
Semantic Web Technologies Web Ontology Language (OWL)

Previously on "Semantic Web Technologies"

- We have got to know
 - OWL, a more powerful ontology language than RDFS
 - Simple ontologies and some reasoning
 - Sudoku solving
- Today
 - New constructs in OWL2
 - Russell's paradox
 - Reasoning in OWL
 - Complexity of ontologies
 - A peek at rule languages for the Semantic Web



Semantic Web – Architecture

OWL2 – New Constructs and More

- Five years after the first OWL standard
- OWL2: 2009
 - Syntactic sugar
 - New language constructs
 - OWL profiles

- Qualified relations
- Reflexive, irreflexive, and antisymmetric properties

OWL2: Syntactic Sugar

Disjoint classes and disjoint unions

```
- OWL 1:
    :Wine owl:equivalentClass [
        a owl:Class;
        owl:unionOf (:RedWine :RoséWine :WhiteWine)].
    :RedWine owl:disjointWith :RoséWine, :WhiteWine .
    :RoséWine owl:disjointWith :WhiteWine .

- OWL 2:
    :Wine owl:disjointUnionOf (:RedWine :RoséWine :WhiteWine ).

- Also possible:
    _:x a owl:AllDisjointClasses;
        owl:members (:RedWine :RoséWine WhiteWine ).
```

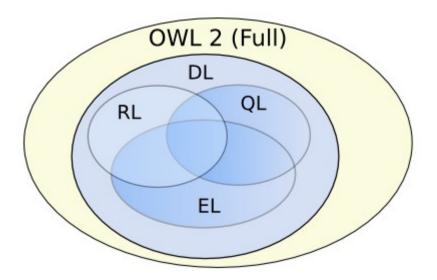
OWL2: Syntactic Sugar

- Negative(Object|Data)PropertyAssertation
- Allow negated statements
- e.g.: Paul is not Peter's father

- If that's syntactic sugar, it must also be possible differently
 - But how?

OWL2: Syntactic Sugar

- Negative(Object|Data)PropertyAssertion
- Replaces less intuitive set constructs
- Paul is not Peter's father


OWL2: Reflexive Class Restrictions

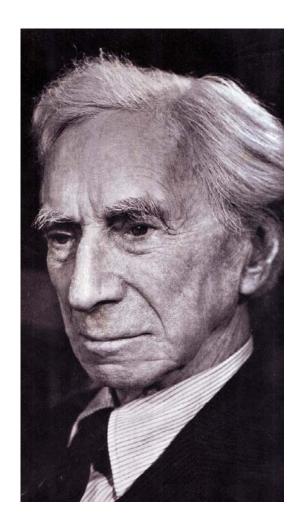
- Using hasSelf
- Example: defining the set of all autodidacts:

```
:AutoDidact owl:equivalentClass [
  a owl:Restriction ;
  owl:onProperty :teaches ;
  owl:hasSelf "true"^^xsd:boolean ] .
```

OWL2: Profiles

- Profiles are subsets of OWL2 DL
 - EL, RL und QL
 - Similar to complexity classes
- Different runtime and memory complexity
- Depending on requirements

OWL2 Profile


- OWL2 EL (Expressive Language)
 - Fast reasoning on many standard ontologies
 - Restrictions, e.g.:
 - someValuesFrom, but not allValuesFrom
 - No inverse and symmetric properties
 - No unionOf and complementOf
- OWL2 QL (Query Language)
 - Fast query answering on relational databases
 - Restrictions, e.g.:
 - No unionOf, allValuesFrom, hasSelf, ...
 - No cardinalities and functional properties

OWL2 Profile

- OWL2 RL (Rule Language)
 - Subset similar to rule languages such as datalog
 - subClassOf is translated to a rule (Person ← Student)
 - Restrictions, e.g.:
 - Only qualified restrictions with 0 or 1
 - Some restrictions for head and body
- The following holds for all three profiles:
 - Reasoning can be implemented in polynomial time for each of the three
 - Reasoning on the union of two profiles only possible in exponential time

- A classic paradox by Bertrand Russell, 1918
- In a city, there is exactly one barber who shaves everybody who does not shave themselves.

