
- 1/13 -

Xilinx ISE tutorial

(Szántó Péter, Csordás Péter 2013-09-06)

Required knowledge

• Digital design.

• Basic Verilog knowledge.

1. Tutorial project

For the Xilinx ISE tutorial the goal is to implement a one-digit BCD (binary coded decimal) second counter. That
is, the counter counts from zero to nine and increments once every second. The actual value is displayed on 4
LEDs. Based on the state of the SW0 switch, the counter counts either upwards or downwards.

During Laboratory 1., it is required to design synchronous systems, that is all flip-flops in the design should
operate using the 16 MHz clock input available on the development board. If part of the design should operate
less frequently (just like the counter in this tutorial), an enable signal should be generated. For example, for the
second counter, this enable signal has a frequency of 1 Hz – it takes value of “1” once in every second for exactly
one system clock cycle long. That is, the enable signal is “0” for 15,999,999 clock cycles, then it goes to “1” for a
single clock cycle.

To be able to set the system into a known state, an external reset signal should be present.

The schematic diagram of the system to be designed is shown below. The counter module is the BCD counter,
while rategen generates the necessary enable signal for the counter which was described above. These two
submodules are connected together in the top-level module.

ce

Counter
q[3:0]

FPGA
LD3

dir

rst

SW0

BTN0

System
clock

q[3]

q[2]

q[1]

q[0]

btn0

sw0

clk

LD2

LD1

LD0clk

Rate
generator

cyrst

clk

2. Creating the project

Click on the Xilinx Project Navigator icon or use the start menu item: Programs /Xilinx ISE Design
Suite 13.2 / ISE Design Tools/ Project Navigator..

File menu, select New Project option.
• Set Project Name to wpbev. Create a folder on drive D for the project (do not use space or any

special character in the folder name, otherwise ISE does not work correctly!).
• In the Top-Level Module Type box select HDL as the type of the top-level module.

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 2/13 -

After pressing the Next button, set the FPGA type:

Device Family: Spartan3E
Device: xc3s250E
Package: tq144
Speed Grade: -4
Synthesis Tool: XST (VHDL/Verilog)
Simulator: ISim (VHDL/Verilog)

After pressing Next and Finish, you will have a blank project

The main Window of the Project navigator consists of 4 windows:

• Top left: Hierarchy window: sources of the current project. Using the radio buttons, you can select to
show source files for Implementation or for Simulation.

• Processes window shows the allowed processes to be ran using the source file selected in the Sources
window.

• The Editor window is the Xilinx text editor to edit different kind of source files.

• At the bottom, the Console window shows messages from the tool. The Console view lists all messages,
while Warnings and Errors lists only the selected messages..

.

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 3/13 -

3. Verilog code for the counter module

To create a new module select Project/New Source. In the menu select Verilog Module. The name of
the module should be count_sec, (File Name window), and click the Add to Project option. After
pressing the Next button you can define the ports of the module.

Using the schematic diagram above, create the necessary ports for the counter.

Press Next, Finish to see the module declaration in the editor window:

module count_sec(
 input clk,
 input rst,
 input ce,
 input dir,
 output [3:0] q
);

endmodule

The counter is realized with a 4-bit register (D FF), which has reset and enable inputs. The INC and DEC blocks
generate the incremented and decremented values based on the register output. The content of the register is
updated only when the enable input (ce) is ‘1’. Based on the actual value, the nexz value should be:

• counting upwards (dir = ’1’)

o if the counter reached its end value (9): 0

o otherwise actual value + 1

• counting downwards (dir = ’0’)

o if the counter reached its end value (0): 9

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 4/13 -

o otherwise actual value -1

To detect the end-value, two combinatorial comparators are used, which compare the output of the register with 9
and 0. Based on these, the schematic diagram of the counter looks as follows:

