
© BME-MIT 2018Budapest University of Technology and Economics
Department of Measurement and Information Systems

ARM Cortex Core Microcontrollers

4. System Control block

Balázs Scherer

© BME-MIT 2018 2.

Evaluation of internal architecture of

ARM core microcontrollers

© BME-MIT 2018 3.

Internal architecture of a typical 8-bit
microcontroller

8-bit
microcontroller

FLASH

SRAM

Peripheral 3

Peripheral nPeripheral 2

Peripheral 1

 Flash, SRAM connected to separate data bus, or directly
to the system bus

 Newest (2015+) 8-bit micros have improved internal
architecture like the 32-bit ones.

© BME-MIT 2018 4.

32-bites ARM Core based micros

© BME-MIT 2018 5.

32-bit ARM Core first generation

32-bit
ARM

Cortex

FLASH

SRAM

Slow
peripheral

Slow
peripheral

Fast
peripheral

DMA /
Fast

peripheral

 Two bus architecture with different capabilities: AHB - APB
 Used for the old generation (before 2010), and for the

simplest controllers
o Cortex M0, with low complexity features

A
H

B
/A

P
B

 b
ri

dg
e

AHB bus APB bus

Slow
peripheral

Slow
peripheral

© BME-MIT 2018 6.

AHB vs APB

 Both part of the ARM Advanced Microcontroller
Bus Architecture (AMBA) standard

 AHB Advanced High-
performance Bus
o Pipelining
o Multiple master
o Burst transaction
o Full-duplex parallel comm.

 APB Advanced Peripheral
Bus
o No Pipelining
o Single master
o Small complexity
o Small power
o 32-bit bus

© BME-MIT 2018 7.

Second generation of Cortex M3

2007: STM32F103 (Max 72 MHz)

• APB1: max. 72MHz
• APB2: max. 36MHz

© BME-MIT 2018 8.

Multi master bus system

Slave

Master
Arbiter

Slave

Slave

Master

Master

Shared AHB Bus

Slave

Master

Slave

Slave

Master Master

AHB Bus Matrix

© BME-MIT 2018 9.

What happens in the matrix
 Arbitration: usually round-robin

© BME-MIT 2018 10.

2.1 generation

 After 2009
 Bus matrix
 Separate SRAM blocks

supporting multi master
operations

 Most of the current
micros using this internal
architecture

© BME-MIT 2018 11.

M0+ example: STM32G0x0 line

© BME-MIT 2018 12.

M4 example: STMF4xxx

© BME-MIT 2018 13.

M7 example: STM32F7xx

© BME-MIT 2018 14.

Multicore microcontrollers

© BME-MIT 2018 15.

Több magú mikrovezélők
 Not the same way multicore as a desktop PC or laptop

o Desktop PC: multi cores with homogenic cores
o Operating system allocates jobs to the cores

 For microcontrollers no such multicore OS

 Usual ways of multicore microcontrollers
o Safety purpose: Dual core lock step microcontrollers
o General purpose dual core micros with heterogenic cores to

dedicated functions

© BME-MIT 2018 16.

Safety micros
 Dual core lockstep

o Same processor core
o They executing the same program
o The results are compared: protection against hazards
o Microcontroller has additional safety features: ECC memory …

© BME-MIT 2018 17.

General purpose microcontrollers
 Usually, heterogeny architecture

o A M7 and a M4 core, or a M4 core and a M0 core

 Dedicated functions for the cores

 Separate software, separate development process for
each cores

 Each Cores attached to the system matrix

 Program and data memory separated to multiple banks
o Dedicated areas for each cores
o Shared areas for communication

© BME-MIT 2018 18.

