Semantic Web Technologies
Web Ontology Language (OWL)

Previously on “Semantic Web Technologies”
- 0]

* We have got to know

— OWL, a more powerful ontology language than RDFS
— Simple ontologies and some reasoning

~ Sudoku solving

* Today

— New constructs in OWL2
— Russell's paradox

— Reasoning in OWL

— Complexity of ontologies

A peek at rule languages
for the Semantic Web

Semantic Web — Architecture

User Interface and Applications

a Trust
Bos < Proof
% % here be dragons...
- g Unifying Logic
Ontology: Rules:
. OWL RIF
uery: 9]
. =
Semantic Web JeielL T 2
. chema. -
Technologies 3
(This lecture) <
Data Interchange: RDF
Technical Data Interchange: XML
Foundations
URI Unicode

Berners-Lee (2009): Semantic Web and Linked Data
http://www.w3.0rg/2009/Talks/0120-campus-party-tbl/

OWL2 — New Constructs and More

Five years after the first OWL standard

* OWL2: 2009
— Syntactic sugar

— New language constructs
— OWL profiles

* We have already encountered some, e.g.,
— Qualified relations
— Reflexive, irreflexive, and antisymmetric properties

OWL2: Syntactic Sugar

* Disjoint classes and disjoint unions
— OWL 1:

:Wine owl:equivalentClass [
a owl:Class ;

owl:unionOf (:RedWine :RoséWine :WhiteWine)]

:RedWine owl:disjointWith :RoséWine, :WhiteWine
:RoséWine owl:disjointWith :WhiteWine

— OWL 2:

:Wine owl:disjointUnionOf (:RedWine
:RoséWine :WhiteWine).

— Also possible:

_:x a owl:AllDisjointClasses ;
owl :members (:RedWine :RoséWine WhiteWine).

OWL2: Syntactic Sugar

Negative(Object|Data)PropertyAssertation
* Allow negated statements

° e.g.: Paul is not Peter's father

X [a owl:NegativeObjectPropertyAssertion;
owl :sourcelIndividual :Paul ;
owl:targetIndividual :Peter ;
owl:assertionProperty :fatherOf]

* |If that's syntactic sugar, it must also be possible differently

— But how?

OWL2: Syntactic Sugar
- 0]

Negative(Object|Data)PropertyAssertion
Replaces less intuitive set constructs

Paul is not Peter's father

Paul a [owl:complementOf [

a owl:Restriction ;
owl:onProperty :fatherOf ;

owl :hasValue :Peter

OWL2: Reflexive Class Restrictions
-

 Using hasSelf

* Example: defining the set of all autodidacts:

:AutoDidact owl:equivalentClass [
a owl:Restriction ;
owl:onProperty :teaches ;
owl :hasSelf "true"""xsd:boolean |

OWL2: Profiles

* Profiles are subsets of OWL2 DL
— EL, RLund QL
— Similar to complexity classes

Different runtime and memory complexity
Depending on requirements

OWL 2 (Full)

OWL2 Profile
-

* OWL2 EL (Expressive Language)

— Fast reasoning on many standard ontologies

~ Restrictions, e.g.:
 someValuesFrom, but not allValuesFrom

* No inverse and symmetric properties
* No unionOf and complementOf

* OWL2 QL (Query Language)
— Fast query answering on relational databases
— Restrictions, e.g.:

* No unionOf, allValuesFrom, hasSelf, ...
» No cardinalities and functional properties

OWL2 Profile
-

* OWL2 RL (Rule Language)
— Subset similar to rule languages such as datalog
* subClassOf is translated to a rule (Person «— Student)

— Restrictions, e.g.:
» Only qualified restrictions with 0 or 1
« Some restrictions for head and body

* The following holds for all three profiles:

— Reasoning can be implemented in polynomial time for each of the three
— Reasoning on the union of two profiles only possible in exponential time

OWL2 Example: Russell's Paradox
- 00_000000000__]

* Aclassic paradox by
Bertrand Russell, 1918

* In a city, there is exactly one barber
who shaves everybody who does not
shave themselves.

