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Introduction

Details about representing time and using it in computers…
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Time

 One of the seven base units of the SI system
o Very special, it grows continuously with a constant speed
o It is strictly monotonous and continuous

 How we use it in computer systems
o Ordering events based on time (timestamping)
o Measuring time between events (difference of 

timestamps)
o Measuring other physical units based on time

• Example: Measuring speed based on distance and time (v = s/t)

o Etc.

 The most frequently used physical unit, though rarely 
think about it in computer science…

 But that is changing...
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Measurement of time 
 Temporal measurement, or chronometry
 Two fields:

o Calendars
• Epoch : The starting “event” of a calendar

– UNIX clock…

• Splitting time to special, human units or intervals (quite different from 
other units), there is a lot of problem due to it

• 1 minute is 60 seconds, 1 hour is 60 minutes, 1 day is 24 hours
• 1 week is 7 days, 1 month is 28, 30, 31, or sometimes 29 days
• 1 year is  365 or 366 days
• GPS leap second, and other compensation
• Stellar periods (human concept)
• Calendars: Gregorian calendar, but there are other national or religious 

calendars

o Clocks
• Physical devices to measure time
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Calendars

 Gregorian calendar  is used now
o It was first used on 4th of October, 1582 in some part of the 

world, but gained wide scale use later
• Most of the European countries joined later

• Russia changed to it only in 1918

o The Julian calendar was used before it

o All of this is due to some stellar irregularities (how Earth rotates 
around the Sun)
• The Gregorian calendar will be OK for the next 3000 years

 It is very hard to determine when a past event happened 
(Russian 1917 October revolution happened in November)

 Lot of countries use different calendars…

 This calendar mess is a real issue from the point of view of 
algorithms…
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Coordinated Universal Time, UTC
 French and English people cannot make an agreement on the 

abbreviation…
 Based on the International Atomic Time (TAI)

o 35s difference (December of 2013)
o Leap Second are introduced at approximately 18 month

• The Earth rotates slower and slower due to various energy losses (except 
some rare situations)

o TAI does not take into account this, while UTC does take into account 
the rotation of Earth and other stellar events

 We (people) tend to use UTC:
o All the other time formats are based on localization…
o Summer/winter time is not an issue (it is only localization also)

• UTC does not depend on it, only local time

o However, TAI seems to be better for computers
• Leap second does not exists in TAI
• It also a human “artifact”
• It is a strictly monotonous…
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Some additional info about UTC
 Monotonous

o A minute can be 60 s, but sometimes it can be 59 or 61 
seconds...
• It was never 59s, but it was 61s 35 occasions (December of 2013)

– When these events were? It is fundamental to handle time, there is a table for 
it...

– Even a major earthquake can influence UTC (Japan 2011 EQ did it)

• The computer knows this table (it is received in patches, leap seconds 
are inserted as they are needed)

• This is a mess, some better solutions are under research…

 After a certain precision there are relativistic effects (twin 
paradox, atomic clocks on GPS satellites)
o Keeping time in space a science
o Other formats are used in astronomy (Barycentric Dynamical 

Time, TDB)

 It nor a simple nor a transparent system (also a mess)…
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Clocks

 Physical device to measure time

 They show time from an epoch 
(starting point in time)

 Components:
o Impulse source (oscillator)

• Provides impulses with a given 
frequency

o Counter
• Count impulses from the epoch

o Display
• Shows time in a predefined format

o Management
• Setting/maintaining the clock…
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Describing clocks
 Clock properties:

o Stability (how much the frequency of the oscillator changes 
with time)

o Precision (how much the shown time differs from a reference 
clock, that is typically UTC/TAI)

o Resolution (resolution of time shown on the display)

 The clock integrates the oscillator impulses (the frequency)
o Precision and stability are interrelated

 Time domain description:
o Time series plots
o Allan variance/deviation : Two sample variance for time 

 Frequency domain description
o Spectra of the jitter series (ideal versus actual event)
o Phase noise : frequency domain representation of rapid, short-

term, random fluctuations in the phase of a waveform
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Why clocks are inaccurate?
 Erroneous initial setting

o We cannot set the clock when it starts properly according to the reference 
clock (delays in perception and action)

o Setting the clock against a strictly monotonous and continuous time 
principle!

o It means that a clock can be set when it is not used to check time
• otherwise all time bases processes may fail