Who shaves the barber?

Class definitions

```
:People owl:disjointUnionOf
(:PeopleWhoShaveThemselves
:PeopleWhoDoNotShaveThemselves ) .
```

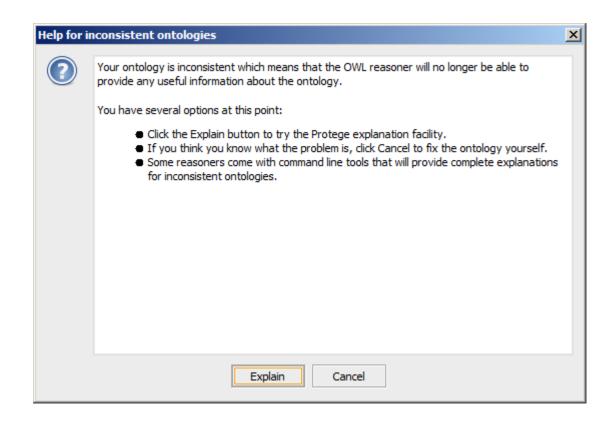
Relation definitions:

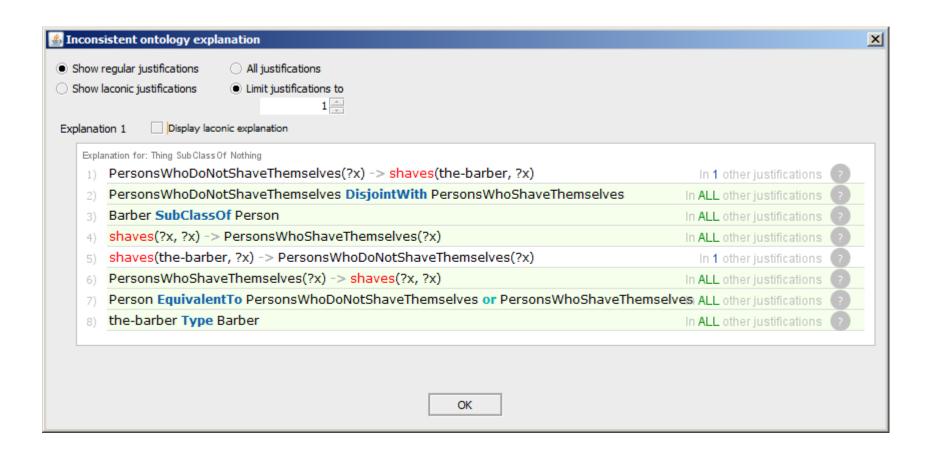
```
:shavedBy rdfs:domain :People .
:shavedBy rdfs:range :People .
:shaves owl:inverseOf :shavedBy .
```

Every person is shaved by exactly one person:

```
:People rdfs:subClassOf [
  a owl:Restriction ;
  owl:onProperty :shavedBy ;
  owl:cardinality "1"^^xsd:integer ] .
```

• Then, we define the barber:


```
:Barbers rdfs:subClassOf :People ;
    owl:equivalentClass [
        rdf:type owl:Class ;
        owl:oneOf ( :theBarber )
] .
```


Definition of people shaving themselves:

```
:PeopleWhoShaveThemselves owl:equivalentClass [
  rdf:type owl:Class;
  owl:intersectionOf
  ( :People
      [
        a owl:Restriction;
        owl:onProperty :shavedBy;
        owl:hasSelf "true"^^xsd:boolean
      ]
    )
] .
```

Definition of people who do not shave themselves:

```
:PeopleWhoDoNotShaveThemselves owl:equivalentClass [
   a owl:Class ;
   owl:intersectionOf (
    :People
     [ a owl:Restriction
        owl:onProperty :shavedBy ;
        owl:allValuesFrom :Barbers
    ]
   )
] .
```


