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PHASE-LOCKED LOOP

• Basic loop configuration

• Operation principle of phase-locked loop

• Loop equations and nonlinear baseband model

• Linear operation of the PLL

– Linear baseband model
– Transfer functions
– PLL with active loop filter (Most commonly used PLL configuration)
– Stability considerations

• An example for PLL application: Coherent FM demodulator
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References for phase-locked loop:

[1] G. Kolumbán, “Phase-Locked Loops”
Article in The Encyclopedia of RF and Microwave Engineering,
K. Chang, (Ed.), vol. 4, pp. 3735–3767, Wiley, New York, 2005.

[2] G. Kolumbán, “Phase-Locked Loops”
Article in The Encyclopedia of Electrical and Electronics Engineering,
J. G. Webster, Ed., vol. 16, pp. 158–188, Wiley, New York, 1999.

Phase-locked loop is one of the most commonly used circuit in both
telecommunication and measurement engineering. Depending on the operation
principle of loop components we distinguish

• Analog

• Digital

• Hybrid

phase-locked loops. Only the analog phase-locked loop (APLL) is discussed in
this course. For the sake of simplicity, we will call this circuit PLL
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ANALOG PHASE-LOCKED LOOP

Circuit configuration:

• Phase detector (PD) is an analog multiplier

• All loop components are analog circuits

Mathematical model:

• Operation of analog phase-locked loop is modeled by an ordinary
differential equation

Conditions:

• For the sake of simplicity, only the noise-free case is studied here

• We assume that the only source of nonlinearity is the phase detector,
the other loop components are assumed to be linear
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BASIC LOOP CONFIGURATION

PLL block diagram showing inputs and outputs for various applications

signalinput a
quisitionvoltage orFM input
demodulatedFM outputPhasedete
tor Loop�lterVCO
PM outputdemodulated

re
overed
arriersignal
+ + A few important applications:

• Demodulation of FM and PM
signals

• FM modulator

• Carrier recovery

The PLL is a nonlinear feedback system that tracks the phase of input signal

The basic PLL configuration contains a

• Phase detector (PD)

• Time-invariant linear loop filter and

• Voltage-controlled oscillator (VCO); the oscillator to be synchronized
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QUALITATIVE CHARACTERIZATION OF LOOP COMPONENTS

Phase detector (PD):

• Analog multiplier

• PD produces an error signal that is proportional to the phase error,
i.e., to the difference between the phases of input and output signals
of the phase-locked loop

Loop filter:

• Low-pass filter

• It is characterized by its transfer function F (s)

• Low-pass filter suppresses the noise and unwanted PD outputs. It
determines the dynamics of phase-locked loop

Voltage-controlled oscillator (VCO):

• VCO generates a sinusoidal signal

• The instantaneous VCO frequency is controlled by its input voltage
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OPERATION PRINCIPLE OF PHASE-LOCKED LOOP – Part I

Basic loop configuration

signalinput a
quisitionvoltage orFM input
demodulatedFM outputPhasedete
tor Loop�lterVCO
PM outputdemodulated

re
overed
arriersignal
+ +

PLL block diagram
Voltages appearing in the loop are also

shown

VCOPD vd(t) ve(t)vf (t)++F (s)
r(t; ^�) v
(t)

s(t;�)
Phase detector (PD) compares the phase of the input signal s(t, Φ) against the
phase of the VCO output r(t, Φ̂) and produces an error signal vd(t)

This error signal is then filtered, in order to remove noise and other unwanted
components of the input spectrum

The sum of filter output vf(t) and an additive external control voltage ve(t)
controls the instantaneous VCO frequency
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OPERATION PRINCIPLE OF PHASE-LOCKED LOOP – Part II

Basic loop configuration

signalinput a
quisitionvoltage orFM input
demodulatedFM outputPhasedete
tor Loop�lterVCO
PM outputdemodulated

re
overed
arriersignal
+ +

PLL block diagram
Voltages appearing in the loop are also

shown

VCOPD vd(t) ve(t)vf (t)++F (s)
r(t; ^�) v
(t)

s(t;�)
A nonzero output voltage must be provided by the PD, in order to tune the
VCO frequency to the input one if the input frequency differs from the VCO
center frequency

