R T Operating Systems

UEGYETEM 178

UNIX process handling

Tamas Mészaros
http://www.mit.bme.hu/~meszaros/

Department of Measurement and Information Systems
Budapest University of Technology and Economics

UNIX processes 1/21

http://www.mit.bme.hu/~meszaros/

Operating Systems

Typical problems to solve

* “The system is slow”
- What's happening?
- Who is doing what?

* “An application is eating up CPU power”
- Why is it too slow?
- What is it doing?

* “The battery depletes too fast”
- What is running? Is it necessary to run?
- What is consuming the more power?

e “Core dumped’, “kernel panic”
- Why is it terminated? What's happened?
- What causes kernel errors? What apps were running, what's happened

UNIX processes 2 /21

Operating Systems

Overview (two lectures)

Introduction
- What is a process? How does it start? How to monitor its execution?

- lts relation to the kernel
- Context and execution mode

Processes
- administrative data
- state and state transition
- life cycle: creation, working, waiting, zombie and termination

Classical UNIX scheduling in practice
- priority, time sharing, preemptivity

System calls
- create a new process
- execute a new program

UNIX processes 3/21

Operating Systems

The user's view: what is happening?

* Listing active processes
- ps, ps —-ef, ps axu, ps -u <user>, pstree,
- top, atop, htop és graphical tools (System monitor, gkrellm, procexp, ...)

* What do we see in these lists?
- PID (Process ID): unique identifier (PPID: parent ID)
- State (running, sleeping, ready to run, etc.)
- Scheduling informantion (e.g. priority)
- Credentials (UID, GID, EUID, EGID, UID=0 root / superuser)
- STIME: start time
- TIME: time on CPU
- CMD: which program is running
- Statistical data
- Session info: terminal device (TTY)
- Aggregate statistics: CPU%, MEM%, DSK%, NET%, etc.

UNIX processes 4 /21

Operating Systems

The user's view: what are the processes?

* Kernel processes

shown between [] in the lists
examples: kjournald, kswapd, init (PID=1)

* Service processes (or daemon processes)

Usually started by init by running scripts from /etc/init.d/

The start sequence is specified by /etc/rc?.d/ file order.

Examples: networking, time, file systems maintenance, firewall, LDAP, ...

init is getting replaced by Systemd (see RHEL 7, Ubuntu 15.04)
Interesting reading: http://Opointer.de/blog/projects/systemd.html

Configuring startup services: ntsysv, bum

» User processes

UNIX processes 5/21

special process: shell (command interpreter)
application processes (Firefox, Chrome, Thunderbird, Libreoffice, etc.)

http://0pointer.de/blog/projects/systemd.html

Operating Systems

Simple family tree of UNIX shells

Thompson Shell - 1871

Korn (ksh) - 1983

Y

Korn (ksh93) - 1993

Bourne {sh) - 1977 - - C (csh) - 1978
|
i
i
i
i
Y
- = | Bourne-Again (bash) - 1987 TENEX C (tesh) - 1981
£ (zgh) - 1990 R - - Almaquist (ash) - 1989

Forras: http://www.ibm.com/developerworks/

UNIX processes 6/21

http://www.ibm.com/developerworks/

R T Operating Systems

UEGYETEM 1782

Runlevel

* UNIX systems have different service levels (called runlevel)
- ltis identified by a number
- The system admin can change the runlevel
- Services start and stop at different levels

e Runlevels
- See /etc/inittab

- There are slight differences among the UNIX variants
e 0: full stop
* 1 or S: single-user (admin) mode
2-5. multi-user modes
3 or 5: default multi-user mode with graphical user interface
6: reboot

» Commands to change the runlevel
telinit, init, shutdown, halt, reboot

UNIX processes 7/21

Operating Systems

The user's view: process management

* Process life cycle
- Starting, ready to run, running, sleeping, stopping

* How and when do they start?
- System starts: the kernel starts it's own processes and init (PID=1)
- Boot procedure: daemon processes and terminal monitors
— The user logs in: shell or GUI processes
- The user starts applications from the shell or GUI
- On demand: an event yields a process startup

 How to control them?
- (in addition to their regular user interface)
- Signals: cTrRL+C, CTRL+Z, kill <SIGNAL> <PID>

- Setting the priority: renice

UNIX processes 8/21

Operating Systems

UNIX Process Life-cycle

* Creation
- fork(): create a new process
- exec(): load a new program code\

* Normal operation: running and waiting
- there are two running states: kernel and user

* Termination
- exit() system call
- enters a zombie state first
- notification of the parent process
- adopting children
- final termination

UNIX processes 9/21

Operating Systems

Running in
user mode

Running in
kernel mode

Ready to run

1 /

Suspended
ready to run

Suspended
sleeping

UNIX processes

10/21

T Operating Systems

UEGYETEM 1782

fork() and exec() system calls

 fork () returns with a different value for the child and parent
processes

e exec () does not return on success

e Code sample

if ((res = fork()) == 0) {
// child
exec(...);

// won't reach this line on successful exec
} else if (res < 0) {
// fork error (can't create more processes)

}
// res = CHILD PID (>0), parent

UNIX processes 11/21

Operating Systems

Family tree

Processes are created by other processes (except PID 1)
— every process has a parent
- processes may have children

» fork() gives the PID of the child process to the parent

The Origin: PID 1 (typically called init, upstart, systemd, ...)
- the anchestor of all processes
- runs until the system is running
— takes over abandoned child processes
- monitors (sometimes even restarts) important system services

