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Motivations, solutions

Position specific scoring of substitutions, inserts, deletions.
Hidden Markov Models
Stochastic Finite State Automaton
Stochastic grammars
Dynamic Bayesian Networks
Chomsky hierarchy of grammars (*:right/left, with/without ǫ;**:nondecreasing):

Grammar Rule Automaton Parsing Language

regular∗ W → aW FSA linear a reg.expression

context-free W → β push-down polynomial palindromes

context-sensitive** α1Wα2 → α1βα2 linear bounded exponential copies

unrestricted Turing machine (TM) semidecidable KB − FOL |= α

- - halting TMs

Hidden Markov Models – p. 3/34



HMM: definition

Markov chain models for sequence x (modeling sequence by states s ∈ S):

p(x) =
L∏

i=1

p(xi|xi−1) = p(x1)
L∏

i=2

axi−1,xi (1)

Compare Bayes factors of different Markov chain models of DNA: homogeneous Mh vs
inhomogenous-by-period-3 Mi3

p(x|Mi3)

p(x|Mh)
(2)

Now fuse them into a single model ⇒ hidden state
Hidden Markov Models (definitions/notations following DEKM)

1. π denotes a state sequence ( of a Markov chain), πi is the ith state

2. akl the transition probabilities p(πi = l|πi−1 = k) in the MC (extra state 0 for start/end)

3. ek(b) are the emission probabilities p(xi = b|πi = k)

Note, stochastic finite state automations/regular grammars, later we discuss the application
of stochastic context-free grammars (SCFG) for RNA (3-D structure,..palindromes!).

Hidden Markov Models – p. 4/34



Inferences in HMMs

Note |π| = O(|S|L)

-,L p(x, π) = a0πl

∏L
i=1 eπi(xi)aπiπi+1

?,L ”decoding": π∗ = arg maxπ p(x, π)

?,L sequence probability:p(x) =
∑

π p(x, π) (or p(x|M) ”model likelihood" or filtering)

?,L smoothing/posterior decoding:p(πi = k|x)

?,OK? parametric inference (training/parameteresation)

?,OK? structural inference (model selection)
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HMM: Viterbi algorithm

Goal: ”decoding": π∗ = arg maxπ p(x, π)

Note: ”best joint-state-sequence explanation" 6= ”joint sequence of best-state-explanations"
Inductive idea: extend most probable paths with length i to i+1
vk(i) denotes the probability of the most probable path ending in state k with observation i
Then

vl(i + 1) = el(xi+1) max
k

(vk(i)akl) (3)

Require: HMM,x
Ensure: π∗ = arg maxπ p(x, π)

Ini: (i=0): v0(0) = 1,vk(0) = 0 for 0<k
for i = 1 to L do

vl(i) = el(xi)maxk(vk(i − 1)akl)

ptri(l) = arg maxk(vk(i − 1)akl)

End: p(x, π∗) = maxk(vk(L)ak0), π∗
L = arg maxk(vk(L)ak0)

for i = L to 1 do {Traceback}
π∗

i−1 = ptri(π
∗
i )

Note, small probabilities may cause positive underflow (length can be up to 103 <)=> log
Note, π∗ = arg maxπ p(x, π) = arg maxπ p(π|x)
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HMM: forward algorithm

Goal: sequence probability:p(x) =
∑

π p(x, π) (or p(x|M) ”model likelihood" or filtering)
Approximation: p(x) =

∑

π p(x, π) ≈ p(x, π∗) = a0π∗

l

∏L
i=1 eπ∗

i
(xi)aπ∗

i
π∗

i+1
(π∗ by Viterbi )

Inductive idea(dynamic programming): extend the probability of generating observations x1:i

being in state k at i to i+1
By introducing fk(i) = p(x1:i, πi = k), we can proceed

fl(i + 1) = el(xi+1)
∑

k

(fk(i)akl) (4)

Require: HMM M,x
Ensure: p(x|M)

