
Budapest University of Technology and Economics
Department of Measurement and Information Systems

Department of Measurement and Information Systems

Test Design Techniques

Zoltán Micskei, István Majzik

1

Integration and Verification Techniques (vimiac04)

Overview

2

Version control
system

Continuous
integration

Developer

Unit tests

Feature Reviewer

E2E test

Production

System test

OperationCoding
guidelines

Static
analysis

Icons: icons8.com

Why is test design important?

3

„More than the act of testing, the act of
designing tests is one of the best bug
preventers known.”

Boris Beizer

Basic concepts

▪ SUT: system under test

▪ Test case
o a set of test inputs, execution conditions, and

expected results developed for a particular objective

▪ Test suite

▪ Test oracle
o A principle or mechanism that helps you decide

whether the program passed the test

▪ Verdict: result (pass / fail / error / inconclusive…)

Specification,
requirements

Test cases Verdicts
Test

execution

4

5

Problems and tasks

▪ Test selection

o What test inputs and test data to use?

▪ Oracle problem

o How to get/create reliable oracle?

▪ Exit criteria

o How long to test?

▪ Testability

o Observability + controllability

Test design techniques

6

Goal: Select test cases based on test objectives

Specification-based Structure-based

• SUT: black box
• Only spec. is known
• Testing specified

functionality

• SUT: white box
• Inner structure known
• Testing based on

internal behavior

Coverage metrics

▪ What % of testable elements have been tested

▪ Testable element

o Specification-based: requirement, functionality…

o Structure-based: statement, decision…

▪ Coverage criterion: X % for Y coverage metric

▪ This is not fault coverage!

7

How to use coverage metrics?

Evaluation
(measure)

•Evaluate
quality of
existing tests

•Find missing
tests

Selection (goal)

•Design tests
to satisfy
criteria

8

SPECIFICATION-BASED TESTING

9

Test design techniques

10

Goal: Select test cases based on test objectives

Specification-based Structure-based

• SUT: black box
• Only spec. is known
• Testing specified

functionality

• SUT: white box
• Inner structure known
• Testing based on

internal behavior

Specification-based techniques

11

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…

Use case /
user story

Equivalence class partitioning

▪ Input and output equivalence classes:

o Data that are expected to cover the same faults
(cover the same part of the program)

o Goal: Each equivalence class is represented by
one test input (selected test data)

▪ Highly context-dependent

o Needs to know the domain and the SUT!

o Depends on the skills and experience of the tester

12

Selecting equivalence classes

▪ Selection uses heuristics

o Initial: valid and invalid partitions

o Next: refine partitions

▪ Typical heuristics:

o Interval (e.g. 1-1000)

• < min, min-max, >max

o Set (e.g. RED, GREEN, BLUE)

• Valid elements, invalid element

o Specific format (e.g. first character is @)

• Condition true, condition false

o Custom (e.g. February from the months)
13

Deriving test cases from equiv. classes

▪ Combining equiv. classes of several inputs

▪ For valid (normal) equivalence classes:

o test data should cover as much equivalence classes as possible

▪ For invalid equivalence classes:

o first covering the each invalid equivalence class separately

o then combining them systematically

14

EXERCISE

Requirement: The loan application shall be denied if
the requested amount is larger than 1M Ft and the
customer is a student, unless the amount is less
than 3M Ft and the customer has repaid a previous
loan (of any kind).

▪ Input parameters? Equivalence classes?

▪ Any questions regarding the requirement?

Equivalence partitions

15

Specification-based techniques

16

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…

Use case /
user story

2. Boundary value analysis

▪ Examining the boundaries of data partitions

o Focusing on the boundaries of equivalence classes

o Both input and output partitions

▪ Typical faults to be detected:

o Faulty relational operators,

o conditions in cycles,

o size of data structures,

o …

17

Typical test data for boundaries

▪ A boundary requires 3 tests:

▪ An interval requires 5-7 tests:

boundary 1 boundary 2

boundary

18

EXERCISE

Requirement: If the robot detects that a human is
closer than 4 meter, then it has to slow down, and if
it is closer than 2 meter, then it has to stop.

▪ What values to use for testing?

▪ Any other questions regarding the requirement?

Boundary values

19

Specification-based techniques

20

Equivalence
classes

Boundary
values

Decision
tables

Combinatorial
testing

…

Use case /
user story

Deriving tests from use cases

▪ Typical test cases:

o 1 test for main path („happy path”, „mainstream”)

• Oracle: checking post-conditions

o Separate tests for each alternate path

o Tests for violating pre-conditions

▪ Mainly higher levels (system, acceptance…)

21

STRUCTURE-BASED TESTING

22

Test design techniques

23

Goal: Select test cases based on test objectives

Specification-based Structure-based

• SUT: black box
• Only spec. is known
• Testing specified

functionality

• SUT: white box
• Inner structure known
• Testing based on

internal behavior

What is “internal structure”?

