BME MIT Operating Systems Spring 2017.

Operating Systems — File systems part 1

Péter Gyorke

http://www.mit.bme.hu/~gyorke/

gyorke@mit.bme.hu

Budapest University of Technology and Economics (BME)
Department of Measurement and Information Systems (MIT)

The slides of the latest lecture will be on the course page. (https://www.mit.bme.hu/eng/oktatas/targyak/vimiab00)
These slides are under copyright.

File systems 1. 1/32

]l BME MIT Operating Systems Spring 2017.

The main blocks of the OS and the kernel (recap)

o) System processes User processes
3
O
]
]
o
| -
c O System libraries
(@) (%2
z =2
Systemcall interface
f |
/O operations | Communications
D —
5 E IT handler Memory manager
g2
o) [%p]
S = _
Q. — Device managers ||| Loader || Scheduler
- v
Hardware devices

File systems 1. 2/32

BME MIT Operating Systems Spring 2017.

What we learned until now?

* |/O operations — usually file operations

e The nature of tasks

— There are I/0 intensive tasks (memory intensive tasks may become 1/0
intensive, see virtual memory)

— Most of the tasks on a client machine are I/O intensive

* Scheduling

— Tasks usually spent a lot of time in waiting state, because 1/0O
operations are slow

* Memory management

— The physical memory is extended with swap space on disk (much
slower)

— Background data can be loaded into physical memory (mmap)

Synchronization
— Waiting for others isn’t a good thing, especially the busy waiting

File systems 1. 3/32

. fmmsams g BME MIT Operating Systems Spring 2017.

mmag
: : (Applications (Processes))%‘WS)
verview ot the topic o e B
s s = g 3| .
s| 5| 8] =] £
. Y Y Y Y °¥Y Y Yy
e User interfaces VS
BlockBased FS | [NetworkFS | | | [PseudoFS | Special
— User direct 110 (ex2) (ext3) (eX4) (g (zoaa) (proe) (coda) Purpose Fs S
. (O_DIRECT) (s) (buts) (ifs) &5 @ Pipely ey (MPTS) (RME) Cache
— Administrator e | @n) | (s
— Programmer
g Sackable L netork
L% Block I/O Layer
[optional stackable devices on top
. of ‘normal” block devices - work on bios
[]
FIIe Systems [- - . . B10s (Block 1/0)
» all.
>)

— Kernel data structures
— File system interfaces 10 Scheduler

. maps bios to requests
— Data arranged in blocks on {
disks

-

Y

'th-loolxrrzld :n Exe;‘lj:“Dnver:
devfé%q,",;;*psﬁ%;gem B
d StO ri ng the data _ Scsl UpperLayer L?u'.nfuT?wa. @
— Physical storages (HDD, SSD) EDe (i)

- I/O SCheduIing (transport aitnbutes

— Local storage system
virtualization (RAID, LVM) _ —

_ Network and distributed file (libata) (megaraid sas) (aacraid) (_ gla2xxx) @ (iscsi_tep)
SyStemS l ata_piix) () &)

—>
network

I\
6&----.---J

Physical Devices

File systems 1. 4 /32

SCSI M|d LayEr [wrtm blkj (mmemory-vd]

<€

Transpcm Classes]

BME MIT Operating Systems Spring 2017.

File systems from the user’s point of view

e Standard user of the OS

— Command line and GUI file managers
* Windows explorer, Nautilus, Dolphin, Total commander, mc

— Volumes, folder structure, special folders/directories
— Managing files and folders, owner and group, permissions, attributes

* Administrator
— Managing file systems (creation, maintenance, deletion)
— Mounting local or remote file systems
— Performance tuning
— Managing disk usage
— Performing back-ups
* Programmer
— Application programming interfaces (system libraries, system calls)
— File descriptors, handles: handling open file objects
— File operations: open, create, write, read, seek, close, delete, ...
— Locking files for exclusive usage

File systems 1. 5/32

BME MIT Operating Systems Spring 2017.

Physical and logical units (definitions)

* File

— Logical unit of storage

— Itis referenced by its name (by user)

— Some systems use extensions to define the type of the data (*.abc)
* Directory

— Logical organization structure for files

— It can contain files and other directories

— A file or directory may be accessed from different paths (OS dependent)
* Volume

— A set of related files and directories

— It is assigned to a physical storage unit (e.g.: partition)

— On windows it is also called , drive”

* File system

— Physical storage unit of files and directories, organization system of them
* Partition

— Organization unit of the disk, it can contain one file system

File systems 1. 6/32

BME MIT Operating Systems Spring 2017.

