = sunny) = 0.72 correspond to belief prior to arrival of any (new) evidence
- Probability distribution gives values for all possible assignments:
- P(Weather) = <0.72,0.1,0.08,0.1> (normalized, i.e., sums to 1)
- Joint probability distribution for a set of random variables gives the probability of every atomic event on those random variables
- P(Weather, Cavity) = a 4 × 2 matrix of values:

Weather =	sunny	rainy	cloudy	snow	-
<i>Cavity</i> = true	0.144	0.02	0.016	0.02	
<i>Cavity</i> = false	0.576	0.08	0.064	0.08	

Conditional probability

Conditional or posterior probabilities

e.g., P(*cavity* | *toothache*) = 0.8

i.e., given that *toothache* is all I know

(Notation for conditional distributions:

P(*Cavity* | *Toothache*) = 2-element vector of 2-element vectors)

If we know more, e.g., *cavity* is also given, then we have

P(cavity | toothache, cavity) = 1

New evidence may be irrelevant, allowing simplification, e.g.,

P(cavity | toothache, sunny) = P(cavity | toothache) = 0.8This kind of inference, sanctioned by domain knowledge, is crucial

Conditional probability

Definition of conditional probability:

```
• P(a \mid b) = P(a \land b) / P(b) if P(b) > 0
```

Product rule gives an alternative formulation:

```
• P(a \land b) = P(a \mid b) P(b) = P(b \mid a) P(a)
```

- A general version holds for whole distributions, e.g.,
- P(Weather, Cavity) = P(Weather / Cavity) P(Cavity)
- (View as a set of 4 × 2 equations, not matrix mult.)
- Chain rule is derived by successive application of product rule:

•
$$P(X_1, ..., X_n)$$
 = $P(X_1, ..., X_{n-1}) P(X_n | X_1, ..., X_{n-1})$
= $P(X_1, ..., X_{n-2}) P(X_{n-1} | X_1, ..., X_{n-2}) P(X_n | X_1, ..., X_{n-1})$
= ...
= $\pi_{i=1} \wedge n P(X_i | X_1, ..., X_{i-1})$

- Every question about a domain can be answered by the joint distribution.
- Start with the joint probability distribution:

	toot	thache	⊐ too	thache
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega \models \phi} P(\omega)$

Start with the joint probability distribution:

	toot	oothache ¬ toothache		othache
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

- For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega \models \phi} P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

Start with the joint probability distribution:

	toot	thache	nche ¬ toothache	
	catch	\neg catch	catch	\neg catch
cavity	.108	.012	.072	.008
⊐ cavity	.016	.064	.144	.576

- For any proposition ϕ , sum the atomic events where it is true: $P(\phi) = \Sigma_{\omega:\omega \models \phi} P(\omega)$
- P(toothache) = 0.108 + 0.012 + 0.016 + 0.064 = 0.2

> Start with the joint probability distribution:

	toot	hache	he ¬ toothache	
	catch	\neg catch	catch	¬ catch
cavity	.108	.012	.072	.008
\neg cavity	.016	.064	.144	.576

Can also compute conditional probabilities:

P(¬*cavity* | *toothache*)

$$= \frac{P(\neg cavity \land toothache)}{P(toothache)}$$

= 0.016+0.064
0.108 + 0.012 + 0.016 + 0.064
= 0.4

Normalization

	toot	thache		⊐ toothache	
	catch	¬ catch		catch	\neg catch
cavity	.108	.012		.072	.008
¬ cavity	.016	.064		.144	.576

> Denominator can be viewed as a normalization constant α

 $\begin{aligned} \mathsf{P}(\textit{Cavity} \mid \textit{toothache}) &= \alpha, \ \mathsf{P}(\textit{Cavity},\textit{toothache}) \\ &= \alpha, \ [\mathsf{P}(\textit{Cavity},\textit{toothache},\textit{catch}) + \ \mathsf{P}(\textit{Cavity},\textit{toothache},\neg \textit{catch})] \\ &= \alpha, \ [<0.108, 0.016> + <0.012, 0.064>] \\ &= \alpha, \ <0.12, 0.08> = <0.6, 0.4> \end{aligned}$

General idea: compute distribution on query variable by fixing evidence variables and summing over hidden variables

Inference by enumeration, contd.

