
© BME-MIT 2024Budapest University of Technology and Economics
Department of Measurement and Information Systems

ARM Cortex Core microcontrollers

6th NVIC

Scherer Balázs

© BME-MIT 2024 2.

ARM7, ARM9 interrupt handling

 ARM7, ARM9 two interrupt lines
o IRQ: Normal priority IT

o FIQ: Fast IT (own small set of registers)

o Vector interrupt controller is vendor specific

o Non deterministic interrupt handling

o No nested interrupt support

 The Cortex M series gives solution to the
problems of ARM7 interrupt handling

© BME-MIT 2024 3.

Cortex M3 NVIC

 Nested Vector Interrupt Controller
o Vector independent standard peripheral

• Easy porting of applications from one micro to an other

o Deterministic interrupt handling
• Long instructions can be interrupted

o Support for nested vector interrupt controll

o The number of external vectors are depend on the
microcontroller vendors

• The NVIC can have: 1 non-maskable + 15 internal + 240
external IT line

– Usually 30-60 external lines are used

© BME-MIT 2024 4.

The properties of NVIC

 The vector table should be specified

 The 0x00000004 is the reset vector
o The 0x00000000 is the stack pointer

 The first 15 interrupt is for the core

 Then the vendor specific ones

© BME-MIT 2024 5.

The NVIC vector table

247

…………………..

7

6

5

N.A.

4

3

N.A.

2

1

0

-1

-2

-3 (Highest)

Priority

256

……

16

15

14

13

12

11

7-10

6

5

4

3

2

1

No.

External Interrupt #0settableInterrupt #0

External Interrupt #240settableInterrupt#240

…………………..settable…………………..

System Tick TimersettableSYSTICK

Pendable request for System DevicesettablePendSV

N.A.Reserved

Break points, watch points, external debugsettableDebug Monitor

System Service callsettableSVCall

N.A.Reserved

Exceptions due to program errorssettableUsage Fault

Fault if AHB interface receives errorsettableBus Fault

MPU violation or access to illegal locationssettableMemManage Fault

Default fault if other hander not implementedfixedHard Fault

Non-Maskable InterruptfixedNMI

ResetfixedReset

Descriptions
Type of
PriorityException Type

247

…………………..

7

6

5

N.A.

4

3

N.A.

2

1

0

-1

-2

-3 (Highest)

Priority

256

……

16

15

14

13

12

11

7-10

6

5

4

3

2

1

No.

External Interrupt #0settableInterrupt #0

External Interrupt #240settableInterrupt#240

…………………..settable…………………..

System Tick TimersettableSYSTICK

Pendable request for System DevicesettablePendSV

N.A.Reserved

Break points, watch points, external debugsettableDebug Monitor

System Service callsettableSVCall

N.A.Reserved

Exceptions due to program errorssettableUsage Fault

Fault if AHB interface receives errorsettableBus Fault

MPU violation or access to illegal locationssettableMemManage Fault

Default fault if other hander not implementedfixedHard Fault

Non-Maskable InterruptfixedNMI

ResetfixedReset

Descriptions
Type of
PriorityException Type

 The reset vector starts from the 0x00000004 address

o The stack pointer is stored at the 0x00000000 address: enables the usage of C
language very early

Manufacturer
dependent

© BME-MIT 2024 6.

The purpose of the SVC

© BME-MIT 2024 7.

A PendSV kezelése

Task switch start

© BME-MIT 2024 8.

Base registers

 Interrupt enable and Clear enable
registers
o SETENA0-n/CLRENA0-n

• 32-bit enabling and clearing register

 Interrupt set pending and Clear pending
o SETPEND0-n/CLRPEND0-n

• 32-bit registers, usable it identify pending
interrupts

© BME-MIT 2024 9.

Priority handling

 The basic internal IT-s has fix priority

 Other IT has setable priority
o max. 8 bit, min. 3 bit priority regiszter

o Usually 4 bits are used to enable versatile priority handling and
to reduce system cost.

o The implementation start from the MSB bits (easyer to port)

© BME-MIT 2024 10.

Prioritás handling

© BME-MIT 2024 11.

Preempt priority and Subpriority

 The 8 bit priority register has 127 preemption
levels

 Subprioritás
o Same preemption level, but different priority

o PRIGROUP register

© BME-MIT 2024 12.