Directory structures, volumes and drives

* Files and directories can be assigned in different ways

* The basic structure is a directed tree
— A directory can contain files and other directories
— The direction of the edges is determined by the containment relation
— Path: a place of a file or a directory in the tree

* Absolute: the path from the root of the tree

* Relative: the path from a specific node in the tree
— Usually the actual working directory of the user

* Some systems (e.g. UNIX) use further edges

These edges can connect nodes which are not neighboring

With the introduction of these edges, Ly [node

the tree becomes a graph (directed) R

Hard link | R |' ’
my-hard-link | | miyfile txt my-soft-link

* More nodes (files) linked to the same data
Symbolic link (symlink, soft link, shortcut)
* It references a file or directory which is linked to the physical data (it’s another file)

How can we delete the link or data? What happens if there is directed circle
in the graph?

w7

e Typically there are more than one trees in a system
— There can be more volumes in the system, each one contains one tree

On Windows, the drives are named with C, D, E, etc. letters

File systems 1. 7/32

BME MIT Operating Systems Spring 2017.

Overview of the Windows 10 folder structure

More than one folder structures (trees)
— Physical storages are assigned with logical units, drives

The boot drive (usually C:) is the starting point (C: \)
— \Program Files -installed applications
— \Program Files (x86) —installed applications (32-bit)
— \ProgramData - user independent data of the applications
— \Users -user folders (files, folders, user dependent application data, ...
— \Windows -the OS files and directories

Further drives (D:, E:, ..)
— CD/DVD/USB drives
— Further partitions on the disk
— Network file systems

Versions, trends

— In the newer Windows systems the physical storages can be assigned to
folders also (not just to volumes), but it isn’t a widely-used feature

File systems 1. 8/32

BME MIT Operating Systems Spring 2017.

Overview of the UNIX directory structure

It is organized into one structure (tree)

The root directory is the starting point (/)
— /bin —binary files for the system
— /sbin -similar to /bin, usually programs with root permissions
— /dev - hardware devices
— /etc —system and application configuration files
— /home - user directories and files
— /1ib - basic shared system libraries
— /mnt —the mount point of physical partitions
— /tmp —temporary files (for apps. and users)
— /usr —user programs and libraries, documentation, etc.
— /var -—dynamic files of the system, logs, databases, ...

More details: man hier
Disk usage: df, du, =xdu, baobab, kdiskstat, filelight

File system ,,standards”, changes

— Between the different UNIX systems, there are significant differences in the
detailed operation

— Filesystem Hierarchy Standard (FHS) is just a recommendation
— UsrMove: the /bin, /sbin is moved under /usr (Solarisll, Fedora)

File systems 1. 9/32

BME MIT Operating Systems Spring 2017.

Overview of the Android directory structure

* To a certain point it has inherited the UNIX structure, additional
directories

— /cache - cache for applications

— /data —user programs and data

— /data/app - applications installed by the user

— /data/anr —app-not-responding: error logs

— /data/tombstones —memory dumps of the terminated apps.
— /data/dalvik-cache - optimized binary files of the apps.

— /data/misc —user configuration files

— /data/local -temporary files

— /mnt or /storage - mounted file systems, e.g. SD card

— /mnt/asec —unsecured copies of the apps. running from SD card
— /system - preinstalled apps., system libraries, configuration files

e Remarks

— Full access to file is system is limited, only root user has full access, the
vendors are limiting this. Becoming root is not part of the normal usage.

— The apps. stored on the SD card are encrypted (. android secure), these
are mounted under the /mnt/asec directory when running

File systems 1. 10/ 32

Gyl BME MIT Operating Systems Spring 2017.

File properties (with UNIX examples)

e List the content of the actual dlrectory (1s -1la)

drwx—------ 6 root root 4096 Feb 23 14:20

drwxr-xr-x 22 root root 4096 Nov 21 2014 ..

