
August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopIntroduction 4.1

• On a current FPGA there are many multipliers and adders available.
However for various communciations techniques, and matrix
algorithms which require trigonometry, square root etc,

How would you perform these computations on an FPGA?

Perhaps look-up tables, iterative techniques (or even come up with
algorithms to try and circumvent the trigonometry!)

• In this section the CORDIC algorithm is introduced; this is a “shift and
add” algorithm that allows calculation of many various trigonometric
functions, such as:

•

•

• and other functions including divide and logarithmic functions.

x2 y2+

θcos θtan θsin, ,

Notes:

Developed by:

Top

For more detail and background on the CORDIC algorithm the following material may be useful:

[1] R. Andraka. A survey of CORDIC algorithms for FPGA based computers. www.andraka.com/cordic.htm

[2] The CORDIC Algorithms. www.ee.byu.edu/ee/class/ee621/Lectures/L22.PDF

[3] CORDIC Tutorial. http://my.execpc.com/~geezer/embed/cordic.htm

[4] M. J. Irwin. Computer Arithmetic. http://www.cse.psu.edu/~cg575/lectures/cse575-cordic.pdf

This is nothing “new” in the CORIDC technique. In fact it dates back to 1957 in a paper by an author J. Volder.
In the 1950s shift and adds on large physical computers was the limit of technology so CORDIC was of real
interest. Also in 1970s with the advent of handheld calculators from Hewlett Packard and other companies,
many had an internal CORDIC unit to calculate all of the trigonometric functions (those who recall this time, will
remember that taking the tangent of an angle, had a delay of sometimes up to a second while the calculator
calculated the result!).

In the 1980s CORDIC was less relevant given the advent of high speed multipliers and general purpose
processors with plenty of memory available. However now in the 2000’s for FPGAs, CORDIC is definitely a
candidiate technique for the calculation of trigonometric functions in DSP applications such as MIMO,
beamforming and other adaptive systems.

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopCartesian Coordinate Plane Rotations 4.2

• The standard method of rotating a point (by degrees in the xy
plane to a point is given by the well known equations:

• This is variously known as a plane rotation, a vector rotation, or in linear
(matrix) algebra, a Givens Rotation.

x1 y1,() θ
x2 y2,()

x2 x1 θ y1 θsin–cos=

y2 x1 θ y1 θcos+sin=

y2

y1

x1x2

θ

Notes:

Developed by:

Top

This can also be written in a matrix vector form as:

So for example a 90o phase shift would be:

x2

y2

θcos θsin–
θsin θcos

x1

y1
=

x2

y2

0 1–
1 0

x1

y1

y1–
x1

= =

x1

y1

x1x2-y1

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopPseudo-Rotations 4.3

• By taking out the factor term we can rewrite the equations as:

• If we now drop the term then we have a pseudo-rotation:

ie. the angle of rotation is correct but the x and y values are scaled by
 (i.e. both become larger than before as > 1.

• Note that we have NO mathematical justication for dropping the
term, however later we note it can make the computation of plane
rotations more amenable to simple operations.

θcos

x2 x1 θ y1 θsin–cos θ x1 y1 θtan–()cos= =

y2 x1 θ y1 θcos+sin θ y1 x1 θtan+()cos= =

θcos

x̂2 θ x1 y1 θtan–()cos x1 y1 θtan–= =

ŷ2 θ y1 x1 θtan+()cos y1 x1 θtan+= =

θcos 1– θcos 1–

θcos

Notes:

Developed by:

Top

In the xy plane this is:

Therefore the magnitude of the vector R increases by a factor of after the pseudo-rotation.

So the resulting point is at the right angle, but the vector is the wrong magnitude.