Reasoning in OWL DL

- We have seen reasoning for RDFS
 - Forward chaining algorithm
 - Derive axioms from other axioms
- Reasoning for OWL DL is more difficult
 - Forward chaining may have scalability issues
 - Conjunction (e.g., unionOf) is not supported by forward chaining
 - Different approach: Tableau Reasoning
 - Underlying idea: find contradictions in ontology
 - i.e., both a statement and its opposite can be derived from the ontology

Typical Reasoning Tasks

- What do we want to know from a reasoner?
 - Subclass relations
 - e.g., Are all birds flying animals?
 - Equivalent classes
 - e.g., Are all birds flying animals and vice versa?
 - Disjoint classes
 - e.g., Are there animals that are mammals and birds at the same time?
 - Class consistency
 - e.g., Can there be mammals that lay eggs?
 - Class instantiation
 - e.g., Is Flipper a dolphin?
 - Class enumeration
 - e.g., List all dolphins

Example: A Simple Contradiction

• Given:

```
:Man a owl:Class .
:Woman a owl:Class .
:Man owl:disjointWith :Woman .
:Alex a :Man .
:Alex a :Woman .
```

Example: A Simple Contradiction

We can derive:

```
- :Man ∩ :Woman = Ø
  owl:Nothing owl:intersectionOf (:Man :Woman) .
- :Alex ∈ (:Man ∩ :Woman)
  :Alex a [ a owl:Class; owl:intersectionOf (:Man :Woman)] .
```

- i.e.:
 - :Alex ∈ ∅:Alex a owl:Nothing .
 - That means: the instance must not exist
 - but it does

Reasoning Tasks Revisited

- Subclass Relations
 - Student ⊆ Person ⇔ "Every student is a person"
- Proof method: Reductio ad absurdum
 - "Invent" an instance i
 - Define Student(i) and ¬Person(i)
 - Check for contradictions
 - If there is one: Student ⊆ Person has to hold
 - If there is none: Student ⊆ Person cannot be derived
 - Note: it may still hold!

Example: Subclass Relations

Ontology:

```
:Student owl:subClassOf :UniversityMember . :UniversityMember owl:subClassOf :Person .
```

Invented instance:

```
:i a :Student .
:i a [ owl:complementOf :Person ] .
```

We have

```
:i a :Student .
:Student owl:subClassOf :UniversityMember .
```

Thus

```
:i a :UniversityMember .
```

And from

```
:UniversityMember owl:subClassOf :Person .
```

We further derive that

```
:i a Person .
```

Example: Subclass Relations

Now, we have

• from which we derive

```
:i a owl:Nothing .
```

Reasoning Tasks Revisited

- Class equivalence
 - Person ≡ Human
- Split into
 - Person ⊆ Human and
 - Human ⊆ Person
- i.e., show subclass relation twice
 - We have seen that
- Class disjointness
 - Are C and D disjoint?
 - "Invent" an instance i
 - Define C(i) and D(i)
 - We have done set (the Alex example)

Class Consistency

- Can a class have instances?
 - e.g., married bachelors

```
:Bachelor owl:subClassOf :Man .
:Bachelor owl:subClassOf
  [ a owl:Restriction;
    owl:onProperty :marriedTo;
    owl:cardinality 0 ] .
:MarriedPerson owl:subClassOf [
    a owl:Restriction;
    owl:onProperty :marriedTo;
    owl:cardinality 1 ] .
:MarriedBachelor owl:intersectionOf
  (:Bachelor :MarriedPerson) .
```

- Now: invent an instance of the class
 - And check for contradictions

Reasoning Tasks Revisited

- Class Instantiation
 - Is Flipper a dolphin?
- Check:
 - define ¬Dolphin(Flipper)
 - Check for contradiction
- Class enumeration
 - Repeat class instantiation for all known instances