Ini: (i=0): f0(0) = 1,fk(0) = 0 for 0<k
for i = 1 to L do

fl(i) = el(xi)
∑

k(fk(i − 1)akl)

End: p(x|M) =
∑

k(fk(L)ak0)

Note, we have to sum small probabilities! => log transformation is not enough, scaling
methods..
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HMM: backward algorithm

Goal: smoothing/posterior decoding p(πi = k|x)

Idea: p(πi = k|x) =
p(πi=k,x)

p(x)
(p(x) can be computed by the forward algorithm)

p(πi = k, x) = p(πi = k, x1:i)p(xi+1:L|πi = k, x1:i) = fk(i) p(xi+1:L|πi = k)
︸ ︷︷ ︸

bk(i)

Ensure: bk(i) = p(xi+1:L|πi = k)

Ini: (i=L): bk(L) = ak0 for all k
for i = L − 1 to 1 do

bk(i) =
∑

l aklel(xi+1)bl(i + 1)

End: p(x|M) =
∑

l a0lel(x1)bl(1)

Note, conditionally most probable state at i 6= state in most probable explanation at i.
Inference about properties of states. Continuous case: T (s) : S → R, then finding regions
with average mean above a threshold

Ti:i+l =
1

l

j=i+l
∑

j=i

∑

k

T (k)p(πj = k|x) (5)

Discrete case: 1(s) is an indicator function of an interesting property... (why do not we build
an MC/HMM over this state space?=> not first order, not available, not economic,...)
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The ”profile" HMMs (pHMMs)

Define a structure (allowed transitions) over states with cardinality n. Note, O(n2)

parameters can be reduced to linear. . . )
Substitutions : match states (boxes). Note, level 1 implements already a position specific
scoring.
Inserts : insert states (diamonds). Note that length distribution of inserts follows a geometric
distribution with parameter p of probability of stay (mean p/(1 − p) and variance p/(1 − p)2).
Deletes : transitions ”jumping" over match states. Problem: high number of parameters.
Solution: further parametric restriction over transition probabilities using silent delete states
(circles). Note the possible reduction of O(n2) to O(n) representing a position specific gap
length penalty or even to 1 representing a gap length penalty.
Note that delete states are so called silent/null states without emission. If there are no loops
as in pHMMs =>emulate their effect in Viterbi/forward/backward algs treating separately the
probability of transitions without emissions, e.g. accumulating upward
fl(i + 1)+ =

∑

k fk(i + 1)akl through silent states k < l.
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The ”profile" HMMs (pHMMs) II.

The profile HMM.

Usage: 1, exploration/visualization of a sequence family 2, deciding membership (for
transferring annotations about functionality/structure) 3, (the most probable) multiple
alignment
Application: see Pfam.
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The probability of alignment

Earlier we see that without indels the pairwise model p(xi, yj |M) and independent model R
q(xi) allows the use of likelihood ratio/Bayes factor. . .
Goal: not PSS, but with indels a full probabilistic approach to alignment.
Imagine a simple global pairwise alignment problem with linear gap penalty: given p(xi, yj),
qi and δ probabilities for matched symbols xi, yj and qiδ for a gap-ith symbol pair. Using a
log transformation the dynamic programing approach to global pairwise alignment problem
gives the most probable alignment, i.e. the most probable path from (0,0) to (m,n). If we
change the maximization to summation it gives the total probability of alignment at (m,n).
Note the similarity to the Viterbi/forward algorithms.
Now consider the case of affine gap penalty γ(g) = −d − (g − 1)e. The global pairwise
alignment algorithm can be rewritten using three states and the formalism of the Viterbi
algorithm as follows

V M (i, j) = s(xi, yj) + max(V M (i − 1, j−), V X(i − 1, j − 1), V Y (i − 1, j − 1)) (6)

V X(i, j) = max(V M (i − 1, j) − d, V X(i − 1, j) − e) (7)