θ

(x2, y2)

(x1, y1)

x̂2 ŷ2,()

Rotation

R̂

R x1
2 y1

2+ x2
2 y2

2+= =

Pseudo-Rotation

R
R̂ R

θcos

x1
2 y1

2+
θcos

----------------------= =

1 θcos⁄

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopThe CORDIC Method 4.4

• The key to the CORDIC method is to only (pseudo-) rotate by angles of
 where tan = 2-i. Therefore in the equation:

• The table below shows the rotation angles (to 9 decimal places) that
can be used for each iteration (i) of the CORDIC algorithm:

i (Degrees)

0 45.0 1

1 26.555051177... 0.5

2 14.036243467... 0.25

3 7.125016348... 0.125

4 3.576334374... 0.0625

θ θi

x̂2 x1 y1 θtan– x1 y12 i––= =

ŷ2 y1 x1 θtan+ y1 x12 i–+= =

θ
i

θ
itan 2 i–=

Notes:

Developed by:

Top

At this stage we alter the transform to become an iterative algorithm. We restrict the angles that we are able to
rotate by, such that to rotate by an arbitrary requires a series of successively smaller rotations at each iteration
i. The rotation angles obey the law: Obeying this law causes the multiplication by the tangent
term to become a shift.

The first few iterations then take the form:
1st iteration: rotate by 45o; 2nd iteration: rotate by 26.6o, 3rd iteration: rotate by 14o etc.

The direction with each rotation takes obviously affects the accumulative angle that is rotated. Arbitrary angles
can be rotated in the range . The sum of all angles obeying the law is 99.7. For
angles outside this range trigonometric identities can be used to convert the desired angle into one within the
range. The number of bits resolution in the angle is of course relevant to the final accuracy.

. Therefore after 13 rotations to scale the pseudo-rotation back requires a
multiply by 1.64676024187.. The number of bits resolution in the angles will be significant to the accuracy of the
final rotation.

θ
θ i()tan 2 i–=

99.7 θ 99.7≤ ≤– θitan 2 i–=

 i tanθ Angle, θ cosθ
1 1 45.0000000000 0.707106781
2 0.5 26.5650511771 0.894427191
3 0.25 14.0362434679 0.9701425
4 0.125 7.1250163489 0.992277877
5 0.0625 3.5763343750 0.998052578
6 0.03125 1.7899106082 0.999512076
7 0.015625 0.8951737102 0.999877952
8 0.0078125 0.4476141709 0.999969484
9 0.00390625 0.2238105004 0.999992371

10 0.001953125 0.1119056771 0.999998093
11 0.000976563 0.0559528919 0.999999523
12 0.000488281 0.0279764526 0.999999881
13 0.000244141 0.0139882271 0.99999997

cos 45 x cos 26.5 x cos 14.03 x cos 7.125 ... x cos 0.0139 = 0.607252941

1 0607252941⁄ 1.6467602=

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopAngle Accumulator 4.5

• The pseudo rotation shown earlier can now be expressed for each
iteration as:

• At this stage we introduce a 3rd equation called the Angle Accumulator
which is used to keep track of the accumulative angle rotated at each
iteration:

• The symbol di is a decision operator and is used to decide which
direction to rotate.

x i 1+() x i() di 2 i– y i()()–=

y i 1+() y i() di 2 i– x i()()+=

 z i 1+() z i() diθ i() (Angle Accumulator)–=

where di = +/- 1

Notes:

Developed by:

Top

At this stage we can now express the equations for each iteration as:

where di the decision operator is used to give the rotation a clockwise or anticlockwise direction. The conditions
of di depend on the mode of operation which shall be discussed shortly.

Also, at this stage we introduce a third equation called the Angle Accumulator which is used to keep track of
the accumulative angle rotated at each iteration:

The three equations now represent the CORDIC algorithm for rotations in a Circular Coordinate System. We
shall see later that there are other coordinate systems that can be used with the CORDIC method to calculate
a greater range of functions.

x i 1+() x i() di 2 i– y i()()–=

y i 1+() y i() di 2 i– x i()()+=

z i 1+() z i() diθ
i()–=

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopShift-Add Algorithm 4.6

• Hence, the original algorithm has now been reduced to an iterative
shift-add algorithm for pseudo-rotations of a vector:

• Thus each iteration requires:

• 2 shifts

• 1 table lookup (values)

• 3 additions

x i 1+() x i() di 2 i– y i()()–()=

y i 1+() y i() di 2 i– x i()()+()=

z i 1+() z i() diθ i()–=

θ i()

Notes:

Developed by:

Top

Here, the reason for removing the cos term earlier becomes clear. With this term removed, the transform is
reduced to an iterative shift-add algorithm for pseudo-rotations.