-rw-r--r-- 1 root root 570 Jan 31 2010 .bashrc
-rw-r--r-- 1 vps vVvps 71103 Nov 5 2013 package.xml
-rwXrwxrwx 1 root root 35 Feb 23 14:21 test.sh
lrwxrwxrwx 1 root root 8 Nov 24 2014 www -> /var/www

e Whatisin the list?
— Typeoftheentry:— d p 1 b ¢ s
— POSIX permissions (see next slide)
— Number of links
— Owner and group
— Size
— Timestamp (ctime: change of the metadata, mtime: data
modification, atime: access time)
— Name of the entry

* The OS also stores
— Unique identifier (for internal identification)
— Location (where the file is stored on the disk)

File systems 1. 11 /32

BME MIT Operating Systems Spring 2017.

The UNIX permission systems

* POSIX access permissions
— 3x3 bits: owner, group, others X read, write, execute
— Values: read-4, write-2, execute-1, no access-0
* E.g.: 740 = owner: RWX, group: R, others: no access
— In the case of directories, the execute means ,list”

— Setting: chmod <permissions> <file/directory>

e E.g.:chmod 750 /home/me chmod u+rwx,g+rx,o-
rwx /home/me

e Special permissions: SETUID, SETGID, StickyBit

— SETUID/GID: set user ID upon execution" and "set group ID
upon execution

* The executed file will have the same permission as the owner (not the
user which executed the file)

* |tis usually set to files which require root permissions

— StickyBit: only the owner (and root) can delete/rename the files
or directories

File systems 1. 12 /32

BME MIT Operating Systems Spring 2017.

Administration of file systems

Creating and configuring a file system
— Select a type
— Configure the data storage properties
— The name of the volume (for users)
— Selecting the partition and disk for the physical storage (determines the size)
— Set up encryption (if the system supports it)

Mounting a file system to a drive or directory

— Mount and unmount
* Mounting the physical storage to a given point of the logical structure

— Mount point

« adirectory (typically an empty one) in the currently accessible filesystem on which an
additional filesystem is mounted

Checking, modifying, tuning the file system

— Checking status and repair errors

— Modify the size (not every file system makes this possible)

— Performance tuning (accommodation for the storage device, compression, ...)
Sharing file systems on the network and mounting network file systems

Back-ups

File systems 1. 13 /32

BME MIT Operating Systems Spring 2017.

An overview of the widely used file systems
* FAT32

— Typically used on portable storage devices because the compatibility
— Originally 843 character file names extended to 255 characters, maximum file size: 4GiB (!)

* NTFS

— Default file system in Windows

* UFS/ Berkeley FFS

— Traditional UNIX file system, currently rarely used

 ext2,3,4 (cased on UFS)

— Currently used file systems in Linux systems

e XFS

— Default in RedHat Linux 7
* HFS+

— Default in MacOS

* Integrated file + virtual storage systems (see later)
— ZFS: Designed for Solaris, later it become open source, popular in BSD-s also
— Linux btrfs: newer, currently under development
 Many more file systems
— CD/DVD file systems
— 1S09660 and extensions: filename and sizes are limited

File systems 1. 14 /32

. uﬁg@ﬂ%w BME MIT Operating Systems Spring 2017.

Practice in Linux

Basic file and directory operations
— cp, mv, cd, pwd, mkdir
* How to rename a file?

File attributes: 1s -1a
Managing file systems: mount, umount, df, mkfs, fsck

Example: create a file system in a file

dd if=/dev/zero of=filesystem.img bs=1k count=1000
losetup /dev/loopO filesystem.img

mke2fs /dev/loop0

mount /dev/loop0O /mnt

— A typical annoying error: device is busy

e While unmounting a currently used file system (e.g.: unmounting portable
drives)

* Check whatisused: 1sof /mnt
 What’s happening in the file system?
— 1iotop, sar, dstat, vmstat, ..

File systems 1. 15/32

BME MIT Operating Systems Spring 2017.

Backing up and restoring data

 Multiple causes of data loss

— Uncorrectable fault in the file systems
* The errorin the physical storage (disk error)
* Inconsistency caused by power failure or other HW error

— User mistakes (not rare)
* Accidental deleting of files or whole file systems, partitions

— Malwares (sadly these are also not rare)
* Deleting or encrypting data (ransomware)

* The type of data loss
— Limited (e.g.: disk error, user mistakes, ...)
— Total (e.g.: SSD sudden death)

* Creating a backup
— How: automated (regular), manual (casual)

— What: files or whole file system
* A consistent state has to be backed up — problematic when the FS is in use

— Where: high capacity disks, CD/DVD, tape systems
e Restoring the system from a backup (recovery)

— Bare metal recovery: restoring the whole system

— Data recovery: only recovering specific files

File systems 1. 16 /32

BME MIT Operating Systems Spring 2017.