 The frequency error of the oscillator (offset)
o Production error (difference from the nominal value)
o Frequency drift

• Temperature, movement, mechanical forces influence the frequency
• Electrical variation (e.g. supply voltage, EMI, etc.)
• Ageing

o The unit of frequency error is PPM (parts per million) or PPB (parts per 
billion) 
• 1 PPM : Can see a 350-400 m object on the Moon (e.g. Empire State Building in New 

York)
• 1 PPB : Can see a 0.35-0.4 m object on the Moon (e.g a medium size dog in standing 

position)
• Moon-Earth distance is 350 000 km – 400 000 km
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Long term effects of the inaccuracy

 Frequency error accumulates in the counter
o The clock is late or in hurry

o The frequency must be measured and corrected

o The strictly monotonous and continuous time principle 
cannot be violated!
• If the clock is late, we run it faster to catch up with the reference 

time

• If the clock is in a hurry, we run it slower to let the reference time 
to reach it

• Otherwise the local time will wonder around the global time
– The actual properties of this behavior must be also investigated

» Both in time domain (Alan variance/deviation)

» Frequency domain (Phase noise)

– These are also interesting properties for non synchronized clocks…

• If the reference is not available: Holdover
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Clock hardware in computers
 Oscillators

o Real-Time Clock (RTC) based on a 32 kHz quartz
• A small IC used for off-line timekeeping

o HW System Clock, system tick (Timer IT) and the system clock derived from it
• Provides clock for all digital circuits including the CPU

o NIC clock (for all network interfaces)
• Timestamp unit for hardware times tamping (receive/send)

o Clock of the sound card
• How long a sound is played?

o Graphics card (frame, line and pixel frequency)
• How long a video is played?

o External time sources: GPS receiver, DCF77, IRIG, NTP or IEEE 1588 network 
clock, etc.

 Which one is taken into account?
o Clock ensemble is the best, but hard to do technically
o Synchronization of clocks…

• Sound and video in sync is a major issue itself!
• Especially in distributed systems

– This is why we have the Audio Video Bridging standard (later)
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Typical HW and SW architecture, RTC

 Real-Time Clock

o Measures time while the computer is switched off

o Low power, battery based operation

o Properties:

• Inaccurate, especially when the battery is low

• Medium temperature dependence (e.g., charging the main 
battery of a portable computer influences timekeeping properties)

• Slow access (typically connected by a slow bus such as I2C/SMI)

• Capable of waking up the OS on a given time (most cases, not all)

o The counter uses very “strange” data structure

• Binary coded decimal numbers

• In other words, it uses a human form, not a machine form (binary)
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Typical HW and SW architecture, Sysclock
 HW clock driving the whole system including the CPU, etc.

o Typically using a clock generator chip with multiple PLLs
o Phase noise, jitter?

• Spread-spectrum (artificially increased random jitter) to limit EMI...

 System tick and derived system time
o Initialized at startup from the RTC
o At shutdown it is written to the RTC (can be also periodically updated to the 

RTC)
o The stability of the oscillator and the accuracy of the clock primarily depends 

on the machine temperature
• So it depends on the machine load and the environmental parameters
• It may be also used to detect malfunctions of FANs in the machine (overheating)

o Construction:
• HW counter: N*1MHz clock divided to a 10-20 ms clock tick, which requests an 

interrupt (binary counter)
• SW counter for low resolution clock (binary counter)
• Subdivision: The HW counter or some other counters (Time Stamp Counter) my be 

accessed for increasing the resolution (us or ns resolution is required today)
• SW timers are derived from the clock tick also (SW timeout, time based scheduling, 

etc.)
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Example: Linux timer
 Jiffies (system tick): Kernel dependent (100 Hz, 1000 Hz, 250 Hz, 300 Hz)

o Can be changed by changing one constant in a header file in the kernel source and 
recompiling the kernel

o Defines the resolution of the system clock also if no subdivision is used

 High resolution timer (since kernel 2.6.21): It depends on the available HW
o clock_getres() returns resolution (if supported)
o Tasks waiting for timers are stored in a binary tree

 If you want to know more about timers in your Linux machine:
o cat /proc/timer_list | less

 More than one system clocks are available in Linux:
o Settable system clock : CLOCK_REALTIME
o Monotonous, non settable: CLOCK_MONOTONIC
o Process and thread clock for time domain scheduling information, etc.