4-bit
register

2:1
MUX

2:1
MUX

2:1
MUX

INC

DEC

==

==

9

0

0

9

dir
clk
rst
ce

cntr_d0_eq9

cntr_d0_eq0

mux_0

mux_1

mux_2

cntr_d0_dec

cntr_d0_inc

In Verilog, it is possible to describe the exact same structure (for the register reg typed variables are declared, for
the combinatorial part wire variables are used).

reg [3:0] cntr_d0;
wire [3:0] cntr_inc, cntr_dec;
wire [3:0] mux_0, mux_1, mux_2;
wire cntr_d0_eq0, cntr_d0_eq9;

always @(posedge clk)
if (rst)
 cntr_d0 <= 0;
else if (ce)
 cntr_d0 <= mux_2;

assign cntr_d0_inc = cntr_d0 + 1;
assign cntr_d0_dec = cntr_d0 - 1;
assign cntr_d0_eq0 = (cntr_d0 == 0);
assign cntr_d0_eq9 = (cntr_d0 == 9);

assign mux_0 = (cntr_d0_eq9) ? 0 : cntr_d0_inc;
assign mux_1 = (cntr_d0_eq0) ? 9 : cntr_d0_dec;
assign mux_2 = (dir) ? mux_0 : mux_1;

The only always block contains the rising edge of the clock signal in its event list, therefore after implementation
D FFs will be generated. Updating the register content is allowed only if the enable signal (ce) is ‘1’.

Verilog is a relatively high level language, therefore it is possible to create a functionally equivalent, but more
user-friendly code.

reg [3:0] cntr_d0;
wire cntr_d0_eq0, cntr_d0_eq9;

always @(posedge clk)
if (rst)
 cntr_d0 <= 0;

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 5/13 -

else if (ce)
 if (dir) //DIR=1: count up
 if (cntr_d0_eq9)
 cntr_d0 <= 0; //overflow
 else
 cntr_d0 <= cntr_d0 + 1;
 else //DIR=0: count down
 if (cntr_d0_eq0)
 cntr_d0 <= 9;
 else
 cntr_d0 <= cntr_d0 - 1;

assign cntr_d0_eq0 = (cntr_d0 == 0);
assign cntr_d0_eq9 = (cntr_d0 == 9);

After creating the Verilog code, select the count_sec module in the Sources window. In the Processes window
double-clock on the Synthesize-XST / Check Syntax, which runs syntax checking. If there are errors,
correct them before moving on.

4. Simulation

4.1 Creating the testbench

To be able to functionally verify the module you have just created, you have to generate input signals for the
module. This is done in the so-called testbench. Firstly, create a Verilog Test Fixture using Project /
New Source and selecting Verilog Test Fixture as the type of the source. The file name should be
tb_counter.

In the next window select the module you want to create a testbench for. In our case we have only one module
(count_sec), so select it.

Press Next, Finish to have the file generated. In the top-left window select Simulation to see the source
which are only valid for simulation. As you can see, the module to be tested (count_sec) is a submodule for the
testbench (tb_counter).

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 6/13 -

4.2 Creating input signals

The automatically generated testbench file contains the following:

• instantiation of the module to be tested with the name UUT (unit under test)

• reg type variables for the input signals

• wire type variables for the output signals

• all inputs are set to 0 at the beginning of the simulation (initial block)
`timescale 1ns / 1ps
module tb_conter;

 // Inputs
 reg clk;
 reg rst;
 reg ce;
 reg dir;

 // Outputs
 wire [3:0] q;

 // Instantiate the Unit Under Test (UUT)
 count_sec uut (
 .clk(clk),
 .rst(rst),

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 7/13 -

 .ce(ce),
 .dir(dir),
 .q(q)
);

 initial begin
 // Initialize Inputs
 clk = 0;
 rst = 0;
 ce = 0;
 dir = 0;

 // Wait 100 ns for global reset to finish
 #100;

 // Add stimulus here

 end

endmodule

As the counter contains sequential logic, a clock signal should be generated:
always #5
 clk <= ~clk;

For the other inputs generate the following waveforms.

