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Evaluation of internal architecture of 

ARM core microcontrollers
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Internal architecture of a typical 8-bit
microcontroller
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microcontroller
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Peripheral 3
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Peripheral 1

 Flash, SRAM connected to separate data bus, or directly 
to the system bus

 Newest (2015+) 8-bit micros have improved internal 
architecture like the 32-bit ones. 
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32-bites ARM Core based micros
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32-bit ARM Core first generation
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 Two bus architecture with different capabilities: AHB - APB
 Used for the old generation (before 2010), and for the 

simplest controllers
o Cortex M0, with low complexity features
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AHB vs APB

 Both part of the ARM Advanced Microcontroller 
Bus Architecture (AMBA) standard

 AHB Advanced High-
performance Bus
o Pipelining
o Multiple master
o Burst transaction
o Full-duplex parallel comm.

 APB Advanced Peripheral 
Bus
o No Pipelining
o Single master
o Small complexity
o Small power
o 32-bit bus
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Second generation of Cortex M3

2007: STM32F103 (Max 72 MHz)

• APB1: max. 72MHz
• APB2: max. 36MHz
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Multi master bus system
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What happens in the matrix
 Arbitration: usually round-robin
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2.1 generation

 After 2009
 Bus matrix
 Separate SRAM blocks 

supporting multi master 
operations

 Most of the current 
micros using this internal 
architecture
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M0+ example: STM32G0x0 line
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M4 example: STMF4xxx
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M7 example: STM32F7xx
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Multicore microcontrollers
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Több magú mikrovezélők
 Not the same way multicore as a desktop PC or laptop

o Desktop PC: multi cores with homogenic cores
o Operating system allocates jobs to the cores

 For microcontrollers no such multicore OS

 Usual ways of multicore microcontrollers
o Safety purpose: Dual core lock step microcontrollers
o General purpose dual core micros with heterogenic cores to 

dedicated functions
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Safety micros
 Dual core lockstep

o Same processor core
o They executing the same program
o The results are compared: protection against hazards
o Microcontroller has additional safety features: ECC memory …
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General purpose microcontrollers
 Usually, heterogeny architecture

o A M7 and a M4 core, or a M4 core and a M0 core

 Dedicated functions for the cores

 Separate software, separate development process for 
each cores

 Each Cores attached to the system matrix

 Program and data memory separated to multiple banks
o Dedicated areas for each cores
o Shared areas for communication
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LPC4300 family
 Cortex-M4 based Digital Signal Controller
 Cortex-M0 subsystem for peripheral functions
 max. 1 MByte Flash

o Organised into two banks Flash
 Max. 200 kbyte SRAM
 High speed USB
 Features

o 10/100 Ethernet MAC
o LCD panel controller (max. 1024H × 768V)
o 2x10-bit ADC and 10-bit DAC at 400 ksps
o 8 channel DMA controller
o Motor Control PWM, Quadrature Encoder
o 4x UARTs, 2x I2C, I2S, CAN 2.0B, 2x SSP/SPI



© BME-MIT 2018 19.

LPC4300 internal architecture
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Memory system of LPC43xx
 Dual Core

o Both the M4 and M0 
core can accesses the 
Flash

o RAM can be used to 
share data

o The MPU of M4 can 
protect the regions 
used by the M0 core
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System Control Block 
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System Control block

 Selecting the clock source of the system
o External Quartz Crystal, Internal RC oscillator, Real-time quartz

 PLL (Phase Locked Loop)
o Determination of system clock rate  

 Determination of the peripheral clock rates
o Specifying the relationship between the system clock rate and 

peripheral bus clock rates

 Controlling the Flash access
o Flash acceleration, Number of wait cycles

 Controlling the power source of peripherals
o In modern microcontrollers every peripheral can be switched on or 

off.