Typical Reasoning Tasks Revisited

- What do we want to know from a reasoner?
 - Subclass relations
 - e.g., Are all birds flying animals?
 - Equivalent classes
 - e.g., Are all birds flying animals and vice versa?
 - Disjoint classes
 - e.g., Are there animals that are mammals and birds at the same time?
 - Class consistency
 - e.g., Can there be mammals that lay eggs?
 - Class instantiation
 - e.g., Is Flipper a dolphin?
 - Class enumeration
 - e.g., List all dolphins

Typical Reasoning Tasks Revisited

- We have seen
 - All reasoning tasks can be reduced to the same basic tasks
 - i.e., consistency checking
- This means: for building a reasoner that can solve those tasks,
 - We only need a reasoner capable of consistency checking

Ontologies in Description Logics Notation

Classes and Instances

```
- C(x) \leftrightarrow x a C .

- R(x,y) \leftrightarrow x R y .

- C \sqsubseteq D \leftrightarrow C _{rdfs:subClassOf} D

- C \sqsubseteq D \leftrightarrow C _{owl:equivalentClass} D

- C \sqsubseteq \neg D \leftrightarrow C _{owl:disjointWith} D

- C \sqsubseteq \neg D \leftrightarrow C _{owl:complementOf} D

- C \sqsubseteq D \sqcap E \leftrightarrow C _{owl:intersectionOf} (D E) .

- C \sqsubseteq D \sqcup E \leftrightarrow C _{owl:unionOf} (D E) .

- C \sqsubseteq D \sqcup E \leftrightarrow C _{owl:unionOf} (D E) .

- C \sqsubseteq D \sqcup E \leftrightarrow C _{owl:unionOf} (D E) .
```

Ontologies in Description Logics Notation

Domains, ranges, and restrictions

```
-\exists R.T \sqsubseteq C \leftrightarrow R \text{ rdfs:domain } C.
- \forall R.C - R rdfs:range C .
  C \subseteq \forall R.D \leftrightarrow C owl:subClassOf
                    [ a owl:Restriction;
                      owl:onProperty R;
                      owl:allValuesFrom D ] .
-C \subseteq \exists R.D \leftrightarrow C \text{ owl:subClassOf}
                    [ a owl:Restriction;
                      owl:onProperty R;
                      owl:someValuesFrom D ] .
- C \sqsubseteq ≥nR —C owl:subClassOf
                    [ a owl:Restriction;
                      owl:onProperty R;
                      owl:minCardinality n ] .
```

- Transforming ontologies to Negation Normal Form:
 - ⊑ und ≡ are not used
 - Negation only for atomic classes and axioms
- A simplified notation of ontologies
- Used by tableau reasoners

- Eliminating ⊑:
 - Replace $C \sqsubseteq D$ by $\neg C \sqcup D$
 - Note: this is a shorthand notation for $\forall x : \neg C(x) \lor D(x)$
- Why does this hold?
 - $C \subseteq D$ is equivalent to $C(x) \rightarrow D(x)$

C(x)	D(x)	$C(x) \rightarrow D(x)$	$\neg C(x) \lor D(x)$
true	true	true	true
true	false	false	false
false	true	true	true
false	false	true	true

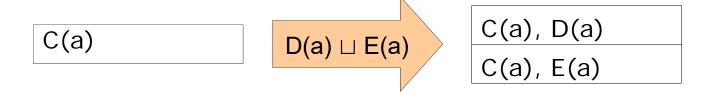
- Eliminating ≡:
 - Replace $C \equiv D$ by $C \sqsubseteq D$ and $D \sqsubseteq C$
 - Proceed as before
- i.e.: C ≡ D becomes

