
Semantic Web Technologies
Web Ontology Language (OWL)

Previously on “Semantic Web Technologies”

• We have got to know
–
–
–

OWL, a more powerful ontology language than RDFS
Simple ontologies and some reasoning

Sudoku solving

• Today
–
–
–
–
–

New constructs in OWL2
Russell's paradox
Reasoning in OWL
Complexity of ontologies

A peek at rule languages
for the Semantic Web

10/25/16 Heiko Paulheim 2

Semantic Web – Architecture

Technical
Foundations

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Semantic Web
Technologies
(This lecture)

here be dragons...

10/25/16 Heiko Paulheim 3

OWL2 – New Constructs and More

•
•

Five years after the first OWL standard
OWL2: 2009
–
–
–

Syntactic sugar
New language constructs
OWL profiles

• We have already encountered some, e.g.,
–
–

Qualified relations
Reflexive, irreflexive, and antisymmetric properties

10/25/16 Heiko Paulheim 4

OWL2: Syntactic Sugar

10/25/16 Heiko Paulheim 5

• Disjoint classes and disjoint unions
– OWL 1:

:Wine owl:equivalentClass [
a owl:Class ;
owl:unionOf (:RedWine :RoséWine :WhiteWine)] .

:RedWine owl:disjointWith :RoséWine, :WhiteWine .
:RoséWine owl:disjointWith :WhiteWine .

OWL 2:
:Wine owl:disjointUnionOf (:RedWine

:RoséWine :WhiteWine).

Also possible:
_:x a owl:AllDisjointClasses ;

owl:members (:RedWine :RoséWine WhiteWine).

–

–

OWL2: Syntactic Sugar

10/25/16 Heiko Paulheim 6

•
•
•

Negative(Object|Data)PropertyAssertation
Allow negated statements

e.g.: Paul is not Peter's father
_x [a owl:NegativeObjectPropertyAssertion;

owl:sourceIndividual :Paul ;
owl:targetIndividual :Peter ;
owl:assertionProperty :fatherOf] .

• If that's syntactic sugar, it must also be possible differently
– But how?

OWL2: Syntactic Sugar

10/25/16 Heiko Paulheim 7

•
•
•

Negative(Object|Data)PropertyAssertion
Replaces less intuitive set constructs
Paul is not Peter's father

Paul a [owl:complementOf [
a owl:Restriction ;
owl:onProperty :fatherOf ;
owl:hasValue :Peter

]
].

OWL2: Reflexive Class Restrictions

10/25/16 Heiko Paulheim 8

•
•

Using hasSelf

Example: defining the set of all autodidacts:
:AutoDidact owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :teaches ;
owl:hasSelf "true"^^xsd:boolean] .

OWL2: Profiles

• Profiles are subsets of OWL2 DL
–
–

EL, RL und QL
Similar to complexity classes

•
•

Different runtime and memory complexity
Depending on requirements

10/25/16 Heiko Paulheim 9

OWL2 Profile

10/25/16 Heiko Paulheim 10

• OWL2 EL (Expressive Language)
–
–

Fast reasoning on many standard ontologies
Restrictions, e.g.:

• someValuesFrom, but not allValuesFrom
• No inverse and symmetric properties
• No unionOf and complementOf

• OWL2 QL (Query Language)
–
–

Fast query answering on relational databases
Restrictions, e.g.:

• No unionOf, allValuesFrom, hasSelf, …
• No cardinalities and functional properties

OWL2 Profile

10/25/16 Heiko Paulheim 11

• OWL2 RL (Rule Language)
– Subset similar to rule languages such as datalog

• subClassOf is translated to a rule (Person ← Student)
– Restrictions, e.g.:

• Only qualified restrictions with 0 or 1
• Some restrictions for head and body

• The following holds for all three profiles:
–
–

Reasoning can be implemented in polynomial time for each of the three
Reasoning on the union of two profiles only possible in exponential time

OWL2 Example: Russell's Paradox

• A classic paradox by
Bertrand Russell, 1918

• In a city, there is exactly one barber
who shaves everybody who does not
shave themselves.

