Integration and Verification Techniques (vimiac04)

Test Design Techniques

Zoltan Micskei, Istvan Majzik

Department of Measurement and Information Systems

Budapest University of Technology and Economics
Department of Mdasurement and Information Systems

Bd = P A

Feature e A/L Reviewer

P ‘j‘n v ¢
1 1¢ 4Versio~ncontrol

v system \
v R
E » Production

<
Continuous
integration —u
Coding Static =~ Unit tests Operation
guidelines analysis \/\\
N =5
vV
System test E2E test

Icons: icons8.com

Why is test desigh important?

,More than the act of testing, the act of
designing tests is one of the best bug
preventers known.”

Boris Beizer

Basic concepts
Spec'lflcatlon, —» Test cases 4>| TESt. |—> Verdicts
requwements execution

= SUT: system under test

" Test case

o a set of test inputs, execution conditions, and
expected results developed for a particular objective

® Test suite
®» Test oracle

o A principle or mechanism that helps you decide
whether the program passed the test

= \erdict: result (pass / fail / error / inconclusive...)

Problems and tasks

= Test selection
o What test inputs and test data to use?

" Oracle problem
o How to get/create reliable oracle?

® EXit criteria

o How long to test?

= Testability
o Observability + controllability

Test design techniques

Goal: Select test cases based on test objectives

‘ Specification-based | ‘ Structure-based |

e SUT: black box e SUT: white box
* Only spec. is known * Inner structure known
* Testing specified * Testing based on

functionality internal behavior
\§ AN /

Coverage metrics

= What % of testable elements have been tested

= Testable element
o Specification-based: requirement, functionality...
o Structure-based: statement, decision...

" Coverage criterion: X % for Y coverage metric

= This is not fault coverage!

How to use coverage metrics?

Evaluation ;
Selection (goal)
(measure)

e Evaluate e Design tests
quality of to satisfy
existing tests criteria

* Find missing
tests

SPECIFICATION-BASED TESTING

Test design techniques

Goal: Select test cases based on test objectives

‘ Specification-based | ‘ Structure-based |

e SUT: black box e SUT: white box
* Only spec. is known * |nner structure known
* Testing specified * Testing based on

functionality internal behavior
\§ 1\ /

Specification-based techniques

Equivalence Boundary Use case /
classes values user story

Combinatorial Decision
testing tables

Equivalence class partitioning

= |nput and output equivalence classes:

o Data that are expected to cover the same faults
(cover the same part of the program)

o Goal: Each equivalence class is represented by
one test input (selected test data)

= Highly context-dependent
o Needs to know the domain and the SUT!

o Depends on the skills and experience of the tester

Selecting equivalence classes

= Selection uses heuristics
o Initial: valid and invalid partitions
o Next: refine partitions

= Typical heuristics:
o Interval (e.g. 1-1000)

* < min, min-max, >max
o Set (e.g. RED, GREEN, BLUE)

* Valid elements, invalid element

o Specific format (e.g. first character is @)

* Condition true, condition false

o Custom (e.g. February from the months)

13

Deriving test cases from equiv. classes

= Combining equiv. classes of several inputs

= For valid (normal) equivalence classes:

o test data should cover as much equivalence classes as possible

= Forinvalid equivalence classes:

o first covering the each invalid equivalence class separately

o then combining them systematically

FLANGNH Equivalence partitions

Requirement: The loan application shall be denied if
the requested amount is larger than 1M Ft and the
customer is a student, unless the amount is less
than 3M Ft and the customer has repaid a previous
loan (of any kind).

" |nput parameters? Equivalence classes?

= Any questions regarding the requirement?

Specification-based techniques

Equivalence Boundary Use case /
classes values user story

Combinatorial Decision
testing tables

2. Boundary value analysis

" Examining the boundaries of data partitions
o Focusing on the boundaries of equivalence classes
o Both input and output partitions

= Typical faults to be detected:
o Faulty relational operators,
o conditions in cycles,
o size of data structures,

O ...

Typical test data for boundaries

= A boundary requires 3 tests:

boundary

1T

= An interval requires 5-7 tests:

boundary 1 boundary 2

FLAN@NA Boundary values

Requirement: If the robot detects that a human is
closer than 4 meter, then it has to slow down, and if
it is closer than 2 meter, then it has to stop.

"= What values to use for testing?

= Any other questions regarding the requirement?

Specification-based techniques

Equivalence Boundary Use case /
classes values user story

Combinatorial Decision
testing tables

Deriving tests from use cases

= Typical test cases:
o 1 test for main path (,,happy path”, ,mainstream”)

* Oracle: checking post-conditions
o Separate tests for each alternate path
o Tests for violating pre-conditions

= Mainly higher levels (system, acceptance...)