 Family is important in UNIX
- the parent has to ACK when a child dies

UNIX processes 12 /21

i e T e Operating Systems

UEGYETEM 1782

UNIX processes — the kernel's view

» Separating processes from the kernel
— execution mode: protected or user
— context: kernel or process data

* Execution mode:
- Kernel (,protected”) mode
» performing restricted actions that need to be protected

- User (,free”) mode
» execution of the user's program code

* Execution context:
- Kernel (or interrupt) context
* data needed by the kernel's own tasks

- Process context (handled by virtual memory management)
* program code, data, stack, etc.
* administrative data to handle the process

UNIX processes 13/21

e T Operating Systems

UEGYETEM 1782

Processes and the kernel

O O

System libraries

Syscall interface

Process handling
scheduling, memory management
communication

Hardware resources

UNIX processes 14 /21

Operating Systems

Running programs: execution mode and context

user mode kernel mode
application system call
process context
kernel context
(empty) Interrupts,
kernel tasks

UNIX processes 15/21

e T Operating Systems

UEGYETEM 1782

More details on the process context

* Program text, data, stack, etc.
* Hardware context (registers)
* Administrative data (to handle processes)

- needed only when the process actually runs u-area
* access control data Part of the process’
* system call state and data adress space
* open file handles
* efc.
- always good to be at hand proc structure
* |IDs (PID, user, etc.) Part of the kernel addr. space

* running state and scheduling data
* memory management data (including the address of the u-area)

* Environment (inherited from the parent process)

- afttributum = value pairs (e.g. terminal type, shell, language, etc.)
- set, setenv, export

UNIX processes 16 /21

Operating Systems

Switching from user mode to kernel mode

* This is typically performed during a system call issued by a process

- Wishes to execute an operation that can only be done in protected mode
(e.g. opening, reading, writing a file, querying the system time, etc.)
- The process calls the appropriate system call (e.g. open(), read(), etc.)

This seems like a classical function call but it is not.
It is implemented in libc that will start the real system call.

- libc issues the SYSCALL interrupt (this is a CPU instruction)
This depends on the actual CPU architecture: SYSCALL, TRAP, SYSENTER

- The CPU enters protected mode

- The kernel processes the interrupt and executes the system call program
- The kernel returns from the interrupt (IRET, SYSEXIT)

- The CPU leaves the protected mode

- libc processes the results and returns from the system call

- The process gets the return values from the system call

* Other hardware interrupts and exceptions (errors) also yield to CPU
mode change

UNIX processes 17 /21

Operating Systems

10
UEGYETEM 1782

Demo: process tracing

* Let's look at the system calls performed by a process
- trace command: strace

- more information and examples: man strace
- There are other solutions, like the Solaris DTrace

* Let's have alook at the syscalls performed by the ps command!
strace -c ps
strace -e open ps

» Let's peek into the Firefox \Web browser's system calls
RHEL 5, Firefox 3.0.12

ps —ef | grep firefox
strace -c -p <Firefox PID>

UNIX processes 18 /21

Operating Systems

The /proc filesystem

* We can access kernel data through a special filesystem location
- [proc
- See man proc
- Every process has a directory here named by its PID
- ps and other process listing programs read these directories
- We can read them using classical file reading apps (cat, less, more)

* Process data in the /proc filesystem
- These set of files depends on the UNIX (and kernel) version
- the program and its parameters (cmd, cmdline)
- working directory (cwd) and the process environment (environ)
- file descriptors (fd, fdinfo)
- memory info (maps, statm)
— process state (stat — it is not easy to read, use ps instead)
- system call info (wchan)
Linux: http://www.lindevdoc.org/wiki//proc/pid/status

UNIX processes 19 /21

http://www.lindevdoc.org/wiki//proc/pid/status

Operating Systems

Virtual system calls

* The problem: many syscalls, interrupts, context switches take time
- See the Firefox example: it is calling gettimeofday() way too often
- gettimeofday() — libc — SYSCALL — mode change — ... — IRET —libc

* There are simple cases when we could try to shorten this path
- No security, reliability, etc. risk
- Try to avoid hardware interrupts and execution mode changes
- If we don't have mode change the calll must be accessible in user space
- We transfer certain system calls into the process' own address space

* Virtual system calls (Linux)
- map a special kernel page to the process address space
- put safe system calls (e.g. gettimeofday()) there
- no interrupts, no mode changes, fast execution
- we don't have to modify the user program (it issues the same syscall)

UNIX processes 20/ 21

Operating Systems

Summary

* Basic knowledge about processes
- commands: ps, kill, nice
- execution mode and context
- system calls
- administrative data (u-area and process table)

» Life-cycle
- creation: fork () system call
- Loading a new program code: exec ()
- states (note the two running and the suspended states)
- termination: zombie state

* Family tree
- fork () builds a tree, the master process is called init (PID 1)
- parents are notified when a child dies

UNIX processes 21 /21

	UNIX: folyamatok és kommunikáció
	Slide 2
	Áttekintés
	Felhasználói ismeretek
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Folyamatok életciklusa
	Klasszikus UNIX állapotátmeneti gráf
	fork() és exec()
	Folyamatok családfája
	A folyamatok és a kernel
	A kernel és a rendszerhívás interfész
	Futási módok és kontextusok
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Összefoglalás