Who shaves the barber?

10/25/16 Heiko Paulheim 12

OWL2 Example: Russell's Paradox

10/25/16 Heiko Paulheim 13

• Class definitions
:People owl:disjointUnionOf
(:PeopleWhoShaveThemselves
:PeopleWhoDoNotShaveThemselves) .

Relation definitions:
:shavedBy rdfs:domain :People .
:shavedBy rdfs:range :People .
:shaves owl:inverseOf :shavedBy .

Every person is shaved by exactly one person:
:People rdfs:subClassOf [
a owl:Restriction ;
owl:onProperty :shavedBy ;
owl:cardinality "1"^^xsd:integer] .

•

•

OWL2 Example: Russell's Paradox

10/25/16 Heiko Paulheim 14

• Then, we define the barber:
:Barbers rdfs:subClassOf :People ;

owl:equivalentClass [
rdf:type owl:Class ;

owl:oneOf (:theBarber)
] .

OWL2 Example: Russell's Paradox

10/25/16 Heiko Paulheim 15

• Definition of people shaving themselves:
:PeopleWhoShaveThemselves owl:equivalentClass [
rdf:type owl:Class ;
owl:intersectionOf
(:People

[
a owl:Restriction ;
owl:onProperty :shavedBy ;
owl:hasSelf "true"^^xsd:boolean

]
)

] .

OWL2 Example: Russell's Paradox

10/25/16 Heiko Paulheim 16

• Definition of people who do not shave themselves:
:PeopleWhoDoNotShaveThemselves owl:equivalentClass [

a owl:Class ;
owl:intersectionOf (
:People
[a owl:Restriction

owl:onProperty :shavedBy ;
owl:allValuesFrom :Barbers

]
)

] .

OWL2 Example: Russell's Paradox

10/25/16 Heiko Paulheim 17

OWL2 Example: Russell's Paradox

10/25/16 Heiko Paulheim 18

Reasoning in OWL DL

10/25/16 Heiko Paulheim 19

• We have seen reasoning for RDFS
–
–

Forward chaining algorithm
Derive axioms from other axioms

• Reasoning for OWL DL is more difficult
– Forward chaining may have scalability issues
– Conjunction (e.g., unionOf) is not supported by forward chaining
– Different approach: Tableau Reasoning
– Underlying idea: find contradictions in ontology

• i.e., both a statement and its opposite
can be derived from the ontology

Typical Reasoning Tasks

10/25/16 Heiko Paulheim 20

• What do we want to know from a reasoner?
– Subclass relations

• e.g., Are all birds flying animals?
– Equivalent classes

• e.g., Are all birds flying animals and vice versa?
– Disjoint classes

• e.g., Are there animals that are mammals and birds at the same time?
– Class consistency

• e.g., Can there be mammals that lay eggs?
– Class instantiation

• e.g., Is Flipper a dolphin?
– Class enumeration

• e.g., List all dolphins

Example: A Simple Contradiction

10/25/16 Heiko Paulheim 21

• Given:

:Man a owl:Class .

:Woman a owl:Class .

:Man owl:disjointWith :Woman .

:Alex a :Man .
:Alex a :Woman .

Example: A Simple Contradiction

• We can derive:
– :Man  :Woman = 

owl:Nothing owl:intersectionOf (:Man

:Alex  (:Man  :Woman)
:Woman) .

–
:Alex a [a owl:Class; owl:intersectionOf

(:Man :Woman)] .

• i.e.:
– :Alex  

:Alex a owl:Nothing .

That means: the instance must not exist
but it does

–
–

10/25/16 Heiko Paulheim 22

Reasoning Tasks Revisited

10/25/16 Heiko Paulheim 23

• Subclass Relations
Student  Person  „Every student is a person“

Proof method: Reductio ad absurdum•
– "Invent" an instance i
– Define Student(i) and Person(i)
– Check for contradictions

•
•

If there is one: Student  Person has to hold
If there is none: Student  Person cannot be derived

– Note: it may still hold!