 Clock synchronization
o adjtimex – synchronize the system clock to external reference clock
o RFC 5905 (Network Time Protocol)
o Tunes the oscillator of the clock (virtually, not really, hardware tuning is not 

supported on the hardware)
o It implements a software Phased-locked  or Frequency-locked loop by changing the 

division ratio of the HW part of the system clock
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Typical errors in common hardware
 PCs and other devices use quartz crystals (cheap ones) for oscillator 

frequency determination:
o Specification: 200 ppm max. error: the clock is maximum ± 17.28 s off a day

• It adds up to a minute in less than 4 days!
• Quartz for Ethernet is allowed to have 50 ppm frequency error

o Average error : 70-80 ppm (NTP based measurement of thousand of 
computers)

o Temperature dependence:
• 0.5-1 ppm /°C typical

o Better oscillators are drastically more expensive nor they solve the problem 
(the clocks will be off slower)
• TCXO 1-5 ppm max. error, but costs 3-5 USD in large orders
• OCXO 1-10 ppb max. error, but costs around 100 USD or more
• Rubidium or Cesium clocks (under 0.001 ppb)

– Chip-Scale Atomic Clock : 1500 USD (considered low cost)
– Large physical size and power consumption (even for the CSAC)

 Embedded systems may have only a RC oscillator…
o 1000 ppm error or more error
o Strong temperature dependence
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Consequences

 The errors are to large
o The clocks must be synchronized to the reference time (to 

reference clocks)

o Clock synchronization : The clocks advance with the same 
rate and show the same time 
• Requires a Phase-Locked Loop (PLL) to be implemented

o Clock syntonization : The clocks advance with the same 
rate, but they may start from a different epoch
• Requires a Frequency-Locked Loop (FLL) to be implemented

o Connection to the reference clock?
• Solutions:

– Out of band : GPS, DCF77, IRIG timecode

– In band : Network Time Protocol (NTP), IEEE 1588
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Out of Band 
 A dedicated communication infrastructure for clock synchronization
 Global Positioning System (GPS)

o Localization is based on the knowledge of precise time
• An extremely accurate estimation of UTC/TAI is available in GPS receivers

o Interface:
• Timecode (time in UTC), typically through an asynchronous serial port
• Pulse Per Second signal (for clock synchronization)

– Typically under 1 uS accuracy…
– GPS modules with 10 ns accuracy (stationary location required) are available!

 DCF77 (Germany), similar service exists in other countries (e.g. USA)
o Long-wave (77.5 kHz) radio station transmits the reference time

• Quite inaccurate due to wave propagation
• Availability is limited in Hungary (we are too far away from the transmitter)

o Primarily for setting clocks, watches used by people 

 IRIG (Inter-range instrumentation group) timecode
o Professional distributed measurement
o Developed in the USA for military and aerospace use but widely used 

everywhere
o Dedicated cables are used to transmit the time information
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In band
 We use the regular communication channel also to transmit time
 Major problems:

o Delay, delay asymmetry, jitter

 Typically over TCP/IP
o Over Ethernet or WI-FI it is also possible (less complex)

 Network Time Protocol (NTP)
o Hierarchical clock synchronization

• Stratum 0 (reference clocks, GPS, atomic clocks, DCF77 with limitations, etc.)
• Stratum 1 (NTP servers connected to reference clocks)
• Stratum N (Level N. in the clock hierarchy)

o Redundant (multiple servers can be used to minimize errors)
o Optimized for Internet, and precise for human use (100 ms-10 ms offset to the 

reference time is possible)
o With local Stratum 1 servers and special setting 1 ms is achievable in LANs

 IEEE 1588 Precision Time Protocol
o Master-slave protocol for LANs
o High precision (under 1 us is not a problem, under 100 ns is possible)
o Hardware timestamping on the participating hosts and network instruments must be 

used for that precision 
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Summary

 Time is a strictly monotonous, continuous physical 
unit growing with the same pace

 Clocks: Oscillator + counter + display + management
 Clocks are inaccurate

o Initial setting is erroneous, frequency offset and drift

 Setting the clock
o The clock jumps, dangerous in applications using time

 Synchronizing the clock
o Clock is monotonous and continuous
o We tune the frequency of the clock

 NTP and IEEE 1588 clock synchronization protocols 
are available to solve the problem
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In band time synchronization