CORDIC hardware:

θ

Shift

Shift

Lookup
Table

+
-

+
-

+
-

x Register

y Register

z Register

Iteration Counter

Initial x

Initial y

Initial z

di Control

Mux Control

z-1

z-1

z-1

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopThe Scaling Factor 4.7

• The Scaling Factor is a by-product of the pseudo-rotations.

• When simplifying the algorithm to allow pseudo-rotations the cos term
was omitted.

• Thus outputs x(n), y(n) are scaled by a factor Kn where:

• However if the number of iterations are known then the Scaling Factor
Kn can be precomputed.

• Also, 1/Kn can be precomputed and used to calculate the true values of
x(n) and y(n).

θ

Kn 1 θ i()cos()⁄
n

∏ 1 2 2i–()+()
n

∏= =

Notes:

Developed by:

Top

To simplify the Givens rotation we removed the cos term to allow us to perform pseudo-rotations. However,
this simplification has a side-effect. The output values x(n) and y(n) are scaled by a factor Kn known as the
Scaling Factor where:

However, if we know the number of iterations that will be performed then we can precompute the value of 1/Kn
and correct the final values of x(n) and y(n) by multiplying them by this value.

θ

Kn 1 θ i()cos()⁄
n
∏ 1 tan2θ i()+⎝ ⎠

⎛ ⎞

n
∏ 1 2 2i–()+⎝ ⎠

⎛ ⎞

n
∏= = =

Kn 1.6476 as n ∞→→

1 Kn⁄ 0.6073 as n ∞→→

n number of iterations=

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopRotation Mode 4.8

• The CORDIC method is operated in one of two modes;

• The mode of operation dictates the condition for the control operator di;

• In Rotation Mode choose: di = sign(z(i)) z(i) 0;

• After n iterations we have:

• Can compute cos z(0) and sin z(0) by starting with x(0) = 1/Kn and y(0) = 0

 ⇒ →

x n() Kn x 0() z 0() y 0() z 0()sin–cos()=

y n() Kn y 0() z 0() x 0() z 0()sin+cos()=

z n() 0=

Notes:

Developed by:

Top

In Rotation Mode the decision operator di obeys the condition:

Thus, we input x(0) and z(0) (y(0) = 0) and then drive z(0) towards 0.

Example: calculate sin z(0), cos z(0) where z(0) = 30o

di sign z i()()=

i di θ(i) z(i) y(i) x(i)

0 +1 45 +30 0 0.6073

1 -1 26.6 -15 0.6073 0.6073

2 +1 14 +11.6 0.3036 0.9109

3 -1 7.1 -2.4 0.5313 0.8350

4 +1 3.6 +4.7 0.4270 0.9014

5 +1 1.8 +1.1 0.4833 0.8747

6 -1 0.9 -0.7 0.5106 0.8596

7 +1 0.4 +0.2 0.4972 0.8676

8 -1 0.2 -0.2 0.5040 0.8637

9 +1 0.1 +0 0.5006 0.8657

x(0)
Start

End

+450

z(0)=30o

First 3 pseudo-rotations

+140
-26.60

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopVectoring Mode 4.9

• In Vectoring Mode choose: di = -sign(x(i)y(i)) y(i) 0

• After n iterations we have:

• Can compute tan-1 y(0) by setting x(0) = 1 and z(0) = 0

 ⇒ →

x n() Kn x 0()()
2

y 0()()
2

+⎝ ⎠
⎛ ⎞=

y n() 0=

z n() z 0() tan 1– y 0()

x 0()

⎝ ⎠
⎜ ⎟
⎛ ⎞

+=

Notes:

Developed by:

Top

In Vectoring Mode the decision operator di obeys the condition:

Thus, we input x(0) and y(0) (z(0) = 0) and then drive y(0) towards 0.

Example: calculate tan-1 (y(0)/ x(0)) where y(0) = 2 and x(0) = 1

di s– ign x i()y i()()=

i z(i) y(i)

0 0 45 2

1 45 26.6 1

2 71.6 14 -0.5

3 57.6 7.1 0.375

4 64.7 3.6 -0.078

5 61.1 1.8 0.151

6 62.9 0.9 0.039

7 63.8 0.4 -0.019

8 63.4 0.2 0.009

θ
i

Start

End

-450

-26.60

x0=1
y0=2

+140

First 3 pseudo-rotations

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopCircular Coordinate System 4.10

• So far only pseudo-rotations in a Circular Coordinate System have
been considered.