 Determination of pin alternate functions
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Reset 
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The Reset event

 Source of the reset signal
o Power-on 

o Watchdog

o Brown – out

o External pin

o Software

 The source of the reset is identifiable by reading 
a register

 What happens after the reset event?
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The NVIC vectors
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 Reset vector is at 0x00000004

o The 0x00000000 is the stack pointer to enable the early usage of C 
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Flash acceleration
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Flash memory

 The Flash requires less space than RAM, but slower

 Read access time of Flash is about>
o 30ns - 50ns (33 –25 MHz)

 This is too slow to run the micro at 60, 72, 120, 180, 
200, 300 MHz

 Solutions
o Run the code from RAM

• But, the RAM is costly and not power efficient
o Increase the bus width of the Flash memory

• 64bit, 128 bit
• Increase complexity
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The solution used at STM32F10x at 2009
 2 pieces of 64-bit prefetch buffer
 Need to program the number of wait cycles
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Solution used in the LPC1768 at 2010
 8 pieces of 128-bit buffer
 Can fetch constant data
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Performance of the Falsh accelerator in the 
LPC1768

 Comparing to a RAM based execution
o The executing speed is in a 16% region to the RAM based 

execution
o The power consumption is 25% less

 Comparing to the old ARM7 version with 128-bit Flash 
access
o 45% increase in performance
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Benchmark results
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STM32F2xx/STM32F4xx the latest solution
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STM32F2xx/STM32F4xx the latest solution
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Clock systems
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Problems of clock distribution
 Many type of source clock sources

o Quartz Crystal
• Precise, stable, but costly

o RC oscillator
• Un-Precise, cheap

 Many requirements from the peripheral set
o Simple base peripherals
o I/O pins
o Ethernet
o USB



© BME-MIT 2018 36.

Second generation of Cortex M3

2007: STM32F103 (Max 72 MHz)

• APB1: max. 72MHz
• APB2: max. 36MHz
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Clock tree of the STM32F1xx
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Clock tree of the STM32F4xx
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Problems caused by the clock tree
 A simple LED switching requires at least 1 clock 

setting, but for a complex micro 3-4 clock config 
parameters should be programed



© BME-MIT 2018 40.

Peripheral power also should be checked
 Very microcontroller specific
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Alternate functions of pins
 Very similar method used by every microcontroller



© BME-MIT 2018 42.

CMSIS

Cortex Microcontroller 

Software Interface Standard
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Software versus Hardware development 
costs
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CMSIS architecture (v1.3)
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CMSIS Core
 Hardware Abstraction Layer (HAL): Standardized peripheral 

handling for al Cortex M core variant. Standard for register access 
and internal peripheral functions like SysTick, NVIC, MPU and FPU.

 Exception handling: Standardized names and function interfaces

 Header file organization: Naming conventions

 System start: Standardized SystemInit() function to cover 
microcontroller specific clock startups

 Support for special instructions

 Global variable for system clock frequncy



© BME-MIT 2018 46.

CMSIS core files
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The device.h

stm32f10x.h

device.h

core_cm3.h

system_stm32f10x.h

stdint.h

CMSIS

 One and only include file for starting the system
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The startup_device file
 Startup is compiler dependent
 This file contains the Startup Code
 The vector table is defined with weak pragmas

DCD      USART1_IRQHandler,          /* USART1 interrupt vector*/

#pragma weakUSART1_IRQHandler = Default_Handler
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The system_device.c
 Minimum services to start the microcontroller

Function

void SystemInit (void) Function to set up the system clocks

void SystemCoreClockUpdate (void) Upgrading the system clock.

Variable description
uint32_t SystemCoreClock The current value of the system clock.

description
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CMSIS coding guildlines
 Based on MISRA 2004
 Data types based on <stdint.h>
 All functions of Core Peripheral Access Layer (CPAL) 

should be reentrant. There is no blocking code
 All of the interrupt rutins should end with _IRQHandler
 Function use CamelCase naming
 Doxygen comments are used 
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CMSIS architecture improvements (v5)
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CMSIS DSP library

 Designed for Cortex M4 and M3, including assembly 
code utilizing the specialties of the instruction set

 Basic math functions
o Vector multiplication, subtraction, adding

 Fast complex math functions
o Cosinus, Sinus, Square root
o Complex number handling

 Filter rutins
o FIR, IIR
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CMSIS Driver API

 Microcontroller vendor independent API
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CMSIS RTOS

 Microcontroller independent RTOS abstraction
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CMSIS RTOS

 Kernel handling functions
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CMSIS RTOS

 Thread management functions
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CMSIS RTOS

 General purpose timing functions

 OS timer functionality