How NTP and IEEE 1588 works…
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NTP (short introduction)
 Inventor and main developer:  David L. Mills
 Fundamental idea:

o Ask the a “time server” about the current time and take network and 
processing delays into account…
• You know when you asked the server about time

(request, t0 timestamp on the client)
• You know when the server received you message, it tells you in the reply

(receive request, t1 timestamp on the server)
• You know when the server replies, it is also in the reply

(reply, t2 timestamp on the server)
• You know when the message from the server arrived

(receive reply, t3 timestamp on the client)

o Assume that the message transmission time for the request and the reply is 
identical (the network delay is symmetric)
• Then the estimation of the offset between server and client can be computed as:

t=((t1-t0)+(t2-t3))/2
• The time difference between the client and server does not effect the offset 

computation (if it can be considered constant during the measurement)

o Do not set the local time with offset, but change the rate of the local 
oscillator to eliminate the offset…
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NTP
 Hierarchical  semi-layered architecture
 Practically: P2P architecture, SNTP is client only

Page 23
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The problem with NTP
 The message transmission time for the request and the reply is NOT identical!
 Contributing factors for delay:

o Client OS and network hardware latency
o Network latency from client to server
o Server OS and network hardware latency for request processing
o Server OS and network hardware latency for reply processing
o Network latency from server to client
o Client OS and network hardware latency

 OS latency has a high variability due to OS scheduling and queuing
 Network hardware latency is asymmetric due to:

o Speed asymmetries (ADSL, wireless links, etc.)
o Load asymmetries (store and forward delay, processing delay, queuing)

 Using QoS reduces the asymmetry only
o One maximum sized packet can block any queues
o Any number of timing packets can block each other in network hardware…

 NTP tries to reduce it by advanced filtering method, with limited success
o It cannot be done properly (there are fundamental limits)
o The only option is to measure the asymmetry
o Active (time aware) devices (master, slave, network) could do it  IEEE 1588
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IEEE 1588
 NTP cannot provide required precision for distributed 

measurement and control…
 NTP is designed for the Internet, the application domain is LAN 

specific
 Solution:

o IEEE 1588-2002, Standard for a Precision Clock Synchronization 
Protocol for Networked Measurement and Control Systems, 2002

o IEEE 1588-2008, , Standard for a Precision Clock Synchronization 
Protocol for Networked Measurement and Control Systems, 2008
• Modified based on the practical experiences gained by using IEEE 1588-2002
• 289 pages (not big for a standard)

o The standard is also called Precision Time Protocol (PTP)
o Here we consider IEEE 1588-2008 only

• The only exception if IEEE 1588-2002 is explicitly referred
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Fundamental idea of IEEE 1588
 NTP cannot handle asymmetric delay
 IEEE 1588 is designed to measure one-directional delay 

components on the participating nodes…
o Can work on any HW, but works well on HW supporting it
o Hardware timestamping…

• IEEE 1588 Event messages are timestamped
• IEEE 1588 General messages are not timestamped

 Main asymmetric delay sources:
o Client SW and HW
o Server SW and HW
o Network nodes (switches, routers, wireless access points, etc.)

• Store and forward delay, queuing delay, processing delay, etc.

 Negligible asymmetric delay sources
o Cable delay
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Facts about IEEE 1588 1.
 Hierarchical master-slave architecture

o Single master (Grandmaster): Best Master Clock (BMC) algorithm selects it

 Support global time (reference clock) or local time
 Designed for the LAN

o Primarily Ethernet medium
• It supports some field buses also

o But wireless (e.g. IEEE 802.11 or IEEE 802.15.4) may also be used
o Ethernet (Ethertype : 0x88f7) or UDP (IPv4 or IPv6) transport
o Primarily multicast  communication, but may use unicast also

 One-step or two step clocks
o One step clock: timestamps are included in HW into packets used during 

synchronization
• The packet must be rewritten under the MAC layer (practically, in the PHY)
• The layered architecture of communication is not (fully) compatible with it

o Two-step clock: timestamps are sent in follow up messages
• Second message conveys the real send timestamp of the synchronization  message
• Timestamp measured and sent to the software, which generated the follow up 

message
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Facts about IEEE 1588 2.