Example: Subclass Relations

10/25/16 Heiko Paulheim 24

• Ontology:
:Student owl:subClassOf :UniversityMember .
:UniversityMember owl:subClassOf :Person .

Invented instance:
:i a :Student .

:i a [owl:complementOf :Person] .

We have
:i a :Student .

•

•

:Student owl:subClassOf :UniversityMember .

Thus
:i a :UniversityMember .

And from•
:UniversityMember owl:subClassOf :Person .

We further derive that
:i a Person .

•

Example: Subclass Relations

• Now, we have

i.e.,
:i a [owl:intersectionOf (:Person

[owl:complementOf :Person
])] .

from which we derive
:i a owl:Nothing .

•

10/25/16 Heiko Paulheim 25

:i a :Person .
:i a [owl:complementOf :Person] .

Reasoning Tasks Revisited

10/25/16 Heiko Paulheim 26

• Class equivalence
– Person  Human

• Split into
–
–

Person  Human and
Human  Person

• i.e., show subclass relation twice
– We have seen that

• Class disjointness
–
–
–

Are C and D disjoint?
"Invent" an instance i
Define C(i) and D(i)

• We have done set (the Alex example)

Class Consistency

10/25/16 Heiko Paulheim 27

• Can a class have instances?
– e.g., married bachelors

:Bachelor owl:subClassOf
:Bachelor owl:subClassOf

[a owl:Restriction;

:Man .

owl:onProperty :marriedTo;
owl:cardinality 0] .

:MarriedPerson owl:subClassOf [
a owl:Restriction;
owl:onProperty :marriedTo;
owl:cardinality 1] .

:MarriedBachelor owl:intersectionOf
(:Bachelor :MarriedPerson) .

Now: invent an instance of the class
– And check for contradictions

•

Reasoning Tasks Revisited

10/25/16 Heiko Paulheim 28

• Class Instantiation
– Is Flipper a dolphin?

• Check:
–
–

define Dolphin(Flipper)
Check for contradiction

• Class enumeration
– Repeat class instantiation for all known instances

Typical Reasoning Tasks Revisited

10/25/16 Heiko Paulheim 29

• What do we want to know from a reasoner?
– Subclass relations

• e.g., Are all birds flying animals?
– Equivalent classes

• e.g., Are all birds flying animals and vice versa?
– Disjoint classes

• e.g., Are there animals that are mammals and birds at the same time?
– Class consistency

• e.g., Can there be mammals that lay eggs?
– Class instantiation

• e.g., Is Flipper a dolphin?
– Class enumeration

• e.g., List all dolphins

Typical Reasoning Tasks Revisited

10/25/16 Heiko Paulheim 30

• We have seen
–
–

All reasoning tasks can be reduced to the same basic tasks
i.e., consistency checking

• This means: for building a reasoner that can solve those tasks,
– We only need a reasoner capable of consistency checking

Ontologies in Description Logics Notation

10/25/16 Heiko Paulheim 31

• Classes and Instances
– C(x) ↔ x a C .

– R(x,y) ↔ x R y .

– C ⊑D ↔ C

– C ≡ D ↔ C

– C ⊑D ↔ C

– C ≡ D ↔ C

–
–
–
–

rdfs:subClassOf D

owl:equivalentClass D

owl:disjointWith D

owl:complementOf D

owl:intersectionOf (D E) .

owl:unionOf (D E) .

C ≡ D ⊓E ↔ C

C ≡ D ⊔E ↔ C

T


— owl:Thing

— owl:Nothing

Ontologies in Description Logics Notation

10/25/16 Heiko Paulheim 32

• Domains, ranges, and restrictions
–
–

R.T ⊑ C↔ R rdfs:domain C .