LPC4300 family
 Cortex-M4 based Digital Signal Controller
 Cortex-M0 subsystem for peripheral functions
 max. 1 MByte Flash

o Organised into two banks Flash
 Max. 200 kbyte SRAM
 High speed USB
 Features

o 10/100 Ethernet MAC
o LCD panel controller (max. 1024H × 768V)
o 2x10-bit ADC and 10-bit DAC at 400 ksps
o 8 channel DMA controller
o Motor Control PWM, Quadrature Encoder
o 4x UARTs, 2x I2C, I2S, CAN 2.0B, 2x SSP/SPI

© BME-MIT 2018 19.

LPC4300 internal architecture

© BME-MIT 2018 20.

Memory system of LPC43xx
 Dual Core

o Both the M4 and M0
core can accesses the
Flash

o RAM can be used to
share data

o The MPU of M4 can
protect the regions
used by the M0 core

© BME-MIT 2018 21.

System Control Block

© BME-MIT 2018 22.

System Control block

 Selecting the clock source of the system
o External Quartz Crystal, Internal RC oscillator, Real-time quartz

 PLL (Phase Locked Loop)
o Determination of system clock rate

 Determination of the peripheral clock rates
o Specifying the relationship between the system clock rate and

peripheral bus clock rates

 Controlling the Flash access
o Flash acceleration, Number of wait cycles

 Controlling the power source of peripherals
o In modern microcontrollers every peripheral can be switched on or

off.

 Determination of pin alternate functions

© BME-MIT 2018 23.

Reset

© BME-MIT 2018 24.

The Reset event

 Source of the reset signal
o Power-on

o Watchdog

o Brown – out

o External pin

o Software

 The source of the reset is identifiable by reading
a register

 What happens after the reset event?

© BME-MIT 2018 25.

The NVIC vectors

247

…………………..

7

6

5

N.A.

4

3

N.A.

2

1

0

-1

-2

-3 (Highest)

Priority

256

……

16

15

14

13

12

11

7-10

6

5

4

3

2

1

No.

External Interrupt #0settableInterrupt #0

External Interrupt #240settableInterrupt#240

…………………..settable…………………..

System Tick TimersettableSYSTICK

Pendable request for System DevicesettablePendSV

N.A.Reserved

Break points, watch points, external debugsettableDebug Monitor

System Service callsettableSVCall

N.A.Reserved

Exceptions due to program errorssettableUsage Fault

Fault if AHB interface receives errorsettableBus Fault

MPU violation or access to illegal locationssettableMemManage Fault

Default fault if other hander not implementedfixedHard Fault

Non-Maskable InterruptfixedNMI

ResetfixedReset

Descriptions
Type of
PriorityException Type

247

…………………..

7

6

5

N.A.

4

3

N.A.

2

1

0

-1

-2

-3 (Highest)

Priority

256

……

16

15

14

13

12

11

7-10

6

5

4

3

2

1

No.

External Interrupt #0settableInterrupt #0

External Interrupt #240settableInterrupt#240

…………………..settable…………………..

System Tick TimersettableSYSTICK

Pendable request for System DevicesettablePendSV

N.A.Reserved

Break points, watch points, external debugsettableDebug Monitor

System Service callsettableSVCall

N.A.Reserved

Exceptions due to program errorssettableUsage Fault

Fault if AHB interface receives errorsettableBus Fault

MPU violation or access to illegal locationssettableMemManage Fault

Default fault if other hander not implementedfixedHard Fault

Non-Maskable InterruptfixedNMI

ResetfixedReset

Descriptions
Type of
PriorityException Type

 Reset vector is at 0x00000004

o The 0x00000000 is the stack pointer to enable the early usage of C
language

M
ic

ro
co

nt
ro

lle
r

sp
e

ci
fic

© BME-MIT 2018 26.

Flash acceleration

© BME-MIT 2018 27.

Flash memory

 The Flash requires less space than RAM, but slower

 Read access time of Flash is about>
o 30ns - 50ns (33 –25 MHz)

 This is too slow to run the micro at 60, 72, 120, 180,
200, 300 MHz

 Solutions
o Run the code from RAM

• But, the RAM is costly and not power efficient
o Increase the bus width of the Flash memory

• 64bit, 128 bit
• Increase complexity

© BME-MIT 2018 28.