 Profiles: The standard can be extended

o IEEE 802.1AS (802.1AS-2011 - IEEE Standard for Local and 
Metropolitan Area Networks - Timing and Synchronization 
for Time-Sensitive Applications in Bridged Local Area 

Networks)

• Profile for Audio Video Bridging (AVB) support

• Layer 2 (Ethernet) transport

• Mandatory P2P transparent clock support

o Power profile for IEC 61850 (Substation automation)

• Layer 2 (Ethernet) transport

• Mandatory one step clock support
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IEEE 1588 components
 Clock domain

o A single logical group of clock synchronizing to each other using IEEE 1588

 Ordinary clocks
o Master or slave clocks
o Single port supporting IEEE 1588 in a clock domain

 Boundary clock
o Multiple port device acting as slave on one port, and as master on at least one other port

 End to End (E2E) Transparent clock
o Multiple port device (switch, router, etc.) supporting End to End delay measurement mechanism 

(client to grandmaster)
o It measures how much time the event message spends in the device (residence time)

 Peer to Peer (P2P) Transparent clock
o Multiple port device (switch, router, etc.) supporting Peer to Peer delay measurement mechanism 

(neighbor to neighbor)
o It measures the residence time + peer delay
o Better scaling and better handling of communication faults (e.g. STP/RSTP actions)

• Local communication only

o Functionally equivalent  to boundary clocks (It is shown in a paper.)

 Some notes about E2E and P2P transparent clocks
o They can be one-step or two-step
o They cannot be mixed in a clock domain (E2E or P2P can be used)
o IEEE 802.1AS requires P2P or Boundary clocks, E2E is not supported
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IEEE 1588 two-step clock
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RSTP

Architecture with two-step Boundary clocks
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Architecture with two-step E2E transparent clocks

Page 32

E2E TP

Master
(GM)

E2E TP E2E TPE2E TP

SlaveSlave

Slave Slave Slave Slave Slave

Sync + Follow up Delay request + Delay response

RSTP RSTP



© BME-MIT 2013, All Rights Reserved

Architecture with two-step E2E transparent clocks
(after link error)
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Architecture with two-step P2P transparent clocks
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Architecture with two-step P2P transparent clocks
(after link error)
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Client implementation

 Hardware timestamping is required for sub 1 us 
precision

 PHY or MAC timestamping?
o PHY timestamping can be more precise (less jitter and 

asymmetry) but PHY to SW communication is 
problematic

oMAC timestamping is simpler but less precise

 SEND timestamping is generally more complicated
o RECEIVE is simple, timestamp can be attached to the 

packet as a part of a pseudo header

o In case of sending, the packet and the timestamp 
move into opposite direction
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Timestamping unit
 Clock + capture unit

o On IEEE 1588 event messages the clock is captured
o There must be a HW filter for it...

• All packets cannot be timestamped
• Especially on the SEND side

o Other capture units are also nice features (to capture external events)
• External signal generation (1 PPS, N PPS)
• External event timestamping
• Testing of the precision of the clock (timestamp the clock on reference clock 1 PPS signal)

 HW Clock format
o Syncronized IEEE 1588 standard format (truncated TAI64N)

• struct Timestamp {
UInteger48 secondsField;
UInteger32 nanosecondsField; 

};
• The secondsField is the low 48 bits of TAI64 format (UInt64)
• The nanosecondsField member is always less than 109

• TAI64NA format exists also (attosecond resolution)
– 32 bit nanosecond count field, 32 bit attosecond count field (seems to be a bad idea, why not attosecond

only)

o Proprietary format (synchronized or not)
• Cannot be used in one-step clock
• Clock transformation between the protocol SW and the HW (can be a real mess)
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HW clock synchronization

 Tuning the oscillator of the clock
o Voltage controller oscillator (VCO), expensive...

o PLL/FFL type operation, the loop is closed through the 
whole IEEE 1588 solution

 Fractional clock rate control (arithmetic clock)
o All digital solution

o 2-32 nS resolution typically
• Specifies how much of the period of the oscillator (nominal 

125 MHz clock, nominal 8 ns period typically)  must be 
reduced or extended to reach the reference 8 ns

o Intel i210: Increment Attributes Register

o TI DP83640 : PTP Rate Low/High Registers
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Time domain interface of IEEE 1588

 Special HW or SW interface:

o Current time with seconds resolution (e.g. UART with 
NMEA format or proprietary format)

o Pulse Per Second (PPS) signal

o Some systems: Unlocked signal

 IEEE 1588: Virtual wire between the reference 
time source and the slave devices using this time 
domain interface
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IEEE 1588 Linux support