— R rdfs:range C .
owl:subClassOf
[a owl:Restriction;

owl:onProperty R;
owl:allValuesFrom D] .

owl:subClassOf
[a owl:Restriction;

owl:onProperty R;
owl:someValuesFrom D] .

— C owl:subClassOf
[a owl:Restriction;

owl:onProperty R;
owl:minCardinality n] .

R.C
C ⊑ R.D↔ C

– C ⊑ R.D↔ C

– C ⊑ nR

Negation Normal Form (NNF)

10/25/16 Heiko Paulheim 33

• Transforming ontologies to Negation Normal Form:
–
–
⊑ und ≡ are not used
Negation only for atomic classes and axioms

•
•

A simplified notation of ontologies
Used by tableau reasoners

Negation Normal Form (NNF)

10/25/16 Heiko Paulheim 34

• Eliminating ⊑:
•
•

Replace C ⊑D by C ⊔ D
Note: this is a shorthand notation for x: C(x) ⋁ D(x)

• Why does this hold?
• C ⊑ D is equivalent to C(x) → D(x)

C(x) D(x) C(x) → D(x) C(x) ⋁ D(x)

true true true true
true false false false
false true true true
false false true true

Negation Normal Form (NNF)

10/25/16 Heiko Paulheim 35

• Eliminating ≡:
•
•

Replace C ≡ D by C ⊑D and D ⊑C
Proceed as before

• i.e.: C ≡ D becomes
C ⊑D
D ⊑C

– and thus
C ⊔ D
D ⊔ C

Negation Normal Form (NNF)

10/25/16 Heiko Paulheim 36

• Further transformation rules
– NNF(C)
– NNF(C)
– NNF( C)
– NNF(C ⊔ D)
– NNF(C ⊓ D)
– NNF((C ⊓ D))
– NNF((C ⊔ D))
– NNF(R.C)
– NNF(R.C)
– NNF(R.C)
– NNF(R.C)

= C (for atomic C)
= C (for atomic C)
= C
= NNF(C) ⊔ NNF(D)
= NNF(C) ⊓ NNF(D)
= NNF(C) ⊔ NNF(D)
= NNF(C) ⊓ NNF(D)
= R.NNF(C)
= R.NNF(C)
= R.NNF(C)
= R.NNF(C)

The Basic Tableau Algorithm

• Tableau: Collection of derived axioms
–
–

Is subsequently extended
As for forward chaining

• In case of conjunction
– Split the tableau

C(a), D(a)
C(a), E(a)

C(a) D(a) ⊔ E(a)

10/25/16 Heiko Paulheim 37

When is an Ontology Free of Contradictions?

10/25/16 Heiko Paulheim 38

•
•

Tableau is continuously extended and split
Free of contradictions if...
–
–
–

No further axioms can be created
At least one partial tableau is free of contradictions
A partial tableau has a contradiction if it contains
both an axiom and its negation

•
•

e.g.. Person(Peter) und Person(Peter)
The partial tableau is then called closed

The Basic Tableau Algorithm

10/25/16 Heiko Paulheim 39

• Given: an ontology O in NNF
While not all partial tableaus are closed

* Choose a non-closed partial tableau T and an A ∊O ∪T
If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪T
Add A(i) to T
back to *

else
Extend the tableau with consequences from A
back to *

The Basic Tableau Algorithm

• Extending a tableau with consequences

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)

4 (C ⊓ D)(a) Add C(a) and D(a)
5 (C ⊔ D)(a) Split tableau into T1 and T2.

Add C(a) to T1, D(a) to T2

10/25/16 Heiko Paulheim 40

6 (R.C)(a) Add R(a,b) and C(b) for a new Individual b

7 (R.C)(a) Far all b with R(a,b) ∊ T: add C(b)

A Simple Example

10/25/16 Heiko Paulheim 41

• Given the following ontology:
:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .
:Seth a :Human .
:Seth a :Insect .

• Is this knowledge base consistent?