V Y (i, j) = max(V M (i, j − 1) − d, V Y (i, j − 1) − e). (8)

(Note that gaps cannot be merged, because of the affine gap penalty ⇒ no transition
between X, Y)
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Pair HMMs I

This can be represented as a Finite State Automaton (FSA), which can be extended using
the HMM representation to a so called ”pair HMMs" (e.g. with non-uniform indel emission
probabilities qi).
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Pair HMMs II

Formally the pair HMMs have ”dual" symbols Sx{S ∪ ε}/{S ∪ ε}xS, specifically in the
three-state pairwise alignment HMM X,Y and M state emits Sxε, εxS and SxS symbols.
In the pair HMM using the Viterbi, forward and backward algorithms we can compute

= the most probable explanation π∗ = arg maxπ p(π|(x, y)) with its probability
p(x, y, π∗). This corresponds to the best global alignment from the score based
dynamic programming approach.

+ (additionally) the full probability of the alignment p(x, y) =
∑

π p(x, y, π). Clearly, the
forward algorithm is the generalization of the score based algorithm with summations
instead of maximizations.

+ (additionally) the posterior that xi is aligned to yj denoted with p(xi ⋄ yj |x, y).

Note that p(π|x, y) =
p(π,x,y)
p(x,y)

, so combining the results from the Viterbi and forward

algorithms, the probability of the most probable alignment π∗ can be computed.
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Numerical issues I.

Positive underflow and precision in standard C/MATLAB:

1. MAX 1.7976931348623158e+308 Maximum value

2. MIN 2.2250738585072014e-308 Minimum positive value

3. PREC 2.2204460492503131e-016 Smallest such that 1.0+PREC !=1.0

Problems:

1. Product of many probabilities ⇒ log transformation.

2. Sums of products of many probabilities ⇒ log transformation + scaling

3. Ratio of sums of products of many probabilities ⇒ log transformation +
scaling+normalizing
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Numerical issues II.

Product of many probabilities (
∏

i pi ≈ 10−106
) ⇒ log transformation p̃ = log(p).

Sums of products of probabilities ⇒ log transformation + scaling (+checking underflow).
Log transformation is not enough, because computationally and underflow
(s̃ = log(

∑

i exp(p̃i))).
For example the log transformation of s =

∑

i pi can be rewritten with scaling as

s = p∗
∑

i

pi/p∗, where; p∗ = max
i

pi, (9)

so

s̃ = p̃∗ + log(
∑

i

exp(p̃i − p̃∗). (10)

Iteratively, to compute log(st+1) = log(st + p) from log(st) and log(p), assume p < st, so

log(st+1) = s̃t + log(1 + exp(p̃ − s̃t)) (still check for underflow!). (11)

Ratio of sums of products of many probabilities ⇒ log(
∑

i pi∑

i qi
) = log( p∗

q∗

∑

i pi/p∗

∑

i qi/q∗ ). . .

Useful inequalities/approximations:
log(x) ≤ x − 1

e
− x

1−x ≤ 1 − x ≤ e−x
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HMM learning

Assume n independent/exhangeable sequences x(1), . . . , x(n)

p(x(1), . . . , x(n)|θ) =
n∏

i=1

p(x(i)|θ) (12)

Note, here θ corresponds to a simplified (descriptive) model class (HMMs) relying on the
”molecular clock hypothesis, and not to the more general (generative/biologically inspired)
model class of phylogenetic trees. Furthermore the sequences, in fact, can be
(weakly?)dependent through the common evolutionary tree. . . .