Typically, we are interested in the posterior joint distribution of the query variables Y given specific values e for the evidence variables E

Let the hidden variables be H = X - Y - E

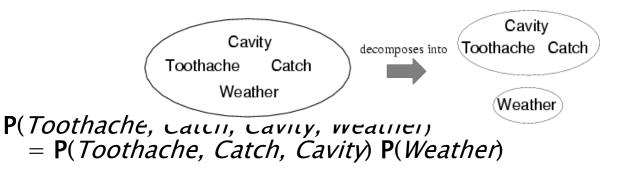
Then the required summation of joint entries is done by summing out the hidden variables:

 $P(Y | E = e) = \alpha P(Y, E = e) = \alpha \Sigma_h P(Y, E = e, H = h)$

- The terms in the summation are joint entries because Y, E and H together exhaust the set of random variables
- Obvious problems:
 - 1. Worst-case time complexity $O(d^n)$ where d is the largest arity
 - 2. Space complexity $O(d^n)$ to store the joint distribution
 - 3. How to find the numbers for $O(d^n)$ entries?

Independence, conditional independence

• A and B are independent iff P(A/B) = P(A) or P(B/A) = P(B) or P(A, B) = P(A) P(B)



- ▶ 32 entries reduced to 12; for *n* independent biased coins, $O(2^n) \rightarrow O(n)$
- Absolute independence powerful but rare

• A and B are conditionally independent iff P(A|B) = P(A) or P(B|A) = P(B) or P(A, B|C) = P(A|C) P(B|C)

Bayes rule

An algebraic triviality

$$p(X | Y) = \frac{p(Y | X)p(X)}{p(Y)} = \frac{p(Y | X)p(X)}{\sum_{X} p(Y | X)p(X)}$$

A scientific research paradigm

 $p(Model | Data) \propto p(Data | Model) p(Model)$

A practical method for inverting causal knowledge to diagnostic tool.

 $p(Cause | Effect) \propto p(Effect | Cause) \times p(Cause)$

Decision theory= probability theory+utility theory

- Decision situation:
 - Actions
 - Outcomes
 - Probabilities of outcomes
 - Utilities/losses of outcomes
 - QALY, micromort
 - Maximum Expected Utility Principle (MEU)
 - Best action is the one with maximum expected utility

Actions a Outcomes Probabilities (which experiment) (e.g. dataset)

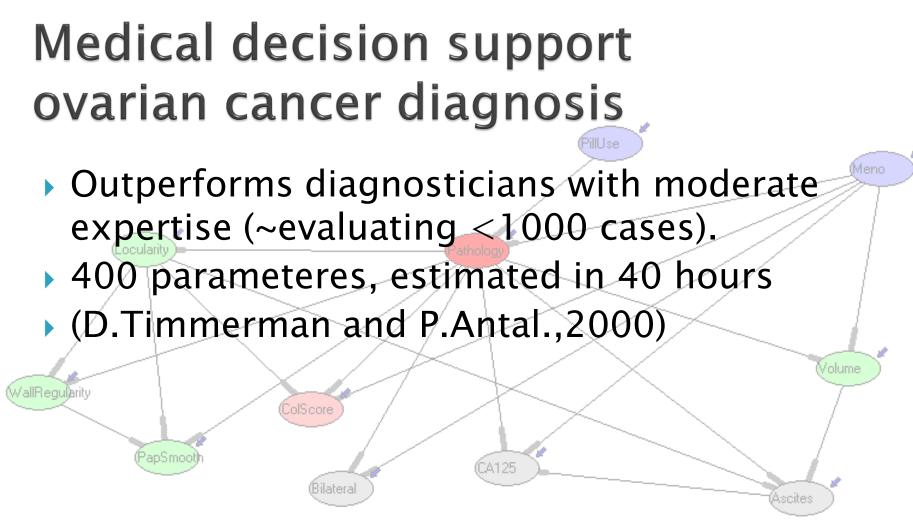
 a_i $p(o_i \mid a_i)$ $U(o_i \mid a_i)$ $EU(a_i) = \sum_{i} U(o_i | a_i) p(o_i | a_i)$ $a^* = \arg \max_i EU(a_i)$

 $EU(a_i) = \sum P(o_j|a_i)U(o_j|a_i)$

Utilities, costs Expected utilities

 $U(o_j), C(a_i)$

 $P(o_i|a_i)$



BAYES CUBE (~BAYES EYE)

http://mitpc40.mit.bme.hu/~balazs/BayesCube_131014_win64_alpha.zip

Summary

- Probability is a rigorous formalism for uncertain knowledge.
- The subjective/Bayesian interpretation of probabilities avoids the necessity of repeatability.
- Joint probability distribution specifies probability of every atomic event.
- Queries can be answered by summing over atomic events.

Suggested reading:

- Malakoff: Bayes Offers a `New' Way to Make Sense of Numbers, Science, 1999
- Efron: Bayes' Theorem in the 21st Century, Science, 2013
- Charniak: Bayesian networks without tears, 1991