 $\mathsf{C} \sqsubseteq \mathsf{D}$

 $D \sqsubseteq C$

and thus

 $\neg C \sqcup D$


 $\neg D \, \sqcup C$

Further transformation rules

```
- NNF(C) = C  (for atomic C)
- NNF(\neg C) = \neg C  (for atomic C)
- NNF(\neg \neg C) = C
- NNF(C \sqcup D) = NNF(C) \sqcup NNF(D)
- NNF(C \sqcap D) = NNF(C) \sqcap NNF(D)
- NNF(\neg(C \sqcap D)) = NNF(\neg C) \sqcup NNF(\neg D)
- NNF(\neg(C \sqcup D)) = NNF(\neg C) \sqcap NNF(\neg D)
- NNF(\forall R.C) = \forall R.NNF(C)
- NNF(\exists R.C) = \exists R.NNF(C)
- NNF(\neg \forall R.C) = \exists R.NNF(\neg C)
- NNF(\neg \exists R.C) = \forall R.NNF(\neg C)
```

The Basic Tableau Algorithm

- Tableau: Collection of derived axioms
 - Is subsequently extended
 - As for forward chaining
- In case of conjunction
 - Split the tableau

When is an Ontology Free of Contradictions?

- Tableau is continuously extended and split
- Free of contradictions if...
 - No further axioms can be created
 - At least one partial tableau is free of contradictions
 - A partial tableau has a contradiction if it contains both an axiom and its negation
 - e.g.. Person(Peter) und ¬Person(Peter)
 - The partial tableau is then called closed

The Basic Tableau Algorithm

Given: an ontology O in NNF While not all partial tableaus are closed * Choose a non-closed partial tableau T and an A ϵ O \cup T If A is not contained in T If A is an atomic statement add A to T back to * If A is a non-atomic statement Choose an individual i ϵ O \cup T Add A(i) to T back to * else Extend the tableau with consequences from A back to *

The Basic Tableau Algorithm

Extending a tableau with consequences

Nr	Axiom	Action
1	C(a)	Add C(a)
2	R(a,b)	Add R(a,b)
3	С	Choose an individual a, add C(a)
4	(C □ D)(a)	Add C(a) and D(a)
5	(C ⊔ D)(a)	Split tableau into T1 and T2. Add C(a) to T1, D(a) to T2
6	(∃R.C)(a)	Add R(a,b) and C(b) for a <i>new</i> Individual b
7	(∀R.C)(a)	Far all b with R(a,b) ϵ T: add C(b)

Given the following ontology:

```
:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .
:Seth a :Human .
```

:Seth a :Insect .

Is this knowledge base consistent?

Given the following ontology:

```
:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .
:Seth a :Human .
:Seth a :Insect .
```

– The same ontology in DL-NNF:

```
¬Animal □¬Human
Animal □(¬Mammal □¬Bird □¬Fish □¬Insect □¬Reptile)
¬Animal □(Mammal □ Bird □ Fish □ Insect □ Reptile)
Human(Seth)
Insect(Seth)
```

Let's try how reasoning works now!

Human(Seth), Insect(Seth)

Nr	Axiom	Action
1	C(a)	Add C(a)

Human(Seth), Insect(Seth), (¬Animal ⊔ ¬Human)(Seth)

Nr	Axiom	Action
3	С	Choose an individual a, add C(a)

```
Human(Seth), Insect(Seth),

¬Animal(Seth)

Human(Seth), Insect(Seth),

¬Human(Seth)
```

Nr	Axiom	Action
5	(C ⊔ D)(a)	Split the tableau into T1 and T2. Add C(a) to T1, D(a) to T2

```
Human(Seth), Insect(Seth),
¬Animal(Seth)
Animal □ (¬Mammal □ ¬Bird □ ¬Fish □ ¬Insect)(Seth)
Human(Seth), Insect(Seth),
¬Human(Seth)
```

Nr	Axiom	Action
3	С	Choose an individual a, add C(a)

```
Human(Seth), Insect(Seth),
¬Animal(Seth)

Animal(Seth)

Human(Seth), Insect(Seth),
¬Animal(Seth)
(¬Mammal □ ¬Bird □ ¬Fish □ ¬Insect □ ¬Reptile)(Seth)

Human(Seth), Insect(Seth),
¬Human(Seth)
```