Who shaves the barber?

OWL2 Example: Russell's Paradox
- 00_000000000__]

* (Class definitions

:People owl:disjointUnionOf
(:PeopleWhoShaveThemselves
: PeopleWhoDoNotShaveThemselves)

* Relation definitions:

:shavedBy rdfs:domain :People
:shavedBy rdfs:range :People
:shaves owl:inverseOf :shavedBy

* Every person is shaved by exactly one person:

:People rdfs:subClassOf |

a owl:Restriction ;

owl:onProperty :shavedBy ;
owl:cardinality "1"""xsd:integer]

OWL2 Example: Russell's Paradox
- 00_000000000__]

* Then, we define the barber:

:Barbers rdfs:subClassOf :People ;
owl:equivalentClass [
rdf:type owl:Class ;

owl:oneOf (:theBarber)

OWL2 Example: Russell's Paradox
- 00_000000000__]

* Definition of people shaving themselves:

:PeopleWhoShaveThemselves owl:equivalentClass [
rdf:type owl:Class ;
owl:intersectionOf
(:People
[

a owl:Restriction ;

owl:onProperty :shavedBy ;

owl:hasSelf "true"”"xsd:boolean

OWL2 Example: Russell's Paradox
- 00_000000000__]

* Definition of people who do not shave themselves:

: PeopleWhoDoNotShaveThemselves owl:equivalentClass |
a owl:Class ;
owl:intersectionOf (
:People
[a owl:Restriction
owl:onProperty :shavedBy ;
owl:allValuesFrom :Barbers

OWL2 Example: Russell's Paradox
- 00_000000000__]

Help for inconsistent ontologies x|

@ Your ontology is inconsistent which means that the OWL reasoner will no longer be able to
provide any useful information about the ontology.

You have several options at this point:

@ Click the Explain button to try the Protege explanation fadility.

& If you think you know what the problem is, dick Cancel to fix the ontology yourself,

@ Some reasoners come with command line tools that will provide complete explanations
for inconsistent ontologies.

Explain Cancel

OWL2 Example: Russell's Paradox
- 00_000000000__]

Incqn sistent ontology explanation x|

& Show regular justifications All justifications
Show laconic justifications ® Limit justifications to
1
Explanation 1 Displzy leconic explanation

Ezplanation far: Thing SubClass Of Mothing

PersonsWhoDoNotShaveThemselves(?x) shaves(the-barber, 7x) 1
PersonsWhoDoNotShaveThemselves DisjointWith PersonsWwhoShaveThemselves ALL
Barber SubClassOf Person ALL
shaves(?x, 7%) PersonswhoShaveThemselves(?x) ALL
shaves(the-barber, 7x) PersonsWhoDoNotShaveThemselves(?x) 1
PersonsWhoShaveThemselves(?x) shaves(?x, 7x) ALL

Person EquivalentTo PersonswhoDoMotShaveThemselves or PersonsWhoShaveThemselves aLL
the-barber Type Barber ALL

Ok

Reasoning in OWL DL
- 0000000000000

* We have seen reasoning for RDFS

— Forward chaining algorithm
— Derive axioms from other axioms

* Reasoning for OWL DL is more difficult
— Forward chaining may have scalability issues
— Conjunction (e.g., unionOf) is not supported by forward chaining
— Different approach: Tableau Reasoning
— Underlying idea: find contradictions in ontology

* i.e., both a statement and its opposite
can be derived from the ontology

Typical Reasoning Tasks
-]

* What do we want to know from a reasoner?
— Subclass relations
* e.g., Are all birds flying animals?
— Equivalent classes
* e.g., Are all birds flying animals and vice versa?
— Disjoint classes
* e.g., Are there animals that are mammals and birds at the same time?
— Class consistency
* e.g., Can there be mammals that lay eggs?
— Class instantiation
* e.g., Is Flipper a dolphin?
— Class enumeration
* e.g., List all dolphins

Example: A Simple Contradiction
- 00_000000000__]

 Given:

:Man a owl:Class .
:Woman a owl:Class .