1. structure known, state sequences are known: ML parameter computation from counts

2. structure known, state sequences are unknown

(a) manual/heuristic matching: ML parameter computation from counts

(b) : Viterbi training: iterative ”multiple alignment-ML parameter computation from
counts"

(c) : Baum-Welch training: iterative computation of mean counts and improved
parameters from mean counts (EM-based)

3. structure unknown, state is unknown
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Estimation using known state sequences

Recall relative frequency is a maximum likelihood estimator in multinomial sampling.
Assume i = 1, . . . K outcomes assuming multinomial sampling with parameters θ = {θi}

and observed occurrencies n = {ni} (N =
∑

i ni). Then

log
p(n|θML)

p(n|θ)
= log

∏

i(θ
ML
i )ni

∏

i(θi)ni
=

∑

i

ni log
θML
i

θi
= N

∑

i

θML
i log

θML
i

θi
> 0(13)

because 0 < KL(θML||θ)

−KL(p||q) =
∑

i

pi log(qi/pi) ≤
∑

i

pi((qi/pi) − 1) = 0 (14)

using log(x) ≤ x − 1.
Thus using the counts of state transitions Akl and emissions Ek(b)

akl =
Akl

∑

l′ Akl′
and ek(b) =

Ek(b)
∑

b′ Ek(b′)
(15)

So called pseudocounts to avoid imprecise estimates (e.g. divison by 0) and prior counts to
incorporate bias/expertise.
⇒ A′

kl = A′
kl + rkl E′

k(b) = Ek(b) + rk(b)
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pHMM parameter learning: heuristic

Assume an external (manual,biologically inspired) multiple alignment for sequences
x(1), . . . , x(n) (by evaluating the characteristics of substituted amino acids w.r.t. the
secondary, tertiary structure and also considering homology, phylogenetic aspects, i.e. by
adopting a system biology approach to the evolution of funtional/structural entities.
Note, that for a profile HMM (pHMM) the marking of columns with match or insert labels
M0, I+

0 , . . . , Mi, I
+
i determines the state sequence (Mi → {mi, di},Ii → {ii}).

Basic profile HMM parameterisation: majority-based match/insert marking (2L for length L)

A MAP approach: compute the MAP probability of column i is a match. Hidden Markov Models – p. 18/34



HMM parameter learning: Viterbi

Idea: using the actual parameters compute the most probable paths π∗(x(1)), . . . , π∗(x(n))

for the sequences and select ML parameters based on these.

Require: HMM structure, x(1), . . . , x(n)

Ensure: ≈ arg maxθ p(x(1), . . . , x(n)|θ, π∗(x(1), θ), . . . , π∗(x(n), θ))

Ini: draw random model parameters θ0 (e.g. from Dirichlet)
repeat

set A and E values to their pseudocount
for i = 1 to n do

Compute π∗(x(i)) using θt with the Viterbi algorithm
Set new ML parameters θt+1 based on current counts A and E from
x(1), . . . , x(n), π∗(x(1)), . . . , π∗(x(n))

Compute model likelihood Lt+1 = p(x(1), . . . , x(n)|θt+1)

until NoImprovement(Lt+1,Lt,t)

Note, that this finds a θ maximizing p(x(1), . . . , x(n)|θ, π∗(x(1), θ), . . . , π∗(x(n), θ)) and not
the original goal p(x(1), . . . , x(n)|θ).
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HMM parameter learning: Baum-Welch

Idea: compute the expected number of transitions/emissions At,Et based on θt, then
update to θt+1 based on At,Et. . .
The probability of k → l transition at position i in sequence x is

p(πi = k, πi+1 = l|x) (16)

=
p(

fk(i)

︷ ︸︸ ︷

x1, . . . , xi, πi = k,xi+1,

bl(i+1)

︷ ︸︸ ︷

πi+1 = l, xi+2, . . . , xL)

p(x)
=

fk(i)aklel(xi+1)bl(i+1)

p(x)
(17)

The mean of the number of this transition and the mean of the number of emission b from
state k is

Akl =
∑

j

1

p(x(j))

∑

i

f
(j)
k (i)aklel(x

(j)
i+1)b

(j)
l (i + 1) (18)

Ek(b) =
∑

j

1

p(x(j))

∑

i|x
(j)
i

=b

f
(j)
k (i)b

(j)
k (i), (19)