The solution used at STM32F10x at 2009
 2 pieces of 64-bit prefetch buffer
 Need to program the number of wait cycles

© BME-MIT 2018 29.

Solution used in the LPC1768 at 2010
 8 pieces of 128-bit buffer
 Can fetch constant data

© BME-MIT 2018 30.

Performance of the Falsh accelerator in the
LPC1768

 Comparing to a RAM based execution
o The executing speed is in a 16% region to the RAM based

execution
o The power consumption is 25% less

 Comparing to the old ARM7 version with 128-bit Flash
access
o 45% increase in performance

© BME-MIT 2018 31.

Benchmark results

0

0.5

1

1.5

2

2.5

3

a
2

tim
e

a
iff

tr

a
ifi

rf

a
iif

ft

b
a

se
fp

b
itm

n
p

ca
ch

e
b

ca
n

rd
r

id
ct

rn

iir
flt

m
a

tr
ix

p
n

tr
ch

p
u

w
m

o
d

rs
p

e
e

d

tb
lo

o
k

tt
sp

rk

EEMBC Benchmark

R
el

at
iv

e
p

er
fo

rm
an

ce

LPC2376
LPC17XX

M3 Comp

© BME-MIT 2018 32.

STM32F2xx/STM32F4xx the latest solution

© BME-MIT 2018 33.

STM32F2xx/STM32F4xx the latest solution

© BME-MIT 2018 34.

Clock systems

© BME-MIT 2018 35.

Problems of clock distribution
 Many type of source clock sources

o Quartz Crystal
• Precise, stable, but costly

o RC oscillator
• Un-Precise, cheap

 Many requirements from the peripheral set
o Simple base peripherals
o I/O pins
o Ethernet
o USB

© BME-MIT 2018 36.

Second generation of Cortex M3

2007: STM32F103 (Max 72 MHz)

• APB1: max. 72MHz
• APB2: max. 36MHz

© BME-MIT 2018 37.