:Man owl:disjointWith :Woman .

:Alex a :Man .
:Alex a :Woman .

Example: A Simple Contradiction
- 00_000000000__]

* We can derive:
— :Man n :Woman = &
owl:Nothing owl:intersectionOf (:Man :Woman)
— :Alex € (:Man n :Woman)

:Alex a [a owl:Class; owl:intersectionOf
(:Man :Woman)]

* le.
— Alex e I
:Alex a owl:Nothing

— That means: the instance must not exist
— but it does

Reasoning Tasks Revisited
- 0]

* Subclass Relations
Student c Person < ,Every student is a person®

* Proof method: Reductio ad absurdum
— "Invent" an instance i
— Define Student(i) and —Person(i)
— Check for contradictions
* |f there is one: Student < Person has to hold

* |f there is none: Student — Person cannot be derived
— Note: it may still hold!

Example: Subclass Relations
- 00_000000000__]

* Ontology:

:Student owl:subClassOf :UniversityMember
:UniversityMember owl:subClassOf :Person

* Invented instance:
:1 a :Student

:1 a [owl:complementOf :Person |

* We have

:1 a :Student
:Student owl:subClassOf :UniversityMember

Thus

:1 a :UniversityMember

* And from

:UniversityMember owl:subClassOf :Person

* We further derive that

:1 a Person

Example: Subclass Relations

* Now, we have
:1 a :Person
:1 a [owl:complementOf :Person]
l.e.,

:1 a [owl:intersectionOf (:Person
[owl:complementOf :Person

1)]
* from which we derive

:1 a owl:Nothing

Reasoning Tasks Revisited
- 0]

* Class equivalence
— Person = Human
* Splitinto
— Person c Human and
— Human < Person
* I.e., show subclass relation twice
— We have seen that

* Class disjointness

— Are C and D disjoint?
— "Invent" an instance |

— Define C(i) and D(i)
* We have done set (the Alex example)

Class Consistency
- 00_000000000__]

* (Can a class have instances?
— e.g., married bachelors

:Bachelor owl:subClassOf :Man
:Bachelor owl:subClassOf
[a owl:Restriction;
owl:onProperty :marriedTo;
owl:cardinality 0]
:MarriedPerson owl:subClassOf |
a owl:Restriction;
owl:onProperty :marriedTo;
owl:cardinality 1]

:MarriedBachelor owl:intersectionOf
(:Bachelor :MarriedPerson)

* Now: invent an instance of the class
— And check for contradictions

Reasoning Tasks Revisited
- 0]

* Class Instantiation
— Is Flipper a dolphin?

 Check:

— define =Dolphin(Flipper)
— Check for contradiction

* Class enumeration
— Repeat class instantiation for all known instances

Typical Reasoning Tasks Revisited
-]

* What do we want to know from a reasoner?
— Subclass relations
* e.g., Are all birds flying animals?
— Equivalent classes
* e.g., Are all birds flying animals and vice versa?
— Disjoint classes
* e.g., Are there animals that are mammals and birds at the same time?
— Class consistency
* e.g., Can there be mammals that lay eggs?
— Class instantiation
* e.g., Is Flipper a dolphin?
— Class enumeration
* e.g., List all dolphins

Typical Reasoning Tasks Revisited
-]

* We have seen

— All reasoning tasks can be reduced to the same basic tasks
~ l.e., consistency checking

* This means: for building a reasoner that can solve those tasks,
— We only need a reasoner capable of consistency checking

Ontologies in Description Logics Notation
- 0]