STRUCTURE-BASED TESTING

Test design techniques

Goal: Select test cases based on test objectives

‘ Specification-based | ‘ Structure-based |

e SUT: black box e SUT: white box
* Only spec. is known * |nner structure known
* Testing specified * Testing based on

functionality internal behavior
\§ 1\ /

What is “internal structure”?

In case of code: structure of the code (CFG)

//// Source code: ConUtﬂkavgraph:‘\\\\

while(a < 16) {
if(a < 10) {
a += 2;
} else {

a++;

Note: We will not go in details for constructing CFGs

Basic concepts

int t = 1; Statement
Speed s = SLOW; Block

if |(! started)|{

start();
}
Condition
if kt > 10 8& s == FAST){ Decision
brake();
}lelse { Branch

accelerate();

Basic concepts

= Statement
= Block

o A sequence of one or more consecutive executable statements
containing no branches

= Condition
o Logical expression without logical operators (and, or...)
= Decision

o A logical expression consisting of one or more conditions
combined by logical operators

= Path

o A sequence of events, e.g., executable statements, of a
component typically from an entry point to an exit point.

1. Statement coverage

Number of statements executed during testing

Number of all statements

__

Statement coverage: 4/5 = 80%

Assessing statement coverage

All statement is executed at least once

o

Statement coverage: 100%

BUT: [a<=0] branch missing!

Does not guarantee coverage of empty branches

2. Decision coverage

Outcomes of decisions taken during testing

Number of all possible outcomes

__

Decision coverage: 1/2 = 50%

How many outcomes can a decision have?

Assessing decision coverage

All outcomes of decisions are covered

100% decision coverage:

safe(c) safe(b)
1

[safe(c) || safe(b)]

T F
2 F F
safe(b) == True missing!

Does not take into account all combinations of conditions!

Additional coverage criteria (see MSc)

Condition Coverage

Condition/Decision Coverage (C/DC)

Modified Condition/Decision Coverage (MC/DC)
Multiple Condition Coverage (MCC)

Loop Coverage

All-Defs Coverage

All-Uses Coverage

LHANONR Structure-based testing

1 int pow(int n, int k) {
2 if (n<o || k<o) {
3 return -1;
4}

5 int p = 1;
6 for (int 1 = 0; 1 < k; i++) {
7 p *= n;
8 } Construct the CFG for the code!
9 return p; Design test cases for:

} * 100% statement coverage

* 100% decision coverage

Calculating coverage in practice

= Every tool uses different definitions
= Implementation

o Instrument source/byte code
o Adding instructions to count coverage

if (a > 10){
CoveredBranch(1, true);
b = 3;

} else {
CoveredBranch(1, false);
b = 5;

}

send(b);

See also: Is bytecode instrumentation as good as source code instrumentation, 2013.

http://dx.doi.org/10.1109/ISSRE.2013.6698891

Using test coverage criteria

" Can be used for:
o Find not tested parts of the program
o Measure “completeness” of test suite
o Can be basis for exit criteria

= Cannot be used for:

o Finding/testing missing or not implemented
requirements

o Only indirectly connected to code quality

Using test coverage criteria

= Experience from Microsoft

o ,Test suite with high code coverage and high assertion density is
a good indicator for code quality.”

o ,,Code coverage alone is generally not enough to ensure a good
quality of unit tests and should be used with care.”

o ,The lack of code coverage to the contrary clearly indicates a
risk, as many behaviors are untested.”

(Source: ,Parameterized Unit Testing with Microsoft Pex”)

= Related case studies:

o ,,Coverage Is Not Strongly Correlated with Test Suite
Effectiveness”, 2014. DOI: 10.1145/2568225.2568271

o ,, The Risks of Coverage-Directed Test Case Generation”, 2015.
DOI: 10.1109/TSE.2015.2421011

http://dx.doi.org/10.1145/2568225.2568271
http://dx.doi.org/10.1109/TSE.2015.2421011

Test design techniques

= Specification and structure based techniques

o Many orthogonal techniques
o Every techniques need practice!

"= Combination of techniques is useful:
* Example (Microsoft report):
specification based: 83% code coverage
+ exploratory: 86% code coverage
+ structural: 91% code coverage

Summary

Test design techniques

Goal: Select test cases based on test objectives

[Specification-based] [Structure-based]
* SUT: black box * SUT: white box
+ Only spec. is known * Inner structure known
+ Testing specified + Testing based on
functionality internal behavior

Specification-based techniques What is “internal structure”?

In case of code: structure of the code (CFG)

Eq uivalence Boundary Use case / / Source code: Control-flow graph: \
classes values user story i
while(a < 16) {
if(a < 10) {
a += 2;
Combinatorial Decision }aﬂ“ {
testing tables }
}

UEGYETEM 1782