A Simple Example

10/25/16 Heiko Paulheim 42

• Given the following ontology:
:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .
:Seth a :Human .
:Seth a :Insect .

– The same ontology in DL-NNF:
Animal ⊔Human
Animal ⊔ (Mammal ⊓Bird ⊓Fish ⊓Insect ⊓Reptile)
Animal ⊔ (Mammal ⊔Bird ⊔Fish ⊔ Insect ⊔Reptile)
Human(Seth)
Insect(Seth)

• Let's try how reasoning works now!

A Simple Example

10/25/16 Heiko Paulheim 43

Human(Seth), Insect(Seth)

Nr Axiom Action
1 C(a) Add C(a)

A Simple Example

10/25/16 Heiko Paulheim 44

Human(Seth), Insect(Seth),
(Animal ⊔ Human)(Seth)

Nr Axiom Action
3 C Choose an individual a, add C(a)

A Simple Example

10/25/16 Heiko Paulheim 45

Human(Seth), Insect(Seth),
Animal(Seth)

Human(Seth), Insect(Seth),

Human(Seth)

Nr Axiom Action
5 (C ⊔ D)(a) Split the tableau into T1 and T2.

Add C(a) to T1, D(a) to T2

A Simple Example

Human(Seth), Insect(Seth),
Animal(Seth)
Animal ⊔ (Mammal ⊓ Bird ⊓ Fish ⊓ Insect)(Seth)
Human(Seth), Insect(Seth),
Human(Seth)

10/25/16 Heiko Paulheim 46

Nr Axiom Action
3 C Choose an individual a, add C(a)

A Simple Example

10/25/16 Heiko Paulheim 47

Human(Seth), Insect(Seth),
Animal(Seth)

Animal(Seth)

Human(Seth), Insect(Seth),
Animal(Seth)
(Mammal ⊓ Bird ⊓ Fish ⊓ Insect ⊓ Reptile)(Seth)
Human(Seth), Insect(Seth),
Human(Seth)

Nr Axiom Action
5 (C ⊔ D)(a) Split the tableau into T1 and T2.

Add C(a) to T1, D(a) to T2

A Simple Example

10/25/16 Heiko Paulheim 48

Human(Seth), Insect(Seth),
Animal(Seth)
Animal(Seth)
Human(Seth), Insect(Seth),
Animal(Seth)
(Mammal ⊓ Bird ⊓ Fish ⊓ Insect ⊓ Reptile)(Seth)
Mammal(Seth) ⊓ Bird(Seth) ⊓ Fish(Seth) ⊓
Insect(Seth) ⊓ Reptile(Seth)
Human(Seth), Insect(Seth),
Human(Seth)

Nr Aussage Aktion
4 (C ⊓ D)(a) Add C(a) and D(a)

Another Example

10/25/16 Heiko Paulheim 49

• Again, a simple ontology:
:Woman rdfs:subClassOf :Person .
:Man rdfs:subClassOf :Person .
:hasChild rdfs:domain :Person .
:hasChild rdfs:range :Person .
:Peter
:Julia
:Peter

:hasChild :Julia .
a :Woman .
a :Man .

Another Example

10/25/16 Heiko Paulheim 50

• in DL NNF:
Man ⊔Person
Woman ⊔Person
hasChild.T ⊔Person
hasChild.Person
hasChild(Peter,Julia)
Woman(Julia)
Man(Peter)

Another Example

10/25/16 Heiko Paulheim 51

hasChild(Peter,Julia)

Nr Axiom Action
2 R(a,b) Add R(a,b)

Another Example

10/25/16 Heiko Paulheim 52

hasChild(Peter,Julia), Woman(Julia)

Nr Axiom Action
1 C(a) Add C(a)

Another Example

10/25/16 Heiko Paulheim 53

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T ⊔ Person)(Peter)

Nr Axiom Action
3 C Choose an individual a, add C(a)

Another Example

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T ⊔ Person)(Peter),
hasChild.T(Peter)
hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter), Person(Peter)

10/25/16 Heiko Paulheim 54

Nr Axiom Action
5 (C ⊔ D)(a) Split the tableau into T1 and T2.