* Classes and Instances
— C(x) —x a C .
— R(X,y) < x Ry .
- CcD — C
- C=D — C
— Ce-D «cC
- C=-D «cC
— CEDnNE« C

rdfs:subClassOf D
owl:equivalentClass D
owl:disjointWith D
owl:complementOf D
owl:intersectionOf (D E)

- C=EDUE< C Lu1:unionos (D E)
- 7T — owl:Thing

- 1 — owl:Nothing

Ontologies in Description Logics Notation
- 0]

* Domains, ranges, and restrictions
— dR.T ECe R rdfs:domain C

- VR.C — R rdfs:range C
CCEVR.D~C owl:subClassOf
[a owl:Restriction;
owl:onProperty R;
owl:allValuesFrom D]

— CEJdR.D«<C owl:subClassOf
[a owl:Restriction;
owl:onProperty R;
owl:someValuesFrom D]

— CE2>2nR —C owl:subClassOf
[2 owl:Restriction;
owl:onProperty R;
owl:minCardinality n]

Negation Normal Form (NNF)
]

* Transforming ontologies to Negation Normal Form:
— = und = are not used

— Negation only for atomic classes and axioms

A simplified notation of ontologies

Used by tableau reasoners

Negation Normal Form (NNF)
]

« Eliminating C:
« Replace C=Dby-C uD
« Note: this is a shorthand notation for vx: —C(x) v D(X)

* Why does this hold?
« C =D isequivalentto C(x) —» D(x)

C(x) D(x) C(x) — D(x) | —C(x) Vv D(x)
true true true true
true false false false
false true true true
false false true true

Negation Normal Form (NNF)

- 00_000000000__]
* Eliminating =:
* ReplaceC=DbyCe=DandD=C
* Proceed as before
* j.e..C =D becomes
cch
D=C
— and thus

—-Cub
—-DUuC

Negation Normal Form (NNF)
]

Further transformation rules

— NNF(C) =C (for atomic C)
— NNF(=-C) = —C (for atomic C)
— NNF(==0) =C

— NNF(C U D) = NNF(C) L NNF(D)
— NNF(C n D) = NNF(C) n NNF(D)

— NNF(—(C M D)) = NNF(=C) U NNF(-D)
— NNF(—(C UD)) = NNF(=C) r NNF(-D)

— NNF(VR.C) = VR.NNF(C)
— NNF(3R.C) = 3R.NNF(C)
— NNF(=VR.C) = 3R.NNF(=C)

The Basic Tableau Algorithm
- 0]

 Tableau: Collection of derived axioms

— Is subsequently extended
— As for forward chaining

* In case of conjunction
— Split the tableau

o i o050

When is an Ontology Free of Contradictions?

* Tableau is continuously extended and split
* Free of contradictions if...
— No further axioms can be created
— At least one partial tableau is free of contradictions

— A partial tableau has a contradiction if it contains
both an axiom and its negation
* e.g.. Person(Peter) und —Person(Peter)

* The partial tableau is then called closed

The Basic Tableau Algorithm
- 0]

* Given: an ontology O in NNF

While not all partial tableaus are closed

* Choose a non-closed partial tableau T and an A€ O UT
If Ais not contained in T
If A is an atomic statement
addAtoT
back to *
If A'is a non-atomic statement
Choose an individual i € O UT
AddA(i)to T
back to *
else
Extend the tableau with consequences from A
back to *

The Basic Tableau Algorithm
]

* Extending a tableau with consequences

Nr Axiom Action
1 C(a) Add C(a)
2 R(a,b) Add R(a,b)
3 C Choose an individual a, add C(a)
4 (CnD)(a) Add C(a) and D(a)
5 (CuD)@) Split tableau into T1 and T2.
Add C(a) to T1, D(a) to T2
6 (EHR.C)(ad) Add R(a,b) and C(b) for a new Individual b

7 (VR.C)(a) Far all b with R(a,b) € T: add C(b)

A Simple Example
- 0000000000000

* Given the following ontology:

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .

:Seth a :Human .

:Seth a :Insect .

* |s this knowledge base consistent?

A Simple Example

* Given the following ontology:

:Animal owl:unionOf (:Mammal :Bird :Fish :Insect :Reptile) .
:Animal owl:disjointWith :Human .

:Seth a :Human .

:Seth a :Insect .

— The same ontology in DL-NNF:
—Animal L —-Human

Animal L (—-Mammal n —Bird rn —Fish m—lInsect M —-Reptile)
—Animal LI (Mammal U Bird LI Fish L Insect LI Reptile)
Human(Seth)

Insect(Seth)

* Let's try how reasoning works now!

A Simple Example
- 0000000000000

Human(Seth), Insect(Seth)

Nr Axiom Action
1 C(a) Add C(a)

A Simple Example
- 0000000000000

Human(Seth), Insect(Seth),
(—Animal LU —Human)(Seth)

Nr Axiom Action
3 C Choose an individual a, add C(a)

A Simple Example

Human(Seth), Insect(Seth),
—Animal(Seth)

Human(Seth), Insect(Seth),

<
—HU eth)
Nr Axiom Action

5 (CuDbD)@) Split the tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

A Simple Example
- 0000000000000

Human(Seth), Insect(Seth),

—Animal(Seth)
Animal U (—-Mammal m —Bird rmn —Fish 1 —Insect)(Seth)

Human(Seth), Insect(Seth),
—Human(Seth)

Nr Axiom Action
3 C Choose an individual a, add C(a)

A Simple Example

Human(Seth), Insect(Seth),
—Animal(Seth)

Animal(Seth)

Human(Seth), Insect(Seth),
—Animal(Seth)
(-Mammal m =Bird n —=Fish n —Insect M —Reptile)(Seth)

Human(Seth), Insect(Seth),
—Human(Seth)

Nr Axiom Action

5 (CubD)@) Split the tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

A Simple Example

- 0000000000000
Human(Seth), Insect(Seth),

—Animal(Seth)
(-Mammal m =Bird n —=Fish n —Insect M —Reptile)(Seth)

—Mammal(Seth) m —Bird(Seth) 1 —Fish(Seth) M
—Insect(Seth) n —Reptile(Seth)

Nr Aussage Aktion

4 (CnD)(a) Add C(a) and D(a)

Another Example

* Again, a simple ontology:

:Woman rdfs:subClassOf :Person
:Man rdfs:subClassOf :Person
:hasChild rdfs:domain :Person
:hasChild rdfs:range :Person
:Peter :hasChild :Julia

:Julia a :Woman

:Peter a :Man

Another Example

* in DL NNF:

—Man U Person
—\Woman LIPerson
—3dhasChild. T U Person
YhasChild.Person
hasChild(Peter,Julia)
Woman(Julia)
Man(Peter)

Another Example
T

hasChild(Peter,Julia)

Nr Axiom Action
2 R(a,b) Add R(a,b)

Another Example
T

hasChild(Peter,Julia), Woman(Julia)

Nr Axiom Action
1 C(a) Add C(a)

Another Example
T

hasChild(Peter,Julia), Woman(Julia),
(—=3dhasChild.T LI Person)(Peter)

Nr Axiom Action
3 C Choose an individual a, add C(a)

Another Example
T

hasChild(Peter,Julia), Woman(Julia),
(—=3hasChild.T L Person)(Peter),

—3hasChild.T(Peter)

hasChild(PeterJulia), Woman(Julia),
(—=3hasChild.T) (Peter), Person(Peter)

Nr AXiom Action

5 (CuD)(a) Split the tableau into T1 and T2.
Add C(a) to T1, D(a) to T2

Another Example

hasChild(Peter,Julia), Woman(Julia),
(—=3hasChild.T) (Peter),
—ParentsOfSons(Peter)

hasChild(PeterJulia), Woman(Julia),
(—3hasChild.T) (Peter),
Person(Peter),
—hasChild(Peter,b0),T(b0O)