In case of code: structure of the code (CFG)

int a = read();
while(a < 16) {
if(a < 10) {
a += 2;

} else {
a++;

}
}
a = a * 2;

Source code: Control-flow graph:

Note: We will not go in details for constructing CFGs

Basic concepts

25

Statement

Block

Condition

Decision

Branch

int t = 1;

Speed s = SLOW;

if (! started){

start();

}

if (t > 10 && s == FAST){

brake();

} else {

accelerate();

}

26

Basic concepts

▪ Statement

▪ Block

o A sequence of one or more consecutive executable statements
containing no branches

▪ Condition

o Logical expression without logical operators (and, or…)

▪ Decision

o A logical expression consisting of one or more conditions
combined by logical operators

▪ Path

o A sequence of events, e.g., executable statements, of a
component typically from an entry point to an exit point.

27

1. Statement coverage

Number of statements executed during testing

Number of all statements

Statement coverage: 4/5 = 80%

A1

A2

A3A4

A5

Assessing statement coverage

28

k=0

k=1

m=1/k

[a>0]
[a<=0]

All statement is executed at least once

Does not guarantee coverage of empty branches

Statement coverage: 100%

BUT: [a<=0] branch missing!

29

2. Decision coverage

Outcomes of decisions taken during testing

Number of all possible outcomes

Decision coverage: 1/2 = 50%

A2

A3A4

How many outcomes can a decision have?

Assessing decision coverage

30

A2

A3A4

[safe(c) || safe(b)]

100% decision coverage:

All statement is executed at least once

Does not take into account all combinations of conditions!

All outcomes of decisions are covered

safe(c) safe(b)

1 T F

2 F F

safe(b) == True missing!

Additional coverage criteria (see MSc)

▪ Condition Coverage

▪ Condition/Decision Coverage (C/DC)

▪ Modified Condition/Decision Coverage (MC/DC)

▪ Multiple Condition Coverage (MCC)

▪ Loop Coverage

▪ …

▪ All-Defs Coverage

▪ All-Uses Coverage

▪ …

31

EXERCISE Structure-based testing

32

1 int pow(int n, int k) {

2 if (n < 0 || k < 0) {

3 return -1;

4 }

5 int p = 1;

6 for (int i = 0; i < k; i++) {

7 p *= n;

8 }

9 return p;

}

Construct the CFG for the code!
Design test cases for:
• 100% statement coverage
• 100% decision coverage

Calculating coverage in practice

▪ Every tool uses different definitions

▪ Implementation

o Instrument source/byte code

o Adding instructions to count coverage

33

if (a > 10){
CoveredBranch(1, true);
b = 3;

} else {
CoveredBranch(1, false);
b = 5;

}
send(b);

See also: Is bytecode instrumentation as good as source code instrumentation, 2013.

http://dx.doi.org/10.1109/ISSRE.2013.6698891

Using test coverage criteria

▪ Can be used for:

o Find not tested parts of the program

oMeasure “completeness” of test suite

o Can be basis for exit criteria

▪ Cannot be used for:

o Finding/testing missing or not implemented
requirements

o Only indirectly connected to code quality

34

Using test coverage criteria

▪ Experience from Microsoft

o „Test suite with high code coverage and high assertion density is
a good indicator for code quality.”

o „Code coverage alone is generally not enough to ensure a good
quality of unit tests and should be used with care.”

o „The lack of code coverage to the contrary clearly indicates a
risk, as many behaviors are untested.”

(Source: „Parameterized Unit Testing with Microsoft Pex”)

▪ Related case studies:

o „Coverage Is Not Strongly Correlated with Test Suite
Effectiveness”, 2014. DOI: 10.1145/2568225.2568271

o „The Risks of Coverage-Directed Test Case Generation”, 2015.
DOI: 10.1109/TSE.2015.2421011

35

http://dx.doi.org/10.1145/2568225.2568271
http://dx.doi.org/10.1109/TSE.2015.2421011

Test design techniques

▪ Specification and structure based techniques

o Many orthogonal techniques

o Every techniques need practice!

▪ Combination of techniques is useful:

• Example (Microsoft report):

specification based: 83% code coverage

+ exploratory: 86% code coverage

+ structural: 91% code coverage

3636

Summary

37