Programming interfaces

Opening (creating) files
— open () system call and its arguments
— File descriptor and the opened file object (next slide)
— File opened by multiple processes?

Read, write, seek: read (), write(), fseek()
— Sequential access: the data is accessed in the stored order
— Direct access: given sized blocks can be read in any order

Close files: close ()

Managing directories:

— opendir (), readdir (), rewinddir(),
closedir ()

File systems 1. 17 /32

BME MIT Operating Systems Spring 2017.

What happens when a program opens a file?

e Calling the open() system call...
— A session is started to manage the file operations
— The kernel locates the file on the disk
— The location and metadata are loaded into a kernel object

— A kernel data structure is created: open file object
* Opening mode (read, write, append)

The pointer of the next read or write operation (file pointer)
The address of the related kernel object
The set of operations which can be performed on this file
The kernel returns the address of this object: the file descriptor
* During the further operations the file is accessed with

the file descriptor

* When the session is closed, the kernel liquidates the
date structures

File systems 1. 18 /32

BME MIT Operating Systems Spring 2017.

Locking files

Locking files

— Itis also a synchronization problem, to conserve the consistency
of the file (as a shared resource)

— It can be managed with classic synchronization methods
— But it is more simple and safe on kernel level (level of file op.-s)
— Deadlocks are also possible
Advisory locking
— OS provides tools for implementation
— The file should be only accessed with using these tools
— Usually system libraries contain the tools
Mandatory locking
— Kernel level mechanism

— The system calls (e.g.: open()) checks the lock states, the lock is
mandatory for every task

The scope of locking: The whole file or just a part of it

File systems 1. 19/32

. uﬁg@mmmﬁ BME MIT Operating Systems Spring 2017.

Shared access to files through memory (mmap)

e Communicate through a file

— It is problematic with the standard op.-s (read (), write (),
fseek())

— Can we use a file like the shared memory?

 UNIX mmap (Windows: CreateFileMapping)
— An open file object (open ()) can assigned to an address:
mmap (addr, size, prot, flags, fd, offset)
* addr: the assigned address, 0: the kernel choses
* size:the accessed data range
 prot:the mode of access: R, W, X
« flags:own orshared file, etc.
e fd:file descriptor returned by the open () systemcall
« offset:the start position

— Return value: the assigned virtual memory address
— Close the assighnment: munmap (addr, len)
 Multiple access, consistency, mutual exclusion
— Using the shared file is based on the PRAM model
* |tis usable for simple file operations when there are many readers

File systems 1. 20 /32

https://msdn.microsoft.com/en-us/library/windows/desktop/aa366556

BME MIT Operating Systems Spring 2017.

|/O operations without waiting

* If the program can perform other instructions, it don’t has to enter
into waiting state

— There are two approaches: non-blocking, asynchronous

* Non blocking I/0 operations
— When calling the read() system call, there is an option: non-blocking

— In this case, the call will return immediately
e With the data
* Or with ,no data” error code

— If there are no data the program can perform other instructions and
later retry the read()
e Asynchronous I/O operations
— The program initiates the I/O operation and set a buffer for the data

— The asynchronous I/O request is sent
* In the background the I/O operation is performed
* The system call returns immediately

— Meanwhile the program can perform other instructions

— When the I/O op. is done, the kernel notifies the caller
e E.g.: with a signal with custom handler

File systems 1. 21 /32

BME MIT Operating Systems Spring 2017.

Implementation of file systems (overview)

Operation from the user’s point of view (already discussed)
— Files, directories, tree/graph structure
— Format, mount, unmount

— Check, repair, create, modify, tune

Operation on the disk (data organization in the storage system)

— The logical units are assigned to physical devices
— The data is stored in blocks

— Beside the file contents, metadata is also stored
— Managing the free (unused) blocks in the storage device

e Operation in the memory (during runtime)

— File system descriptors (metadata of the mounted file systems)

— Descriptors (metadata) of the files
* Access to opened files

— Managing the data in the memory, buffering

File systems 1. 22 /32

. uﬁg@mmw BME MIT Operating Systems Spring 2017.