Add C(a) to T1, D(a) to T2

Another Example

hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
ParentsOfSons(Peter)
hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter),
hasChild(Peter,b0),T(b0)

10/25/16 Heiko Paulheim 55

Nr Axiom Action
6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b

Another Example

hasChild(Peter,Julia), Woman(Julia),
(ParentsOfSons ⊔ ∃hasChild.Man)(Peter),
ParentsOfSons(Peter)
hasChild(Peter,Julia), Woman(Julia),
(hasChild.T)(Peter),
Person(Peter),
hasChild(Peter,b0),T(b0),
hasChild(Peter,b1),T(b1),
...

10/25/16 Heiko Paulheim 56

Nr Axiom Action
6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b

Introducing Rule Blocking

10/25/16 Heiko Paulheim 57

• Observation
–
–

The tableau algorithm does not necessarily terminate
We can add arbitrarily many new axioms

• Idea: avoid rule 6 if no new information is created
– i.e., if we already created one instance b0 for instance a,

then block using rule 6 for a.

Nr Axiom Action
6 (R.C)(a) Add R(a,b) und C(b) for a new Individual b

Tableau-Algorithmus with Rule Blocking

10/25/16 Heiko Paulheim 58

• Given: an ontology O in NNF
While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A ∊O ∪T
If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪T
Add A(i) to T
back to *

else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *

Tableau Algorithm: Wrap Up

10/25/16 Heiko Paulheim 59

• An algorithm for description logic based ontologies
– works for OWL Lite and DL

• We have seen examples for some OWL expressions
– Other OWL DL expressions can be “translated” to DL as well
– And they come with their own expansion rules
– Reasoning may become more difficult

• e.g., dynamic blocking and unblocking

Optimizing Tableau Reasoners

• Given: an ontology O in NNF
While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A ∊O ∪T
If A is not contained in T

If A is an atomic statement
add A to T
back to *

If A is a non-atomic statement
Choose an individual i ∊ O ∪T
Add A(i) to T
back to *

else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *

10/25/16 Heiko Paulheim 60

OWL Lite vs DL Revisited

10/25/16 Heiko Paulheim 61

• Recap: OWL Lite has some restrictions
– Those are meant to allow for faster reasoning

• Restrictions only with cardinalities 0 and 1
– Higher cardinalities make blocking more complex

• unionOf, disjointWith, complementOf, closed classes, ...
–
–

they all introduce more disjunctions
i.e., more splitting operations

Complexity of Ontologies

10/25/16 Heiko Paulheim 62

• Reasoning is usually expensive

• Reasoning performance depends on ontology complexity
– Rule of thumb: the more complexity, the more costly

• Most useful ontologies are in OWL DL
–
–

But there are differences
In detail: complexity classes

Simple Ontologies: ALC

10/25/16 Heiko Paulheim 63

• ALC: Attribute Language with Complement

• Allowed:
–
–
–
–
–

subClassOf, equivalentClass
unionOf, complementOf, disjointWith
Restrictions: allValuesFrom, someValuesFrom
domain, range

Definition of individuals

SHIQ, SHOIN & co

10/25/16 Heiko Paulheim 64

•
•

Complexity classes are noted as letter sequences
Using
– S = ALC plus transitive properties (basis for most ontologies)
– H = Property hierarchies (subPropertyOf)
– O = closed classes (oneOf)
– I = inverse properties (inversePropertyOf)
– N = numeric restrictions (min/maxCardinality)
– F = functional properties
– Q = qualified numerical restrictions (OWL2)
– (D) = Usage of datatype properties