Nr Axiom Action
6 (IR.C)(a) Add R(a,b) und C(b) for a new Individual b

Another Example
T

hasChild(Peter,Julia), Woman(Julia),
(—ParentsOfSons LI dhasChild.Man)(Peter),

—ParentsOfSons(Peter)

hasChild(PeterJulia), Woman(Julia),
(—3hasChild.T) (Peter),
Person(Peter),
—hasChild(Peter,b0),T(b0),
—hasChild(Peterbl),T(bl),

Nr Axiom Action
6 (IR.C)(a) Add R(a,b) und C(b) for a new Individual b

Introducing Rule Blocking
]

* (Observation

— The tableau algorithm does not necessarily terminate
— We can add arbitrarily many new axioms

Nr Axiom Action
6 (AR.C)(d) Add R(a,b) und C(b) for a new Individual b

* |dea: avoid rule 6 if no new information is created

— l.e., if we already created one instance b0 for instance a,
then block using rule 6 for a.

Tableau-Algorithmus with Rule Blocking
]

* Given: an ontology O in NNF

While not all partial tableaus are closed
and further axioms can be created

* Choose a non-closed partial tableau T and a non-blocked A € O UT
If A'is not contained in T
If A is an atomic statement
add Ato T
back to *

If A is a non-atomic statement
Choose an individual i € O UT

Add A(i))to T
back to *
else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *

Tableau Algorithm: Wrap Up
]

* An algorithm for description logic based ontologies
— works for OWL Lite and DL

* We have seen examples for some OWL expressions
— Other OWL DL expressions can be “translated” to DL as well
— And they come with their own expansion rules
— Reasoning may become more difficult
* e.g., dynamic blocking and unblocking

Optimizing Tableau Reasoners
- 0000000000000

* Given: an ontology O in NNF

While not all partial tableaus are closed
and further axioms can be created

m non-closed partial tableau T and a non-blocked A € O UT
If Ais not contained in T
If A is an atomic statement
add Ato T
back to *

If A is a non-atomic statement
Choose an individual i € O UT

Add A(i))to T
back to *
else
Extend the tableau with consequences from A
If rule 6 was used, block A for T
back to *

OWL Lite vs DL Revisited
-]

* Recap: OWL Lite has some restrictions
— Those are meant to allow for faster reasoning

* Restrictions only with cardinalities 0 and 1
— Higher cardinalities make blocking more complex

* unionOf, disjointWith, complementOf, closed classes, ...

— they all introduce more disjunctions
~— i.e., more splitting operations

Complexity of Ontologies
- 00_000000000__]

* Reasoning is usually expensive

* Reasoning performance depends on ontology complexity
— Rule of thumb: the more complexity, the more costly

* Most useful ontologies are in OWL DL
— But there are differences
— In detail: complexity classes

Simple Ontologies: ALC
- 0000000000000

* ALC: Attribute Language with Complement

* Allowed:

— subClassOf, equivalentClass

— unionOf, complementOf, disjointWith

— Restrictions: allValuesFrom, someValuesFrom
— domain, range

Definition of individuals

SHIQ, SHOIN & co
-]

Complexity classes are noted as letter sequences

Usin

— Sg= ALC plus transitive properties (basis for most ontologies)
— H = Property hierarchies (subPropertyOf)

— O = closed classes (oneOf)

— | =inverse properties (inversePropertyOf)

— N = numeric restrictions (min/maxCardinality)

— F = functional properties

— Q@ = qualified numerical restrictions (OWL2)

— (D) = Usage of datatype properties

Some Tableau Reasoners
-]

* Fact

— University of Manchester, free
— SHIQ

* Fact++/JFact
— Extension of Fact, free

— SHOIQ(and a little D), OWL-DL + OWL2
* Pellet

— Clark & Parsia, free for academic use
— SHOIN(D), OWL-DL + OWL2
* RacerPro

— Racer Systems, commercial
— SHIQ(D)