• set rst to ’1’ during 7 – 27 ns

• set ce to ’1’ after 107 ns

• set dir to ’1’ after 1007 ns

These can be generated with the following code:
initial
begin
 #7 rst <= 1;
 #20 rst <= 0;
end

initial
 #107 ce <= 1;

initial
 #1007 dir <= 1;

The delays in one initial blocks will be added, but all the initial blocks run simultaneously.

In the Sources window select the testbench, than in the processes window double click on the Simulate
Behavioral Model option to start the simulator.

4.3 Using ISE simulator

Simulation results are presented in a new window. Note, that before the reset, registers contain undefined values
(red X).

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 8/13 -

By right clicking on the signals you can change the display format – set q[3:0] to hexadecimal.

The simulator only shows the inputs and output automatically. However, often it is necessary to inspect internal
signals of the system. Internal signals can be added to the simulator waveform without modifying the Verilog
code.Select Instances and Processes tab in the left window to see the testbench hierarchy. In the
hierarchy select the counter instance (UUT), then select the Objects tab. Here you can see all internal signals of
the counter, which can be drag-and-dropped into the waveform window. After restarting the simulation
(restart/play icons at the top) you will see the values of the newly added signals.

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 9/13 -

4.4. Rategen module

Create a new module with a name rategen (Project / New Source).

The rate genertaror which generates the enable signal for the counter is basically a counter which counts from 0
to 59,999,999 to be able to have 16,000,000 different states. To be able to do that, a 24 bit counter is required.
The end-value of this counter will be the enable signal for the BCD counter.

The schematic diagram is:

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 10/13 -

The corresponding Verilog code:
module rategen(
 input clk,rst,
 output cy
);
 //Generate 1 clock wide pulse on output CY
reg [23:0] Q;

always @(posedge clk)
begin
 if (rst | cy)
 Q <= 0;
 else
 Q <= Q + 1;
end

assign cy = (Q == 15999999);
//assign cy = (Q == 4);

endmodule

To make simulation faster you can use a more frequent enable signal which is shown commented in the code
above.

4.5. Top-level module

The top-level module describes the connection between its sub-modules and connection to the outer world (that
is, connection to the FPGA pins).

Create a new Verilog source named wpbevtop1 (Project / New Source / Verilog module).

To define its ports, take a look at the schematic below.

The top level declaration therefore should look like the code below:

module wpbevtop1(
 input clk,btn0, sw0,
 output [3:0] q
);

The external asynchronous signals (button, switch) are synchronized to the system clock by sampling them into
registers:

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 11/13 -

reg rst, dir;
always @(posedge clk)
//Synchronize inputs
begin
 rst <= btn0;
 dir <= sw0;
end

The next task is to instantiate the submodules, namely create one instance from rategen and one instance from
count_sec.

Instantiation of rategen:
wire ce;
rategen rategenerator(
 .clk(clk),
 .rst(rst),
 .cy(ce)
);

Instantiation of the counter:

count_sec counter(
 .clk(clk),
 .rst(rst),
 .ce(ce),
 .dir(dir),
 .q(q)
);

So, with the input synchronization and all submodule instantiation the top-level module code is:

module wpbevtop1(
 input clk,btn0, sw0,
 output [3:0] q
);

reg rst, dir;
always @(posedge clk)
//Synchronize inputs
begin
 rst <= btn0;
 dir <= sw0;
end

wire ce;
rategen rategenerator(
 .clk(clk),
 .rst(rst),
 .cy(ce)
);

count_sec counter(
 .clk(clk),
 .rst(rst),
 .ce(ce),
 .dir(dir),
 .q(q)
);

endmodule

The ports of the top-level module must be assigned to pins of the FPGA. Firstly, create an Implementation
Constraint File (.ucf) with Project / New Source menu, and select Implementation Constraint
File. Name it to counter_pins.