• Thus, the following functions can be computed:

• However, more functions can be computed if we use other coordinate
systems.

Coordinate Rotation Mode Vectoring Mode

CORDIC

x

y

z

K(x.cos z - y.sin z)

System

CORDIC

x

y

z

K(x2+y2)1/2

K(y.cos z + x.sin z)

0

0

z + tan-1(y/x)

z(i) 0; di = sign (z(i)) y(i) 0; di = -sign(x(i)y(i))

Circular

For cos z & sin z,
set x = 1/K, y = 0

For tan-1 y,
set x = 1, z = 0

Notes:

Developed by:

Top

With rotations in a Circular Coordinate System we are limited to the number of functions that can be calculated.

However, we shall see that by considering rotations in other coordinate systems we can calculate more
functions directly, such as multiplications and divides, which allow us to calculate even more functions indirectly.

θ

Pseudo-R
otation

Circular Rotation

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopOther Coordinate Systems 4.11

• Linear Coordinate System

• Hyperbolic Coordinate System

Linear Rotations

Hyperbolic Rotations

Notes:

Developed by:

Top

The advantage of using other coordinate systems with the CORDIC algorithm is that it allows more functions to
be calculated. The drawback is that the system becomes more complex. The set of rotation angles used for the
Circular Coordinate System are no longer valid when using the CORDIC algorithm with a Linear or Hyperbolic
system. Hence, two other sets of angles are used for rotations made in these systems.

We shall see shortly that the CORDIC equations can be generalised for the 3 coordinate systems and that this
involves the introduction of two new variables to the equations. One of these new variables (e(i)) represents the
set of angles used to represent rotations in the appropriate coordinate system.

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopGeneralised CORDIC Equations 4.12

• With the addition of two other Coordinate Systems the CORDIC
equations can now be generalised to accommodate all three systems:

• Circular Rotations:

• Linear Rotations:

• Hyperbolic Rotations:

x i 1+() x i() μdi 2 i– y i()()–()=

y i 1+() y i() di 2 i– x i()()+()=

z i 1+() z i() die i()–=

μ 1 e i(), tan 1– 2 i–= =

μ 0 e i(), 2 i–= =

μ 1– e i(), tanh 1– 2 i–= =

Notes:

Developed by:

Top

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopSummary of CORDIC Functions 4.13

C
O
R
D
I
C

x

y

z

K(x.cos z - y.sin z)

K(y.cos z + x.sin z)

0

Rotation Mode: di=sign(z(i)); z(i) 0
C
O
R
D
I
C

x

y

z

K(x2 + y2)1/2

0

z + tan-1(y/x)

Vectoring Mode: di=-sign(x(i)y(i)); y(i) 0

Circular

Linear

Hyperbolic

C
O
R
D
I
C

x

y

z

x

y + (x.z)

0

C
O
R
D
I
C

x

y

z

x

0

z + (y/x)

C
O
R
D
I
C

x

y

z

K*(x.cosh z - y.sinh z)

K*(y.cosh z + x.sinh z)

0

C
O
R
D
I
C

x

y

z

K*(x2 - y2)1/2

0

z + tanh-1(y/x)

For cos z & sin z, set x = 1/K, y = 0 For tan-1 y, set x = 1, z = 0

For multiplication, set y = 0 For division, set z = 0

For cosh z & sinh z, set x = 1/K*, y = 0 For tanh-1y, set x = 1, z = 0

μ = 1

e(i) = tan-12-i

μ = 0

e(i) = 2-i

μ = −1

e(i) = tanh-12-i

Notes:

Developed by:

Top

When using the CORDIC algorithm for Hyperbolic rotations the scaling factor K is different from the one used
for Circular rotations.