Using it on Linux...
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IEEE 1588 compliant NIC

 Intel Server Network Interface 
Cards support it for years

o Current ones: Intel i210 and Intel 
i350

o IEEE 1588 compliant NIC clock

o IEEE 1588 compliant 
timestamping unit

o Software Defined Pin controlled 
capture and compare units

o Designed for real-time 
networking
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IEEE 1588 support in Linux

 PTPd daemon
o SO_TIMESTAMPING is required for HW support from the 

driver (from kernel 2.6.30)
• For Intel NICs, it is developed by BME-MIT

 linuxptp
o Enhanced implementation based on the lessons learned 

from  PTPd

 Linux PTP Hardware Clock (PHC) API
o kernel 3.x, some Linux distributions have compiled in, but 

for most of the distribution you have to compile your own 
kernel

o Intel NIC support is developed by BME-MIT

 Intel NIC + Linux is whole solution?
 Question: If yes, how precise the solution is?
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Results: „EYE” diagram of the slave
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Eye diagram of the Slave Clock's PPS output for 3600 test cases

Triggered to the PPS outout of the reference clock 

(1 hour test, dX = 500 ns, dY = 1 V)

500 ns
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Results: Slave clock performance

 High load on the network and the slave generated by iperf!
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Results: Holdover (on lab. temperature)
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Unsynchronized system

Synchronized system loosing

communication to the master
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IEEE 1588 Compatible Intel HW

The devices and how they work
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Gigabit Network Interface Cards
 Intel is supporting IEEE 1588 since 2009, but device features 

are developed continuously
o Intel® 82576 Gigabit NIC (launch 2009)

• Initial IEEE 1588 support, sufficient for system clock synchronization

o Intel® 82580 Gigabit NIC (launch Q1'10)
• IEEE 1588 fully supported, better NIC internal clock
• Initial I/O pin support for HW synchronization

o Intel i350 Gigabit NIC (launch Q2'11)
• I/O pin support for HW synchronization (Software Defined Pins)

o Intel i210 Gigabit NIC (launch Q4'12)
• One step clock support

– Layer 2 transport, and Layer 4 transport for IPv4 with no UDP checksums
– IPv6 is not supported as IPv6 specifies mandatory UDP checksums

• SDP pins are available on production cards
• AVB support
• Send on time
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10G Network Interface Cards

 X520 and X540 supports IEEE 1588 based on the 
available information
o The X540 is a specialized version of the X520 for 

datacenter applications with minor modifications
o The X540 is quite similar to i210 regarding IEEE 1588 

support, except:
• No one step clock support
• No SDP pins on the production cards (chip supports them)
• Limited AVB support (only 802.1as)
• Only twisted pair cable support (no external PHY)

– No 100 Mbps timesync support

o The X520 is the predecessor of X540
• Some IEEE 1588 functionalities are less polished… 
• No AVB support
• External PHY module support (optics, etc.)
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i210 features, NIC clock 1.
 i210 has an IEEE 1588 NIC clock built in for timestamping events

o The clock runs with the physical clock of the NIC
• Nominal 125 MHz
• Max. 50 ppm error in the full operating temperature range

– 0-85 °C for commercial SKU
– -45-105 °C for industrial SKU

o It keeps time in the standard in a nearly IEEE 1588 “wire” format
• Format:

– SYSTIMR register (32 bit): sub ns fraction
– SYSTIML register (32 bit): ns fraction (0 to 999,999,999 decimal value)
– SYSTIMH register (32 bit): seconds from the PTP epoch
– SYSTIMTM register (16 bit): 232 seconds from the PTP epoch

» Set by software, assumed to be 0, a potential year 210x (2106?) problem

• SYSTIML+SYSTIMH+SYSTIMTM is the IEEE 1588 time format
• It is required for one step clock operation
• It makes software implementations easy

o It is an arithmetic clock, not a counter
• The operation of the clock is fractional, defined by the TIMINCA and TIMADJ 

registers
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i210 features, NIC clock 2.

 It is an arithmetic clock, not a counter
o TIMINCA (frequency compensation)

• SYSTIM = SYSTIM + 8 nsec +/- TIMINCA.Incvalue * 2-32 nsec.