Sudoku Revisited
-

* Recap: we used a closed class
— Plus some disjointness

* Resulting complexity: SO

* Which reasoners do support that? 3E 7
— Fact: SHIQ :(
— RacerPro: SHIQ(D) :-(S 11912
— Pellet: SHOIN(D) :-) | 0|8 | | 6]
— HermiT: SHOIQ :-) 8 | 6 3
41 | |8 3 1
7 2| | 6
b 2|8
41119 5
8 7119

Rules: Beyond OWL

User Interface and Applications

K Trust
s < Proof
#4 ™. here be dragons...
g 2 Unifying Logic
Ontology: Rules:
OWL RIF
Query: O
Semantic Web SPARQL 3
) < Schema: RDF-S a
Technologies 3
(This lecture) <
Data Interchange: RDF
Technical Data Interchange: XML
Foundations
URI Unicode

Berners-Lee (2009): Semantic Web and Linked Data
http ://www.w3.0rg/2009/Talks/0120-campus-party-tbl/

Limitations of OWL
]

Some things are hard or impossible to express in OWL

Example:

— If Ais a woman and the child of B
then A is the daughter of B

childOf
| 4
-
Human »
A subPropertyOf

daughterOf

Woman

Limitations of OWL

- 0]
* Let's try this in OWL.:

:Woman rdfs:subClassOf :Human

:childOf a owl:0bjectProperty ;
rdfs:domain :Human ;
rdfs:range :Human

:daughterOf a owl:0bjectProperty ;
rdfs:subPropertyOf :childOf ;
rdfs:domain :Woman

Limitations of OWL
]

What can a reasoner conclude with this ontology?
Example:
:Julia :daughterOf :Peter

- :Julia a :Woman

What we would like to have instead:

:Julia :childOf :Peter
:Julia a :Woman

— :Julia :daughterOf :Peter

Limitations of OWL
]

* What we would like to have:
daughterOf(X,Y) < childOf(X,Y) AWoman(X) .

* Rules are flexible
* There are rules in the Semantic Web, e.g.

— Semantic Web Rule Language (SWRL)
— Rule Interchange Format (RIF)

~ Some more
* Some reasoners do (partly) support rules

SWRL

Semantic Web Rule Language

— Arule language for the Semantic Web
— Closely interacts with OWL

W3C Member Submission (2004)
— i.e., no standard in the narrower sense
— But widely used

Tool support

— Many reasoners

— Protégé

Built ins (support varies)

— Arithmetics and comparisons
— String operations

SWRL in RDF
-]

<ruleml:imp>
<ruleml: rlab ruleml:href="#examplel"/>
<ruleml: body>
<swrlx:individualPropertyAtom swrlx:property="hasParent">
<ruleml:var>xl</ruleml:var>
<ruleml:var>x2</ruleml:var>
</swrlx:individualPropertyAtom>
<swrlx:individualPropertyAtom swrlx:property="hasBrother">
<ruleml:var>x2</ruleml:var>
<ruleml:var>x3</ruleml:var>
</swrlx:individualPropertyAtom>
</ruleml: body>
<ruleml: head>
<swrlx:individualPropertyAtom swrlx:property="hasUncle">
<ruleml:var>xl</ruleml:var>
<ruleml:var>x3</ruleml:var>
</swrlx:individualPropertyAtom>
</ruleml: head>
</ruleml :imp>

Example from http://www.w3.org/Submission/SWRL/

Wrap Up
- 0000000000000

* OWL comes in many flavours

— OWL Lite, OWL DL, OWL Fuli
— Detailed complexity classes of OWL DL

— Additions and profiles from OWL2

Reasoning is typically done using the Tableau algorithm

* Rules (e.g., SWRL)
— Add further capabilities

— Where OWL is still not expressive enough