Apply the same iterative algorithm as in Viterbi traning (θt → At, Et → θt+1 → . . .)
Why does it converge? Baum-Welch is an Expectation-Maximization algorithm
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Derivation of Baum-Welch I: EM

Goal : from observed x, missing π: θ∗ = arg maxθ log(p(x|θ))

Idea: improve ”expected data log-likelihood" Q(θ|θt) =
∑

π p(π|x, θt) log(p(x, π|θ))

Using p(x, π|θ) = p(π|x, θ)p(x|θ) we can write that

log(p(x|θ)) = log(p(x, π|θ)) − log(p(π|x, θ)) (20)

Multiplying with p(π|x, θt) and summing over π gives

log(p(x|θ)) =
∑

π

p(π|x, θt) log(p(x, π|θ))

︸ ︷︷ ︸

Q(θ|θt)

−
∑

π

p(π|x, θt) log(p(π|x, θ)) (21)

We want to increase the likelihood, i.e. want this difference to be positive

log(p(x|θ)) − log(p(x|θt)) = Q(θ|θt) − Q(θt|θt) +
∑

π

p(π|x, θt) log(
p(π|x, θt)

p(π|x, θ)
)

︸ ︷︷ ︸

KL(p(π|x,θt)||p(π|x,θ))

(22)
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Derivation of Baum-Welch II: EM

Goal : from observed x, missing π: θ∗ = arg maxθ log(p(x|θ))

Because 0 ≥ KL(p||q), so

log(p(x|θ)) − log(p(x|θt)) ≥ Q(θ|θt) − Q(θt|θt). (23)

Generalised E-M : if we can select a better θ w.r.t. Q(θ|θt) then asymptotically it converges
to a local or global maximum (note that the target θ has to be continuous).
E-M: select best

θt+1 = arg max
θ

Q(θ|θt) (24)
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Derivation of Baum-Welch III: EM

The probability of a given path π and observation x is

p(x, π|θ) =
M∏

k=1

∏

b

[ek(b)]Ek(b,π)
M∏

k=0

M∏

l=1

a
Akl(π)
kl (25)

using this we can rewrite Q(θ|θt) =
∑

π p(π|x, θt) log(p(x, π|θ)) as

Q(θ|θt) =
∑

π

p(π|x, θt)

M∑

k=1

∑

b

Ek(b, π) log(ek(b)) +

M∑

k=0

M∑

l=1

Akl(π) log(akl) (26)

Note that the expected value of Akl and Ek(b)over πs for a given x is

Ek(b) =
∑

π

p(π|x, θt)Ek(b, π) Akl =
∑

π

p(π|x, θt)Akl(π), (27)

Doing the sum first over πs gives (also over multiple sequences in the general case)

Q(θ|θt) =
M∑

k=1

∑

b

Ek(b) log(ek(b)) +
M∑

k=0

M∑

l=1

Akl log(akl) (28)
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Derivation of Baum-Welch IV: EM

Recall that Akl and Ek(b) are computable with forward/backward algorithms using current
θt, whereas the akl and bk(l) parameters form the new candidate θ .

The Q(θ|θt) is maximized by a0
kl =

Aij
∑

k Aik
, because the difference for example for the A

term is

M∑

k=0

M∑

l=1

Akl log(
a0

kl

akl
) =

M∑

k=0

(
∑

l′

Akl′ )
M∑

l=1

a0
kl log(

a0
kl

akl
) (29)

which is a KL distance, so not negative.
(see EM slides earlier in the Bayesian package).
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HMM ”structure" learning I.

Question :Where is the structure in an HMM class? Parameter learning is not enough?

1. Learning of ”HMM length" (??, infinite)

2. Learning of order (??, HMM is based on a first-order Markov chain (note the
conversion of nth-order MC to first-order using increased state space)

3. Learning degree of inhomogeneity (??, we discuss mainly homogeneous transitions)

4. Learning the cardinality of the state space: yes, additionally the constraints of the
transition/emission probabilities using SFSA (or BN) representations.