N	۱r	Axiom	Action
5	5	(C ⊔ D)(a)	Split the tableau into T1 and T2. Add C(a) to T1, D(a) to T2

```
Human(Seth), Insect(Seth),
¬Animal(Seth)

Animal(Seth)

Human(Seth), Insect(Seth),
¬Animal(Seth)

(¬Mammal □ ¬Bird □ ¬Fish □ ¬Insect □ ¬Reptile)(Seth)
¬Mammal(Seth) □ ¬Bird(Seth) □ ¬Fish(Seth) □
¬Insect(Seth) □ ¬Reptile(Seth)

Human(Seth), Insect(Seth),
¬Human(Seth)
```

Nr	Aussage	Aktion
4	(C □ D)(a)	Add C(a) and D(a)

Again, a simple ontology:

```
:Woman rdfs:subClassOf :Person .
:Man rdfs:subClassOf :Person .
:hasChild rdfs:domain :Person .
:hasChild rdfs:range :Person .
:Peter :hasChild :Julia .
:Julia a :Woman .
:Peter a :Man .
```

• in DL NNF:

```
¬Man ⊔ Person
¬Woman ⊔ Person
¬∃hasChild.T ⊔ Person
∀hasChild.Person
hasChild(Peter,Julia)
Woman(Julia)
Man(Peter)
```

hasChild(Peter,Julia)

Nr	Axiom	Action
2	R(a,b)	Add R(a,b)

hasChild(Peter, Julia), Woman (Julia)

Nr	Axiom	Action
1	C(a)	Add C(a)

```
hasChild(Peter,Julia), Woman(Julia),
(–∃hasChild.T⊔Person)(Peter)
```

Nr	Axiom	Action
3	С	Choose an individual a, add C(a)

```
hasChild(Peter,Julia), Woman(Julia),
(¬∃hasChild.T ⊔ Person)(Peter),
¬∃hasChild.T(Peter)
hasChild(Peter,Julia), Woman(Julia),
(¬∃hasChild.T)(Peter), Person(Peter)
```

Nr	Axiom	Action
5	(C ⊔ D)(a)	Split the tableau into T1 and T2. Add C(a) to T1, D(a) to T2

```
hasChild(Peter,Julia), Woman(Julia),
(¬∃hasChild.T)(Peter),
¬ParentsOfSons(Peter)
hasChild(Peter,Julia), Woman(Julia),
(¬∃hasChild.T)(Peter),
Person(Peter),
¬hasChild(Peter,b0),T(b0)
```

Nr	Axiom	Action
6	(∃R.C)(a)	Add R(a,b) und C(b) for a <i>new</i> Individual b

```
hasChild(Peter,Julia), Woman(Julia),
(¬ParentsOfSons ⊔ ∃hasChild.Man)(Peter),
¬ParentsOfSons(Peter)

hasChild(Peter,Julia), Woman(Julia),
(¬∃hasChild.T)(Peter),
Person(Peter),
¬hasChild(Peter,b0),T(b0),
¬hasChild(Peter,b1),T(b1),
...
```

Nr	Axiom	Action
6	(∃R.C)(a)	Add R(a,b) und C(b) for a <i>new</i> Individual b

Introducing Rule Blocking

- Observation
 - The tableau algorithm does not necessarily terminate
 - We can add arbitrarily many new axioms

Nr	Axiom	Action
6	(∃R.C)(a)	Add R(a,b) und C(b) for a <i>new</i> Individual b

- Idea: avoid rule 6 if no new information is created
 - i.e., if we already created one instance b0 for instance a, then block using rule 6 for a.