• 0-30 bits: Increment value (Incvalue). Value to be added or subtracted 
(depending on ISGN value) from 8 nS clock cycle in resolution of 2-32 nS

• 31: Increment sign (ISGN).
– Value of 0b = Each 8 nS cycle add to SYSTIM a value of 8 nS + Incvalue * 2-32 nS.

– Value of 1b = Each 8 nS cycle add to SYSTIM a value of 8 nS -Incvalue * 2-32 nS.

o TIMADJ (monotonic offset compensation)
• SYSTIM = SYSTIM + 8ns +/- 1 nsec as long as TIMADJ > 0

– TIMADJ = TIMADJ - 1

• 0-29 bits: Time Adjustment Value (defined in ns units). The TADJL field 
can be set to any non-zero value smaller than 999,999,900 decimal 
(slightly below 1 second)

• 30 bit: Always zero

• 31 bit: Sign, 0b is addition, 1b is substraction
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i210 features, RX timestamping
 Packet filter

o Select incoming packets to be timestamped
• IEEE 1588 or other protocol specific

– IEEE 1588 V1 or V2 capture
– Ethernet type in case of L2 transport
– UDP port based case of L4 transport
– RX queue must be specified (where the received packet is transported)

• All receive packets are timestamped
– Only descriptor based timestamp communication is supported

o The packet must be received at least partially (Ethernet type or UDP port) to 
timestamp based filtering
• There is a capture latency compared to the Message Timestamp Point (First octet 

after SoF on the wire)
• The actual minimum, maximum and average latency can be found in the datasheet

– There is a statistical variation in the capture process…

 RX timestamp communication to SW
o Advanced Receive Data Descriptor structure pushed into host memory (TS 

flag) with the timestamp included
• SYSTIML  and SYSTIMH are put into the packet descriptor

o The timestamp is read from RXSTMPL/H register (TSIP flag)
• Interrupt may be requested on RX timestamp
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i210 features, TX timestamping
 TX timestamp is problematic:

o Packet and timestamp info handled differently
• Packet goes out on the port
• The timestamp needs to be processed by local software

o One step clock (HW packet rewrite) does not help also to simplify things…

 It is not advised to timestamp all TX packets as possible for RX (lot of 
communication)
o Only the packets requested by software are timestamped
o One step clock Sync:

• Software can request timestamping by setting bit Advanced Transmit Data Descriptor 
bit 1STEP_1588

• Timestamp is inserted into the packet matching the filter with a given offset, Ethernet 
CRC recalculated

• IPv4 UDP is supported with no UDP checksum
• IPv4 with UDP checksum and IPv6 (mandatory UDP checksum) are not supported

o Two step clock Sync and all Delay_Req packets:
• Software can request timestamping by setting Advanced Transmit Data Descriptor bit 

2STEP_1588
• The transmit timestamp can be read by SW from TXSTMP
• The software can send the proper IEEE 1588 message using any transport method
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i210 features, SDP timestamping

 SDP pins configured

 “CAPTURE” peripheral on microcontrollers

 2 Auxiliary timestamp registers (AUXSTMP) 

o Latches in SYSTIMH and SYSTIML on specified SDP pin 
change

• The actual time can be recorded for external events based 
on the local SYSTIM clock

• Can be used for master clock reference input, local clock 
accuracy measurement (compared to reference clokc), etc. 

o Interrupt can be requested upon a write to AUXSTMP
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i210 features, SDP as output

 External events based on SYSTIM
o 2 TRGTTIM  registers (TRGTTIM0 and TRGTTIM1)

o “COMPARE” peripheral on microcontrollers

o If the value of SYSTIM reached the value of TRGTTIM state 
change on a configured SDP pin can be requested

o An interrupt can be also requested

o Time based events for external components

 External clocks based on SYSTIM (phase locked)
o 2 FREQOUT registers (FREQOUT0 and FREQOUT1)

o The output frequency must be an integer multiply of 1 Hz
• The requirements are somewhat relaxed if the half cycle time of 

the clock is under 70ms

o The HW uses TRGTTIM internally (by auto-incrementing it)
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i210 features, Interrupt on time

 Time SYNC Interrupts

o SYSTIM Wrap around

o Receive timestamp on timestamp loaded into RXSTMP

o Transmit timestamp on timestamp loaded into 
TXSTMP

o Target Timer 0 trigger

o Target Timer 1 trigger

o Auxiliary Timestamp 0 taken

o Auxiliary Timestamp 1 taken

o Time adjust is done (TIMADJ)
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