Recall the speciality of the silent states (elimination&induced parametric constraints for
transitions between real states).
Note the difference between the stochastic FSA representation of an HMM and the
represented HMM. For example in case of profile HMMs, the SFSA representation of a
profile HMM has a length L and the represented profile HMM has potentially infinite length
and state space with size 3+3L.
Dynamic/Temporal Bayesian networks : further generalization of sparse representation for
intra-state, inter-state and emission probabilistic dependencies => dynamic-BNs see
(MI-ch-15). Assume n binary state descriptor resulting in 2n states and 22n transitions in
p(st+1|st). A BN can represent efficiently this dependency (similarly to an SFSA, (is there a
transparent transformation between these representations?) Hidden Markov Models – p. 25/34



HMM ”structure" learning II.

Goal-SFSA : Learning a SFSA from a given model class M. Note that the unrestricted class

of FSAs with n states contains 2n2
models, though the profile HMM class pHMM contains

SFSA models with different length (i.e. one for each valid state space).
Goal-DBN : Learning a D-BN including a subnetwork M’ representing p(st+1|st, M ′) from a
given model class M.
Maximum likelihood approach :
MML = arg maxM p(x(1), . . . , x(n)|θML, M), where
θML = arg maxθ p(x(1), . . . , x(n)|θ, M)

Bayesian approach :
MMAP = arg maxM p(M |x(1), . . . , x(n)) (parameters averaged out(?)). Problem: lack of
closed form for parameters averaging and numerically hard (practicall ”Precall" (as wee will
see): in a Dynamic BN approach, the usage of multinomial local conditionals (in
intra-/inter-transition/emission dependencies) with Dirichlet parameter priors guarantees an
efficiently computable closed form (for a ”hypothetical" full observation) approximation:
MMAP = arg maxM p(M, |θMAP , |x(1), . . . , x(n)), where
θMAP = arg maxθ p(θ|x(1), . . . , x(n)|, M)

Practical questions for profile HMM : ”structure prior"?: , ”parameter prior": Dirichlet...
Learning any conserved subsequence called motifs M (with length L):

arg maxM
∏

i maxj p(x
(i)
j:j+L|M) + ComplexityPenalty(M) (the best subsequence model

occurring in each sequence i with high probability)
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Multiple alignment

Recall that the primary goal of pairwise alignment was the scoring of homology.
Goal of multiple alignment : understanding detailed (position-level) homology relations of
sequences
Ideal solution : reconstruction of evolutionary tree of sequences (at position level) Problem:
complex model (statistical and computational complexity).
Approximate solution: identification of homologous positions (i.e. grouping and alignment in
columns), i.e. scoring function and algorithm

Methods

1. Sum of pairs approach

2. Progressive multiple alignment

3. Profile HMM based multiple alignment
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MA:Sum of pairs approach

Idea: use a general, not position specific scoring matrix in a pairwise manner.
The SP score of a multiple alignment m containing columns mi using s(., ) substitution
matrix, which includes a linear gap is

S(m) =
∑

i

S(mi) =
∑

i

∑

1≤k<l≤N

s(mi, mi). (30)

Paradoxon: with increasing N the relative effect of a single (e.g. non-conserved) residue is
decreasing (whereas biological certainty is increasing)
Algorithm :The generalization of the global pairwise alignment algorithm: multidimensional
dynamic programming for constructing m with optimal SP score for N sequences. Problem:
2N − 1 alternatives at LN position combinations (O(2N LN )).
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MA:Progressive multiple alignment

Idea: build a binary tree representing approximately the pairwise distances and align
sequences and groups of sequences upwards according to this tree.
First we need a new operation: the pairwise alignment of two multiple alignments (or
”profiles") containing sequences 1 to n and n + 1 to N . Note that the linear gap penalty
based SP score for such profiles can be directly applied and the earlier pairwise alignment
algorithm as well (simply working with blocks).