Tableau-Algorithmus with Rule Blocking

 Given: an ontology O in NNF While not all partial tableaus are closed and further axioms can be created * Choose a non-closed partial tableau T and a non-blocked A ϵ O \cup T If A is not contained in T If A is an atomic statement add A to T back to * If A is a non-atomic statement Choose an individual i ϵ O \cup T Add A(i) to T back to * else Extend the tableau with consequences from A If rule 6 was used, block A for T back to *

Tableau Algorithm: Wrap Up

- An algorithm for description logic based ontologies
 - works for OWL Lite and DL
- We have seen examples for some OWL expressions
 - Other OWL DL expressions can be "translated" to DL as well
 - And they come with their own expansion rules
 - Reasoning may become more difficult
 - e.g., dynamic blocking and unblocking

Optimizing Tableau Reasoners

 Given: an ontology O in NNF While not all partial tableaus are closed and further axioms can be created Choose a non-closed partial tableau T and a non-blocked A ϵ O \cup T If A is not contained in T If A is an atomic statement add A to T back to * If A is a non-atomic statement Choose an individual i ϵ O \cup T Add A(i) to T back to * else Extend the tableau with consequences from A If rule 6 was used, block A for T back to *

OWL Lite vs DL Revisited

- Recap: OWL Lite has some restrictions
 - Those are meant to allow for faster reasoning
- Restrictions only with cardinalities 0 and 1
 - Higher cardinalities make blocking more complex
- unionOf, disjointWith, complementOf, closed classes, ...
 - they all introduce more disjunctions
 - i.e., more splitting operations

Complexity of Ontologies

- Reasoning is usually expensive
- Reasoning performance depends on ontology complexity
 - Rule of thumb: the more complexity, the more costly
- Most useful ontologies are in OWL DL
 - But there are differences
 - In detail: complexity classes

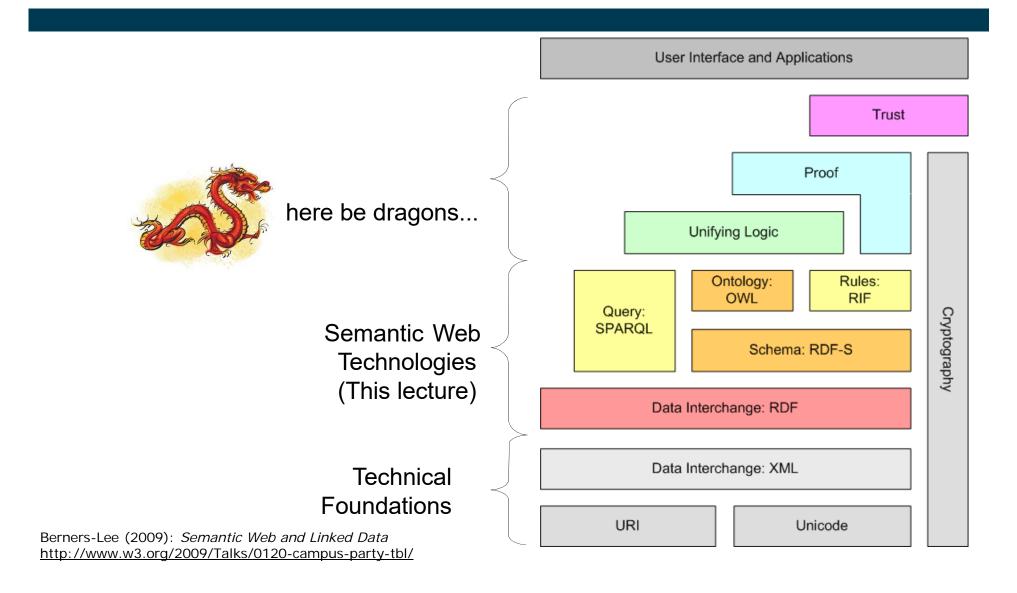
Simple Ontologies: ALC

- ALC: Attribute Language with Complement
- Allowed:
 - subClassOf, equivalentClass
 - unionOf, complementOf, disjointWith
 - Restrictions: allValuesFrom, someValuesFrom
 - domain, range
 - Definition of individuals