Storing file system data on disk

* Recap: the boot process
— Level 0 (ROM) loader: loads the RAM loader from the disk

— Level 1 (RAM) loader: loaded from the master boot record (MBR),
loads the OS loader

— Level 2 (OS) loader: it loaded from partition boot record, knows the
file system

— Kernel loader: initiates the kernel
* |t mounts the root file system (read-only in Linux)

— User mode OS start: starting services and sessions
* Mounting user file systems

 Many types of data are stored on the disk

— Metadata

* Partition types and location on the disk

* File system descriptors (type, size, usage, etc.)

* File (directory) descriptors (name, location, etc.)
— Data

* Bootloaders

* File data (the actual data)

File systems 1. 23 /32

BME MIT Operating Systems

Spring 2017.

Organization of the file systems on the disk

e The stored data

— File system metadata (superblock, master file table, partition control block)
— File metadata (inode, file control block, on Windows: it is part of master file

table)
— Stored data

superblock file metadata

data blocks

* The file system metadata
— Ondisk

* Type andsize

* List of free blocks

* The location of the file metadata
* State

* Modification information

— In the memory

Everything from the disk
Mounting information
Dirty bit

Locking state

* The file system is sensitive to metadata loss (e.g. block error)

— Therefore backups are made
— See: dumpe2fs /dev/sdal

| grep -1 superblock

File systems 1. 24 /32

. uﬁg@ﬂ%w BME MIT Operating Systems Spring 2017.

Location of the file metadata

* Ondisk
— Authentication information (UID, GID)
— Type
— Permissions
— Timestamps
— Size
— Data block locations
— Example: UNIX inode (index node), Windows Master File Table entry

* In memory — runtime extensions
— The contents of the open file object — which is created by the open ()
system call
» State (locked, modified, etc.)
» Disk/file system identifier
» Reference counter (file descriptors)
* Mounting point descriptor

File systems 1. 25 /32

BME MIT Operating Systems Spring 2017.

Storing data blocks (allocation methods)

* It would be simple to store the blocks (files) continuously on the disk...

— But when files are deleted, different sized ,holes” are created — like memory
fragmentation

— With many small holes, storing large files are impossible
* Chained list allocation (sequential access storage)
— The file data is stored in smaller parts

— The specific parts are linked to the next part

— Simple chained list
* The address of the first part is in the metadata
» Every part contains the address of the next part
* The parts can be located anywhere — slow to access the umpteenth part

— Efficient for sequential access, sensitive to errors
— Multiple variants, e.g.: FAT
* Indexed storage (direct access storage)
— The file data are stored in equal sized block (determined by the FS or the HW)
— The location/map of the blocks: the index

— Ifit’s possible, the blocks are located in a sequential order (it can accessed in
sequential or direct way)

— If the index is too big, it can be stored in multiple blocks with the chained list
allocation

File systems 1. 26 /32

BME MIT

Operating Systems

Spring 2017.

Example: Multiple indexed data block address table

* Address table for a file
— 12 direct block address
— Single and double indirect block address

— 4 kB block size
— 4 byte address

12 direct block address

1

Data block (4k)

1x indirect address

1

2

1024

2x indirect address

\ 4

4k/4 direct block address

\ 4

What is the maximal file size?

File systems 1. 27 /32

1 Data block (4k)
Udlad UVIUCKN \"I‘l\’

1024 4k/4 direct block »| Data block
4k/4 indirect block address address 3 (4k)
/ address | (4k)
address | (4k) |

BME MIT Operating Systems Spring 2017.

How to determine the block size?

@
T

._E 100 T P—
G

- 80

©

< 60

]

g 40

ﬂ —e—1984 2005 ——Web
o 20

° ‘ 32 1K 32K 1M 32M 1G

File size

Source: Andrew S. Tanenbaum, Jorrit N. Herder, Herbert Bos
File size distribution on UNIX systems: then and now. Operating Systems Review 40(1): 100-104 (2006)

File systems 1. 28 /32

BME MIT Operating Systems Spring 2017.