Construct distance matrix over N(N − 1)/2 pairs using pairwise alignment and converting
observed differences to substitution numbers.
Construct a guide tree using the neighbour-joining algorithm (see phylogenetic tree learning
slides).
Progressively align at nodes in order of decreasing similarity, using sequence-sequence,
sequence-profile and profile-profile alignment.

Note the circularity: to reconstruct the pairwise distances for tree learning, we have to apply
the scoring matrix corresponding to the target distance.
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MA:Profile HMM based

Idea: Learn a pHMM, align (”decode") each sequence with Viterbi and construct multiple
alignment (with some conventions).
Observe: in case of a given pHMM the multiple alignment can be reconstructed from
(x(1), π(1)), . . . , (x(N), π(N)) pairs, except alignments within each insert blocks (e.g.
(ABAC, mSm1i1i1m2mT ), (ABBAC, mSm1i1i1i1m2mT ) in pHMM with length 2).

Require: pHMM length, X = x(1), . . . , x(n)

Ensure: multiple alignment of X

Construct pHMM with specified length and ini parameters.
Estimate parameters from x(1), . . . , x(n).
for i = 1 to n do

Compute π(i) by aligning x(i).
Construct multiple alignment from (x(1), π(1)), . . . , (x(N), π(N)).
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MA:Profile HMM based II
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Gene finding:GENSCAN

Semihidden HMM a state can emit words with arbitrary length distribution LS and symbols
YS,l (not just a symbol or words with length following a geometric distribution). A parse φ is a
sequence of states and corresponding lengths (partition of observation is not trivial in such
case!). HMM algorithms are more complex.
Application: parse of a DNA-segment with Viterbi.
Burge(1997)/EG:GENSCAN, human
Recall: what is a gene? (here we follow a protein-coding interpretation)
The training data : 380 genes, 142 single-exon genes, 1492 exons, coding region of 1619
genes
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Gene finding:GENSCAN

Structural elements ( of a protein coding gene): see slides.

1. Upstream region: promoter region: TATA box : present in 70% of genes at 28-34
bases upstream from the start of transcription.

2. 5’ untranslated region (5’UTR): follows the promoter starting with the cap end region
(8 bases) and ending with translation initiation end (TIE) (18 bases).

3. Exon − [intron − exon]∗: recall intron types and structure

4. 3’ untranslated region (3’UTR) contains one or more Poly-A signal (6 bases).
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Gene finding:GENSCAN II.

The transition probabilities are estimated from the data (to TATA, to SEG and to multi-exon).
Intergenic region : Distance between genes is modeled by a geometric distribution with
mean p/1 − p = |genome|/|genes| and the sequence is generated with a fifth-order MC with
parameters 3 · 45 called intergenic null model (INM).
TATA box is modeled with a 15-base weight matrix (independent multinomials). N1 is from
the INM with length distributed uniformly from 28 to 34. Cap end is modeled with an 8-base
weight matrix. N1 is from the INM with length from a geometric distribution with mean 735
bases. TIE is modeled with a 18-base weight matrix.
Single exon gene (SEG) is modeled with a nonhomogeneous (3-phase) fifth-order MC
generating first the start codon atg and ending with the three stop codons taa, tag, tga.
Length follows the empirical distribution.
Multiexon gene is modeled with the SEG model for the exons. The length of the introns are
modeled with empirical distribution independently for initial, internal and terminal introns.
The intron sequence generation starts with splitting a random codon with 1/3 probability to
0/3, 1/2 or 2/1. This prefix starts the intron, then the donor splice signal is modeled with a
decomposed weight matrix with length 6, then the INM generates the intron, finally the
acceptor splice signal is again modeled with a decomposed weight matrix with length 20,
which is closed with postfix part of the splitted codon.
The 3’UTR is modeled with the INM with geometric length of mean 450. The Poly-A is
modeled with a 6-base weight matrix.
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