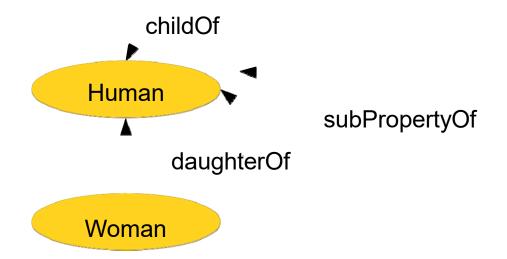
SHIQ, SHOIN & co

- Complexity classes are noted as letter sequences
- Using
 - S = ALC plus transitive properties (basis for most ontologies)
 - H = Property hierarchies (subPropertyOf)
 - O = closed classes (oneOf)
 - I = inverse properties (inversePropertyOf)
 - N = numeric restrictions (min/maxCardinality)
 - F = functional properties
 - Q = qualified numerical restrictions (OWL2)
 - (D) = Usage of datatype properties

Some Tableau Reasoners


- Fact
 - University of Manchester, free
 - SHIQ
- Fact++/JFact
 - Extension of Fact, free
 - SHOIQ(and a little D), OWL-DL + OWL2
- Pellet
 - Clark & Parsia, free for academic use
 - SHOIN(D), OWL-DL + OWL2
- RacerPro
 - Racer Systems, commercial
 - SHIQ(D)

Sudoku Revisited


- Recap: we used a closed class
 - Plus some disjointness
- Resulting complexity: SO
- Which reasoners do support that?
 - Fact: SHIQ :-(
 - RacerPro: SHIQ(D) :-(
 - Pellet: SHOIN(D) :-)
 - HermiT: SHOIQ :-)

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Rules: Beyond OWL

- Some things are hard or impossible to express in OWL
- Example:
 - If A is a woman and the child of B then A is the daughter of B

Let's try this in OWL:

- What can a reasoner conclude with this ontology?
- Example:

```
:Julia :daughterOf :Peter .

→ :Julia a :Woman .
```

What we would like to have instead:

```
:Julia :childOf :Peter .
:Julia a :Woman .

→ :Julia :daughterOf :Peter .
```

- What we would like to have: daughterOf(X,Y) ← childOf(X,Y) ∧Woman(X).
- Rules are flexible
- There are rules in the Semantic Web, e.g.
 - Semantic Web Rule Language (SWRL)
 - Rule Interchange Format (RIF)
 - Some more
- Some reasoners do (partly) support rules

SWRL

- Semantic Web Rule Language
 - A rule language for the Semantic Web
 - Closely interacts with OWL
- W3C Member Submission (2004)
 - i.e., no standard in the narrower sense
 - But widely used
- Tool support
 - Many reasoners
 - Protégé
- Built ins (support varies)
 - Arithmetics and comparisons
 - String operations

SWRL in RDF

```
<ruleml:imp>
  <rulem1: rlab rulem1:href="#example1"/>
  <rulem1: body>
    <swrlx:individualPropertyAtom swrlx:property="hasParent">
      <ruleml:var>x1</ruleml:var>
      <ruleml:var>x2</ruleml:var>
    </swrlx:individualPropertyAtom>
    <swrlx:individualPropertyAtom swrlx:property="hasBrother">
      <ruleml:var>x2</ruleml:var>
      <ruleml:var>x3</ruleml:var>
    </swrlx:individualPropertyAtom>
  </ruleml: body>
  <rul><ruleml: head>
    <swrlx:individualPropertyAtom swrlx:property="hasUncle">
      <ruleml:var>x1</ruleml:var>
      <ruleml:var>x3</ruleml:var>
    </swrlx:individualPropertyAtom>
  </ruleml: head>
</ruleml:imp>
```

Wrap Up

- OWL comes in many flavours
 - OWL Lite, OWL DL, OWL Full
 - Detailed complexity classes of OWL DL
 - Additions and profiles from OWL2
- Reasoning is typically done using the Tableau algorithm
- Rules (e.g., SWRL)
 - Add further capabilities
 - Where OWL is still not expressive enough