Managing the free blocks

* Registering free blocks for new allocations
* Bitmap, bit-vector description

— Every block is represented by a bit
— 1=free, O=used

Simple method, easy to find a free block
* The map can be stored in the memory for smaller FS
« Typically there is a CPU instruction for getting the first non zero bit location

It uses more memory for a larger file system

e Chained list storage

The free blocks are marked and the address of the next free block is written
there

Only the address of the first free block has to be stored
Simple, but not so efficient method
It can be combined with the chained list block allocation method

 Hierarchical methods

Managing the group of (free) blocks

— The groups can be created based on the size of the FS

Within a group, a simpler structure can be used (e.g.: bitmap)

File systems 1. 29 /32

BME MIT Operating Systems Spring 2017.

Accelerating data access

* Recap: the virtual memory management (VM) extends the memory with
the disk

* From the opposite side: load the file system data to the physical memory
— To accelerate the access to frequently used data
— This is called disk buffering

— The frames which are used for this is called buffer cache (see free Linux
command)

* The organization of the buffer cache

— Basic idea: the VM and the FS can use the same mechanisms
e Virtual addresses makes it simple
* The datais loaded into frames by the VM mechanism
e This can be beneficial for mmap also
* This is called the unified buffer cache (Linux: page cache)
— Accelerating the reads: read ahead

— Deleting buffered blocks from the RAM: the standard page replacement
algorithms do it

— Managing write operations (when to write the modified data to the disk)
* Write through cache: it writes immediately (slow)
» Buffered write: it writes the data periodically (flush, sync) (faster)

File systems 1. 30/32

BME MIT Operating Systems Spring 2017.

Consistency of metadata and journaling file systems

* Disc buffering may introduce consistency problems

— It can cause file data loss also, but the inconsistency in the metadata can lead
to larger scale data loss (storage leak)

— Solutions
* Write through cache can solve the problem, the price is the slower operation
* Use it only for the metadata

* Journaling file systems

— The changes are saved to a journal, which is always stored on the disk
* The operations on the metadata is grouped into transactions
* The transaction is finished when the data is also stored in the journal (commit)
* Thejournalis sequential access circular buffer

— If the operation is performed on the file system, the journal entry can be
deleted

— What happed if the system crashes? At the re-boot the journal is processed
e Log-structured file system: the FS is the log (e.g. BSD LFS)

— The data and metadata are written sequentially to a circular buffer (log)
* Copy-on-write file system (ZFS, btrfs)

— The write operation is performed on a copy of the original data, then the
metadata is updated

File systems 1. 31/32

https://en.wikipedia.org/wiki/Log-structured_File_System_(BSD)

BME MIT

- fis) SN E o)
MOEGYETEM 1782

Overview of the topic

User interfaces
— User

— Administrator
— Programmer

Operation of the file systems
— Kernel data structures
— File system interfaces

— Data arranged in blocks on
disks

Storing the data
— Physical storages (HDD, SSD)
— 1/0 scheduling

— Local storage system
virtualization (RAID, LVM)

— Network and distributed file
systems

Operating Systems

Spring 2017.

(anonyrnwrgjgpages)
(Applications (Processes)):
— malloc
a|l af & g| %
T o ﬂ:J ‘:r.'-; o
|l 5| 8] =] £
Y Y A4 Y °¥y A Yy
VFS
(" BlockBased FS | [NetworkFS | | | [PseudoFS | Special
direct 10 (ex2) (ex3) (o) (§Fg) (coda) (proc) (coda) Purpose FS Page
(O_DIRECT) g..g - ® Pipely ey (MPTS) (RME) Cache
Sackable » network
1'% Block I/O Layer
optional stackable devices on top
of “normal” block devices - work on bios
| T () @ e 108 @ock0)
» all.
Ll -

l{e] Scl’ eduler
{ maps bios to requests

@) e |

-

Request-based
device mapper targets

_I SCSI Upper Layer
(transport aitnbutes

Y

Hooked in Device Drivers
(hookin similar fo stacked devices such
as mdraid'device mapper do)

mtip32xx
! nvme !

iomemory-vsl
with module option

SCSI M|d Layer

[wrtm blk] (mmemory-vd)

scsi transporl f[:

Y

Transpcm Classes

SCSI Low Layer

()

@ ((megaraid sas | (aacraid) { gla2xxx) @ (iscsi_tep)

—>
network

Physical Devices

\
6&----.---]

File systems 1. 32/32