The Hyperbolic scaling factor is denoted K*and is calculated using the equation:

K∗n 1 2 2i–()–⎝ ⎠
⎛ ⎞

n
∏=

K∗n 0.82816 as n ∞→→

1 K∗n⁄ 1.20750 as n ∞→→

n number of iterations=

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopOther Functions 4.14

• Although the CORDIC algorithms can only compute a limited number
of functions directly, there are many more that can be achieved
indirectly:

ztan zsin
zcos

-------------= tan 1– w tan 1– 1 w2–
w

--------------------=

ztanh zsinh
zcosh

----------------= sin 1– w tan 1– w

1 w2–
--------------------=

wln 2tanh 1– w 1–
w 1+
--------------= cosh 1– w w 1 w2–+()ln=

ez z zcosh+sinh=

wt et wln= w w 1 4⁄+()2 w 1 4⁄–()2–=

sinh 1– w w 1 w2++()ln=

Notes:

Developed by:

Top

There are many more functions that can be computed indirectly using the CORDIC algorithm.

Example: calculate tan z

First, directly calculate cos z and sin z using the CORDIC system in Circular Rotation Mode.

Second, feed these values back into the system to divide the latter by the former using Linear Vectoring Mode,
which will yield tan z.

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopPrecision & Convergence 4.15

• For k bits of precision in trigonometric functions, k iterations are
required.

• Convergence is guaranteed for Circular & Linear CORDIC using angles
in range -99.7 z 99.7:

• for angles outside this range use standard trig identities.

• Elemental rotations using Hyperbolic CORDIC do not converge:

• convergence is achieved if certain iterations are repeated;

• i = 4, 13, 40,......, k, 3k+1,...

 ≤ ≤

Notes:

Developed by:

Top

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopFPGA Implementation 4.16

• The ideal CORDIC architecture depends on speed vs area tradeoffs in
the intended application.

• A direct translation of the CORDIC equations is an iterative bit-parallel
design, however:

• bit-parallel variable shift shifters do not map well into FPGAs;

• require several FPGA cells resulting in large, slow design.

• We shall consider an iterative bit-serial solution to illustrate:

• a minimum area architecture;

• one implementation of variable shift shifters.

Notes:

Developed by:

Top

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopIterative Bit-Serial Design 4.17

Serial
+/-

Serial
+/-

Serial
+/-

Serial ROM

x(n)

y(n)

z(n)

x(0)

y(0)

z(0)

x shift register

y shift register

z shift register

tap select

z-1

z-1

z-1

Notes:

Developed by:

Top

This design consists of 3 bit serial adder/subtractors, 3 shift registers and a serial ROM (to hold the rotation
angles). Also, 2 multiplexers are required to implement the variable shift shifters. Each shift register in this
design must have a length equal to the word width. Consequently the design has to be clocked w times for each
iteration (where w = word width).

The design operates by first loading the initial values x(0), y(0) and z(0) into the respective shift registers. Then,
the data is shifted right through the serial adder/subtractors and returned to the left end of the shift registers.
The variable shift shifters are implemented using 2 multiplexers. At the beginning of each iteration both
multiplexers are set to read an appropriate tap from the shift registers. The data from each multiplexer is then
passed onto the appropriate adder/subtractor. Also, the sign of the x, y and z registers must be read at the
beginning of each iteration so that the adder/subtractors may be set to the correct operation depending on the
operating mode. During the final iteration the results can be read directly from the adder/subtractors.

The diagram below illustrates how a shift register and multiplexer are used to implement the variable shift
shifter. In this case a 2-3 shift has been applied to the data stored in the shift register. Obviously the select line
of the multiplexer is set at the beginning of each iteration and will control the size of the shift required.

1 0 1 1 0 1 0 1
Shift Register

10110101
10110 +

select

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopUsing CORDIC for Vector Magnitude 4.18

• In this section, the accuracy of the CORDIC algorithm when computing
the magnitude of a vector shall be discussed. In particular, the following
issues will be presented:

• How to use CORDIC to compute .

• The error involved in this computation.

• Choosing the correct parameters to give a desired accuracy.

• How does this design compare to a Direct approach?

x2 y2+

Notes:

Developed by:

Top

For more detail and background on the CORDIC algorithm the following material may be useful:

[1] R. Andraka. A survey of CORDIC algorithms for FPGA based computers. www.andraka.com/cordic.htm

[2] The CORDIC Algorithms. www.ee.byu.edu/ee/class/ee621/Lectures/L22.PDF

[3] CORDIC Tutorial. http://my.execpc.com/~geezer/embed/cordic.htm

[4] M. J. Irwin. Computer Arithmetic. http://www.cse.psu.edu/~cg575/lectures/cse575-cordic.pdf

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopApplication 4.19

• Why use CORDIC to compute the magnitude of a vector?