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 12/13 -

The peripheral – pin name associations can be read directly from the development board (e.g. clock is connected
to pin p56). The association should be typed in the ucf file in the following form:

NET "clk" LOC="p56";
NET "btn0" LOC="p38";
NET "sw0" LOC="p101";
NET "q[3]" LOC="p53";
NET "q[2]" LOC="p54";
NET "q[1]" LOC="p58";
NET "q[0]" LOC="p59";

5. Implementing the design

Select the top-level Verilog module in the Sources window. Then, in the Processes window click on the Generate
Programming File option to implement the design and generate the configuration file.

In the Lab, we use a unique download cable, which emulates a standard Xilinx cable. Besides implementing the
JTAG interface, our cable serves as power source for the board and presents serial communication interface. The
cable driver program must be started separately: After starting XilinxUSBCable.exe, you get a taskbar icon.
After right-clicking select Open selected device, Enable 5V power and Attach Xilinx USB
cable. After these steps, the iMPACT downloader can be started from the ISE.

In order to start iMPACT, select Configure Target Device in the Process window. Configure the
download process with the following steps:

• Select Boundary Scan in the top-left window, right click and Initialize Chain (or press Ctrl-
I) in the right window!

• Click Yes, and browse for the .bit file to download. (wpbevtop1.bit)!

• We do not use external ROM, so you can answer No for the next question, and click Ok after that.

• Select the FPGA symbol in the JTAG chain with right click and click the Set Target Device
option!

• Selecting Program in the bottom-left window, you can download the FPGA configuration.

• While closing iMPACT, you should save the download iMPACT project file. Return to ISE and
associate this file with your project: right click on Configure Target Device select Process

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

- 13/13 -

Properties, set iMPACT project file. After this, you can download your configuration
simply double-clicking Configure Target Device. (iMPACT runs unattended based on your
download configuration.)

6. Modifying the counter

At this point you should have a correctly operating one-digit BCD counter. The next step is to modify the source
code of the counter to have a real second counter which is able to count from 0 to 59, still in BCD format. For
this, two BCD digits are required: the least significant one counts from 0 to 9, while the most significant one
counts from 0 to 5. Till now, you have created the LS digit.

Let us think about the operation of the MS digit. Unlike the LS digit, which counts whenever its enable signal is
‘1’, the MS digit is only enabled when the LS digit reached its final value: 9 in the case of up-counting and 0 in
the case of down-counting. Thus, the MS digit should be only changed if:

• counting upwards (dir=’1’), LS digit is 9 (cntr_d0_eq9=’1’) and the external enable signal is active
(ce=’1’) OR

• counting downwards (dir=’0’), LS digit is 0 (cntr_d0_eq0=’1’) and the external enable signal is active
(ce=’1’)

Based on these, the resulting schematic diagram looks as follows:

4-bit
register

2:1
MUX

2:1
MUX

2:1
MUX

INC

DEC

==

==

9

0

0

9

dir
clk
rst
ce

cntr_d0_eq9

cntr_d0_eq0

mux_0

mux_1

mux_2

cntr_d0_dec

cntr_d0_inc

3-bit
register

2:1
MUX

2:1
MUX

2:1
MUX

INC

DEC

==

==

5

0

0

5

cntr_d1_eq5

cntr_d1_eq0

mux_10

mux_11

mux_12

cntr_d1_dec

cntr_d1_inc

Modify the Verilog sources to implement the 2-digit counter:

• In the count_sec module declare the necessary variables and describe the functionality of the MS digit
IN A SEPARATE always block. (It can be derived from the existing block, as described before.)

• Increase the output port width in the counter and in the top-module.

• Connect the new output bits to LEDs 6 – 4

Simulate the modified count_sec module!

Implement the design and configure the FPGA!

©BME-VIK Only students attending the courses of Laboratory 1 (BMEVIMIA304) are allowed to download this file, and to
make one printed copy of this guide. Other persons are prohibited to use this guide without the authors' written permission.