Some Tableau Reasoners

10/25/16 Heiko Paulheim 65

• Fact
–
–

University of Manchester, free
SHIQ

• Fact++/JFact
– Extension of Fact, free
– SHOIQ(and a little D), OWL-DL + OWL2

• Pellet
–
–

Clark & Parsia, free for academic use
SHOIN(D), OWL-DL + OWL2

• RacerPro
–
–

Racer Systems, commercial
SHIQ(D)

Sudoku Revisited

• Recap: we used a closed class
– Plus some disjointness

•
•

Resulting complexity: SO
Which reasoners do support that?
–
–
–
–

Fact: SHIQ :-(
RacerPro: SHIQ(D) :-(
Pellet: SHOIN(D) :-)
HermiT: SHOIQ :-)

10/25/16 Heiko Paulheim 66

Rules: Beyond OWL

Technical
Foundations

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.org/2009/Talks/0120-campus-party-tbl/

Semantic Web
Technologies
(This lecture)

here be dragons...

10/25/16 Heiko Paulheim 67

Limitations of OWL

•
•

Some things are hard or impossible to express in OWL
Example:
– If A is a woman and the child of B

then A is the daughter of B

childOf

Human
subPropertyOf

daughterOf

Woman

10/25/16 Heiko Paulheim 68

Limitations of OWL

10/25/16 Heiko Paulheim 69

• Let's try this in OWL:
:Woman rdfs:subClassOf :Human .
:childOf a owl:ObjectProperty ;

rdfs:domain :Human ;
rdfs:range :Human .

:daughterOf a owl:ObjectProperty ;
rdfs:subPropertyOf :childOf ;
rdfs:domain :Woman .

Limitations of OWL

10/25/16 Heiko Paulheim 70

•
•

What can a reasoner conclude with this ontology?
Example:

:Julia :daughterOf :Peter .

→ :Julia a :Woman .

What we would like to have instead:
:Julia :childOf :Peter .
:Julia a :Woman .

→ :Julia :daughterOf :Peter .

•

Limitations of OWL

10/25/16 Heiko Paulheim 71

• What we would like to have:
daughterOf(X,Y) ← childOf(X,Y) ∧Woman(X) .

•
•

Rules are flexible
There are rules in the Semantic Web, e.g.
–
–
–

Semantic Web Rule Language (SWRL)
Rule Interchange Format (RIF)

Some more
• Some reasoners do (partly) support rules

SWRL

• Semantic Web Rule Language
–
–

A rule language for the Semantic Web
Closely interacts with OWL

• W3C Member Submission (2004)
– i.e., no standard in the narrower sense
– But widely used

• Tool support
–
–

Many reasoners
Protégé

• Built ins (support varies)
–
–

Arithmetics and comparisons
String operations

10/25/16 Heiko Paulheim 72

SWRL in RDF

10/25/16 Heiko Paulheim 73

<ruleml:imp>
<ruleml:_rlab ruleml:href="#example1"/>
<ruleml:_body>
<swrlx:individualPropertyAtom

<ruleml:var>x1</ruleml:var>
<ruleml:var>x2</ruleml:var>

</swrlx:individualPropertyAtom>
<swrlx:individualPropertyAtom

<ruleml:var>x2</ruleml:var>
<ruleml:var>x3</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_body>
<ruleml:_head>
<swrlx:individualPropertyAtom

<ruleml:var>x1</ruleml:var>
<ruleml:var>x3</ruleml:var>

</swrlx:individualPropertyAtom>
</ruleml:_head>

</ruleml:imp>

swrlx:property="hasParent">

swrlx:property="hasBrother">

swrlx:property="hasUncle">

Example from http://www.w3.org/Submission/SWRL/

Wrap Up

10/25/16 Heiko Paulheim 74

• OWL comes in many flavours
–
–
–

OWL Lite, OWL DL, OWL Full
Detailed complexity classes of OWL DL
Additions and profiles from OWL2

•
•

Reasoning is typically done using the Tableau algorithm
Rules (e.g., SWRL)
–
–

Add further capabilities
Where OWL is still not expressive enough