• The QR-algorithm is used in many adaptive DSP applications.

• Part of this algorithm requires performing a Givens rotation:

• To perform this requires cos and sin which can be found using:

• Hence, this is one application where the magnitude of a vector is
required.

xnew x θ y θsin–cos=

ynew x θ y θcos+sin=

θ θ

θcos x

x2 y2+
---------------------- θsin y

x2 y2+
----------------------= =

Notes:

Developed by:

Top

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopComputing The Magnitude Of A Vector 4.20

• To compute the magnitude of a vector, a Circular coordinate system
must be used with Vectoring mode:

• The ‘K’ value is the scaling factor, which can be removed by multiplying
the result by 1/K.

Coordinate Rotation Mode Vectoring Mode

CORDIC

x

y

z

K(x.cos z - y.sin z)

System

CORDIC

x

y

z

K(x2+y2)1/2

K(y.cos z + x.sin z)

0

0

z + tan-1(y/x)

z(i) 0; di = sign (z(i)) y(i) 0; di = -sign(x(i)y(i))

Circular

For cos z & sin z,
set x = 1/K, y = 0

For tan-1 z,
set x = 1, z = 0

Notes:

Developed by:

Top

To compute the magnitude of a vector using CORDIC, circular rotations must be used with Vectoring mode.
The x output will then generate the following result:

Clearly the scaling factor K must be removed. This can be achieved by multiplying the x output by 1/K. The value
of K is dependent on the number of iterations which is known before hand and thus can be precomputed
according to:

x K x2 y2+=

K n() k i()

i 0=

n 1–

∏ 1 2 2i–()+

i 0=

n 1–

∏= =

http://www.steepestascent.com

August 2007, Version 3.8/21/07 For Academic Use Only. All Rights Reserved

TopSimplifying The Equations 4.21

• The Generalised CORDIC equations are:

• which, for vector magnitude calculations can be simplified to:

• The angle accumulator can be neglected when computing the
magnitude of a vector. Also, for a Circular coordinate system.

x i 1+() x i() μdi 2 i– y i()()–()=

y i 1+() y i() di 2 i– x i()()+()=

z i 1+() z i() die i()–=

x i 1+() x i() di 2 i– y i()()–()=

y i 1+() y i() di 2 i– x i()()+()=

μ 1=

Notes:

Developed by:

Top

The full set of Generalised CORDIC equations are:

where,

• Circular Rotations:

• Linear Rotations:

• Hyperbolic Rotations:

When using Vectoring mode, . The x equation is the one that will generate the magnitude
of the vector and it is only dependent on the y equation. Hence, the z equation (angle accumulator) can be
ignored. This leaves only:

x i 1+() x i() μdi 2 i– y i()()–()=

y i 1+() y i() di 2 i– x i()()+()=

z i 1+() z i() die
i()–=

μ 1 e i(), tan 1– 2 i–= =

μ 0 e i(), 2 i–= =

μ 1– e i(), tanh 1– 2 i–= =

di sign x i()y i()()–=

x i 1+() x i() di 2 i– y i()()–()=

y i 1+() y i() di 2 i– x i()()+()=

http://www.steepestascent.com

	Introduction 4.1
	Cartesian Coordinate Plane Rotations 4.2
	Pseudo-Rotations 4.3
	The CORDIC Method 4.4
	Angle Accumulator 4.5
	Shift-Add Algorithm 4.6
	The Scaling Factor 4.7
	Rotation Mode 4.8
	Vectoring Mode 4.9
	Circular Coordinate System 4.10
	Other Coordinate Systems 4.11
	Generalised CORDIC Equations 4.12
	Summary of CORDIC Functions 4.13
	Other Functions 4.14
	Precision & Convergence 4.15
	FPGA Implementation 4.16
	Iterative Bit-Serial Design 4.17
	Using CORDIC for Vector Magnitude 4.18
	Application 4.19
	Computing The Magnitude Of A Vector 4.20
	Simplifying The Equations 4.21

