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ARM7, ARM9 interrupt handling

 ARM7, ARM9 two interrupt lines
o IRQ: Normal priority IT

o FIQ: Fast IT (own small set of registers)

o Vector interrupt controller is vendor specific

o Non deterministic interrupt handling

o No nested interrupt support

 The Cortex M series gives solution to the 
problems of ARM7 interrupt handling



© BME-MIT 2024 3.

Cortex M3 NVIC

 Nested Vector Interrupt Controller
o Vector independent standard peripheral

• Easy porting of applications from one micro to an other

o Deterministic interrupt handling
• Long instructions can be interrupted

o Support for nested vector interrupt controll

o The number of external vectors are depend on the 
microcontroller vendors

• The NVIC can have: 1 non-maskable + 15 internal + 240 
external IT line

– Usually 30-60 external lines are used
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The properties of NVIC  

 The vector table should be specified

 The 0x00000004 is the reset vector
o The 0x00000000 is the stack pointer

 The first 15 interrupt is for the core

 Then the vendor specific ones
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The NVIC vector table
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External Interrupt #0settableInterrupt #0

External Interrupt #240settableInterrupt#240

…………………..settable…………………..

System Tick TimersettableSYSTICK

Pendable request for System DevicesettablePendSV

N.A.Reserved

Break points, watch points, external debugsettableDebug Monitor

System Service callsettableSVCall

N.A.Reserved
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 The reset vector starts from the 0x00000004 address

o The stack pointer is stored at the 0x00000000 address: enables the usage of C 
language very early

Manufacturer
dependent
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The purpose of the SVC
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A PendSV kezelése

Task switch start
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Base registers

 Interrupt enable and Clear enable
registers
o SETENA0-n/CLRENA0-n

• 32-bit enabling and clearing register

 Interrupt set pending and Clear pending
o SETPEND0-n/CLRPEND0-n

• 32-bit registers, usable it identify pending 
interrupts
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Priority handling

 The basic internal IT-s has fix priority

 Other IT has setable priority
o max. 8 bit, min. 3 bit priority regiszter

o Usually 4 bits are used to enable versatile priority handling and 
to reduce system cost.

o The implementation start from the MSB bits (easyer to port)
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Prioritás handling
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Preempt priority and Subpriority

 The 8 bit priority register has 127 preemption 
levels

 Subprioritás
o Same preemption level, but different priority 

o PRIGROUP register
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Preempt priority and Subpriority

 The 8 bit priority register has 127 preemption 
levels

 Subprioritás
o Same preemption level, but different priority 

o PRIGROUP register
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Additional NVIC registers and options
 Interrupt masks

o PRIMASK: mask everything except the faults

o FAULTMASK: mask the faults as well to priority -1

o BASEPRI: Masking below a given priority

 Vector Table Offset Regiszter
o The Vector table can be relocated
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Additional NVIC registers and options
 Interrupt masks

o PRIMASK: mask everything except the faults

o FAULTMASK: mask the faults as well to priority -1

o BASEPRI: Masking below a given priority

 Vector Table Offset Regiszter
o The Vector table can be relocated

o Helping the implementation of a bootloader
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The effect of the interrupt I.
 The M3 core goes to handler mode and saves 

the register bank to the stack
o It is done in a micro code, there is no need for 

programmer’s interaction

o Saved registers are
• Program Status Register

• Program Counter 

• Link Register

• R0 – R3 registers (these are used during c function calls, and 
the R12 register (compiler support register)

• Process Stack switched to Main Stack if necessery

o The IT vector addres is fetched from the program 
memory
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The effect of the interrupt II.
 After fetching the start address register refressing is 

done
o Stack Pointer

o Link Register

o Program Counter

o Interupt Program Status Register: IPSR

 12 cycle after the IT event the serving of the IT is 
started

 The return from IT is also 12 cycles
o There is no special instruction for return from interrupt
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NVIC operation summary
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Behavior in case of multiple interrupts I.

 In real-time system it is important to control the 
priority of interrupts
o Traditional hard real-time systems do not prefer 

interrupts, because interrupts can delay other 
interupts and the system can be timing calculation 
too chaotic

 Preemptive IT handling
o Higher priority interrupt can preempt a lower priority 

one

o The registers of the lower priority IT is saved, and 
after 12 cycles the higher priority IT starts
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Behavior in case of multiple interrupts II.

 Tail chaining: executing IT after IT with small 
delay
o ARM7 didn’t have this feature (42 cycle operation, 

POP(16) and PUSH(26) 
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Behavior in case of multiple interrupts II.

 Tail chaining: executing IT after IT with small 
delay
o ARM7 didn’t have this feature (42 cycle operation, 

POP(16) and PUSH(26) 
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Behavior in case of multiple interrupts III.

 Interrupting the return from interrupt
o The POP operation is interrupted
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Behavior in case of multiple interrupts IV.

 Late arriving
o Can tolerate 6 clock cycles, which is the time 

required to save the state of the main thread
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NVIC programming: 

Push button IT



© BME-MIT 2024 24.

Implementaion

 1st step: GPIO pin configuration
 GPIO which PIN is used as Push button input

 GPIO pin configuration

 Connecting EXTI to that pin

 EXTI configuration

 2nd step: IT configuration

 Enabling the interrupt line

 Writing the IRQ handler
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Push button on the STM32F429 Disc1

 Chapter 6.6: PA0 pin can be used as User button
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PIN configuration

 PA0 as input, and important to pull it down due 
to schematic drawing
o GPIO Init
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External interrup source configuration

 Every PIN on an STM32 micro can be used as 
external interrupt, but there are restictions
o Only one pin can be used for one EXTI source

o The EXTI0 can accept only input from PA0, PB0, PC0 
…

 System Control has the appropriate API
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Configuring the External IT function

 Configuring the EXTI peripheral block
o Falling/rising edge

o Enabling
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Interrupt configuration

 NVIC IT number: device.h

 If needed priority setting

 Enabling
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Writing the interrupt handler

 Startup_device.h has the prototype for all IT sources, we 
need to overwrite the one we need
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Writing the interrupt handler

 Startup_device.h has the prototype for all IT sources, we 
need to overwrite the one we need