Clock tree of the STM32F1xx

TIMxCLK

TIM2,3,4

APB1
Prescaler

/1,2,4,8,16

AHB
Prescaler
/1,2…512

If (APB1 pres

=1) x1
Else x2

PCLK1
up to 36MHz

TIM1CLK
APB2

Prescaler
/1,2,4,8,16

If (APB2 pres

=1) x1
Else x2

PCLK2
up to 72MHz

ADC
Prescaler
/2,4,6,8

ADCCLK

HCLK
up to 72MHz

TIMxCLK

TIM2,3,4

APB1
Prescaler

/1,2,4,8,16

AHB
Prescaler
/1,2…512

If (APB1 pres

=1) x1
Else x2

PCLK1
up to 36MHz

TIM1CLK
APB2

Prescaler
/1,2,4,8,16

If (APB2 pres

=1) x1
Else x2

PCLK2
up to 72MHz

ADC
Prescaler
/2,4,6,8

ADCCLK

HCLK
up to 72MHz

USB
Prescaler

/1,1.5

USBCLK
48MHz

USB
Prescaler

/1,1.5

USBCLK
48MHz

CSSCSS

HSE Osc
OSC_OUT

OSC_IN

4 -16
MHz up to 72

MHz

SYSCLKx2...x16
PLL

PLLCLK

HSI RC

/2

/2

8MHz

HSE Osc
OSC_OUT

OSC_IN

4 -16
MHz up to 72

MHz

SYSCLKx2...x16
PLL

PLLCLK

HSI RC

/2

/2

HSE Osc
OSC_OUT

OSC_IN

4 -16
MHz up to 72

MHz

SYSCLKx2...x16
PLL

PLLCLK

HSI RC

/2

/2

HSE OscHSE Osc
OSC_OUT

OSC_IN

4 -16
MHz

OSC_OUT

OSC_IN

4 -16
MHz up to 72

MHz

SYSCLK

up to 72
MHz

SYSCLKx2...x16
PLL

PLLCLK

HSI RC

/2

x2...x16
PLL

PLLCLK

HSI RC

/2

HSI RC

/2

/2/2

8MHz

LSI RC

32.768KHz

/128

LSE OSc
OSC32_IN

OSC32_OUT

~40KHz
IWDGCLK

RTCCLK

LSI RC

32.768KHz

/128

LSE OSc
OSC32_IN

OSC32_OUT

~40KHz
IWDGCLK

RTCCLK

© BME-MIT 2018 38.

Clock tree of the STM32F4xx

© BME-MIT 2018 39.

Problems caused by the clock tree
 A simple LED switching requires at least 1 clock

setting, but for a complex micro 3-4 clock config
parameters should be programed

© BME-MIT 2018 40.

Peripheral power also should be checked
 Very microcontroller specific

© BME-MIT 2018 41.

Alternate functions of pins
 Very similar method used by every microcontroller

© BME-MIT 2018 42.

CMSIS

Cortex Microcontroller

Software Interface Standard

© BME-MIT 2018 43.

Software versus Hardware development
costs

© BME-MIT 2018 44.

CMSIS architecture (v1.3)

© BME-MIT 2018 45.

CMSIS Core
 Hardware Abstraction Layer (HAL): Standardized peripheral

handling for al Cortex M core variant. Standard for register access
and internal peripheral functions like SysTick, NVIC, MPU and FPU.

 Exception handling: Standardized names and function interfaces

 Header file organization: Naming conventions

 System start: Standardized SystemInit() function to cover
microcontroller specific clock startups

 Support for special instructions

 Global variable for system clock frequncy

© BME-MIT 2018 46.

CMSIS core files

© BME-MIT 2018 47.

The device.h

stm32f10x.h

device.h

core_cm3.h

system_stm32f10x.h

stdint.h

CMSIS

 One and only include file for starting the system

© BME-MIT 2018 48.

The startup_device file
 Startup is compiler dependent
 This file contains the Startup Code
 The vector table is defined with weak pragmas

DCD USART1_IRQHandler, /* USART1 interrupt vector*/

#pragma weakUSART1_IRQHandler = Default_Handler

© BME-MIT 2018 49.

The system_device.c
 Minimum services to start the microcontroller

Function

void SystemInit (void) Function to set up the system clocks

void SystemCoreClockUpdate (void) Upgrading the system clock.

Variable description
uint32_t SystemCoreClock The current value of the system clock.

description

© BME-MIT 2018 50.

CMSIS coding guildlines
 Based on MISRA 2004
 Data types based on <stdint.h>
 All functions of Core Peripheral Access Layer (CPAL)

should be reentrant. There is no blocking code
 All of the interrupt rutins should end with _IRQHandler
 Function use CamelCase naming
 Doxygen comments are used

© BME-MIT 2018 51.

CMSIS architecture improvements (v5)

© BME-MIT 2018 52.

CMSIS DSP library

 Designed for Cortex M4 and M3, including assembly
code utilizing the specialties of the instruction set

 Basic math functions
o Vector multiplication, subtraction, adding

 Fast complex math functions
o Cosinus, Sinus, Square root
o Complex number handling

 Filter rutins
o FIR, IIR

© BME-MIT 2018 53.

CMSIS Driver API

 Microcontroller vendor independent API

© BME-MIT 2018 54.

CMSIS RTOS

 Microcontroller independent RTOS abstraction

© BME-MIT 2018 55.

CMSIS RTOS

 Kernel handling functions

© BME-MIT 2018 56.

CMSIS RTOS

 Thread management functions

© BME-MIT 2018 57.

CMSIS RTOS

 General purpose timing functions

 OS timer functionality