Preempt priority and Subpriority

 The 8 bit priority register has 127 preemption
levels

 Subprioritás
o Same preemption level, but different priority

o PRIGROUP register

© BME-MIT 2024 13.

Additional NVIC registers and options
 Interrupt masks

o PRIMASK: mask everything except the faults

o FAULTMASK: mask the faults as well to priority -1

o BASEPRI: Masking below a given priority

 Vector Table Offset Regiszter
o The Vector table can be relocated

© BME-MIT 2024 14.

Additional NVIC registers and options
 Interrupt masks

o PRIMASK: mask everything except the faults

o FAULTMASK: mask the faults as well to priority -1

o BASEPRI: Masking below a given priority

 Vector Table Offset Regiszter
o The Vector table can be relocated

o Helping the implementation of a bootloader

© BME-MIT 2024 15.

The effect of the interrupt I.
 The M3 core goes to handler mode and saves

the register bank to the stack
o It is done in a micro code, there is no need for

programmer’s interaction

o Saved registers are
• Program Status Register

• Program Counter

• Link Register

• R0 – R3 registers (these are used during c function calls, and
the R12 register (compiler support register)

• Process Stack switched to Main Stack if necessery

o The IT vector addres is fetched from the program
memory

© BME-MIT 2024 16.

The effect of the interrupt II.
 After fetching the start address register refressing is

done
o Stack Pointer

o Link Register

o Program Counter

o Interupt Program Status Register: IPSR

 12 cycle after the IT event the serving of the IT is
started

 The return from IT is also 12 cycles
o There is no special instruction for return from interrupt

© BME-MIT 2024 17.

NVIC operation summary

© BME-MIT 2024 18.

Behavior in case of multiple interrupts I.

 In real-time system it is important to control the
priority of interrupts
o Traditional hard real-time systems do not prefer

interrupts, because interrupts can delay other
interupts and the system can be timing calculation
too chaotic

 Preemptive IT handling
o Higher priority interrupt can preempt a lower priority

one

o The registers of the lower priority IT is saved, and
after 12 cycles the higher priority IT starts

© BME-MIT 2024 19.

Behavior in case of multiple interrupts II.

 Tail chaining: executing IT after IT with small
delay
o ARM7 didn’t have this feature (42 cycle operation,

POP(16) and PUSH(26)

© BME-MIT 2024 20.

Behavior in case of multiple interrupts II.

 Tail chaining: executing IT after IT with small
delay
o ARM7 didn’t have this feature (42 cycle operation,

POP(16) and PUSH(26)

© BME-MIT 2024 21.

Behavior in case of multiple interrupts III.

 Interrupting the return from interrupt
o The POP operation is interrupted

© BME-MIT 2024 22.

Behavior in case of multiple interrupts IV.

 Late arriving
o Can tolerate 6 clock cycles, which is the time

required to save the state of the main thread

© BME-MIT 2024 23.

NVIC programming:

Push button IT

© BME-MIT 2024 24.

Implementaion

 1st step: GPIO pin configuration
 GPIO which PIN is used as Push button input

 GPIO pin configuration

 Connecting EXTI to that pin

 EXTI configuration

 2nd step: IT configuration

 Enabling the interrupt line

 Writing the IRQ handler

© BME-MIT 2024 25.

Push button on the STM32F429 Disc1

 Chapter 6.6: PA0 pin can be used as User button

© BME-MIT 2024 26.

PIN configuration

 PA0 as input, and important to pull it down due
to schematic drawing
o GPIO Init

© BME-MIT 2024 27.

External interrup source configuration

 Every PIN on an STM32 micro can be used as
external interrupt, but there are restictions
o Only one pin can be used for one EXTI source

o The EXTI0 can accept only input from PA0, PB0, PC0
…

 System Control has the appropriate API

© BME-MIT 2024 28.

Configuring the External IT function

 Configuring the EXTI peripheral block
o Falling/rising edge

o Enabling

© BME-MIT 2024 29.

Interrupt configuration

 NVIC IT number: device.h

 If needed priority setting

 Enabling

© BME-MIT 2024 30.

Writing the interrupt handler

 Startup_device.h has the prototype for all IT sources, we
need to overwrite the one we need

© BME-MIT 2024 31.

Writing the interrupt handler

 Startup_device.h has the prototype for all IT sources, we
need to overwrite the one we need