Consequently, the PLL tracks the phase of input signal with some phase error.
However, this phase error can be kept very small in a well-designed PLL
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IMPORTANT PLL CHARACTERISTICS – Part I

Acquisition and Tracking

In every application, the PLL tracks the phase of the input signal. However,
before a PLL can track, it must first reach the phase-locked condition

In general, the VCO center frequency ω0 differs from the frequency ωi of the
input signal

Therefore, first the VCO frequency has to be tuned to the input frequency by
the loop. This process is called frequency pull-in

Then the VCO phase has to be adjusted according to the input phase. This
process is known as phase lock-in

Both the frequency pull-in and phase lock-in processes are parts of acquisition
which is a highly nonlinear process and is very hard to analyze

After acquisition the PLL achieves the phase-locked condition, where the PLL
tracks the input phase. Under this phase-locked condition, the VCO frequency
is equal to the input frequency
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Pull-in Range

∆ωP = |ωi −ω0| is the maximum initial frequency difference between the input
and VCO center frequencies both in positive and negative directions, for which
the PLL eventually achieves the phase-locked condition. The pull-in range is
related to the dynamics of the PLL

Lock-in Range

∆ωL = |ωi − ω0| is the frequency range over which the PLL achieves the
phase-locked condition without cycle slips, i.e., −π < θe(t) < π during the
entire lock-in process

Hold-in Range

Suppose the phase-locked condition has been achieved in the PLL. Now vary the
input frequency ωi slowly and the VCO frequency will follow it. The hold-in range
∆ωH = |ωi − ω0| is determined by the lower and upper values of ωi, for which
the phase-locked condition is lost. The hold-in range represents the maximum
static tracking range and is determined by the saturation characteristics of the
nonlinear loop elements of the PLL
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LOOP EQUATIONS AND NONLINEAR BASEBAND MODEL

PLL block diagram

VCOPD vd(t) ve(t)vf (t)++F (s)
r(t; ^�) v
(t)

s(t;�)

F (s) denotes the transfer function of the loop filter

In order to write the differential equations in compact form, the operation of
differentiation d/dt in the time domain will be denoted by the multiplication of
the Heaviside operator p

Note, the Heaviside operator is valid in the time domain, while s denotes the
complex frequency . If the transfer function F (s) of a linear network is given
in the complex frequency domain s then the transfer function in operator form
may be expressed as F (p) = F (s)|s=p
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DEVELOPMENT OF LOOP EQUATIONS

In the equations to be developed, the time variable t is suppressed for conciseness
where it does not cause misunderstanding

Input signal

Let the phase Φ(t) of input signal s(t,Φ) be expressed with respect to the VCO
center frequency ω0 as

Φ = ω0t + θi

Then the input signals becomes

s(t,Φ) =
√

2A sinΦ =
√

2A sin(ω0t + θi)

where A(t) describes the amplitude modulation of input signal and θi(t) is the
input phase modulation, i.e., the PM of the input signal. Note that θi(t) also
incorporates the input frequency error ∆ωi = ωi − ω0
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Output signal of voltage controlled oscillator (VCO)

VCO output is the output signal of phase-locked loop. Since the VCO phase
Φ̂(t) tracks the phase Φ(t) of input signal we call it loop estimate of Φ(t). It is
expressed with respect to the VCO center frequency as

Φ̂ = ω0t + θo

Then the VCO output is obtained as

r(t, Φ̂) =
√

2Vo cos Φ̂ =
√

2Vo cos(ω0t + θo)

In the above equations, θo(t) and Vo denote the phase and rms amplitude of
VCO output, respectively
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Transfer function of voltage controlled oscillator (VCO)

The frequency of a voltage controlled oscillator is determined by the VCO
control voltage vc(t). The instantaneous VCO frequency referenced to ω0 varies
linearly with the control voltage vc(t)

dΦ̂

dt
− ω0 =

d

dt
[ω0t + θo(t)] − ω0 =

dθo

dt
≡ Kvvc

where Kv is the VCO gain in rad
Vs

. Note if vc(t) = 0 then the VCO frequency is
equal to the center frequency ω0

Géza KOLUMBÁN — Dept. of Measurement and Information Systems 13



Budapest University of Technology and Economics Laboratory 2 - Experiment 9

Transfer function of phase detector (PD)

Block diagram of a phase detector

Note a PD consists of

• An analog multiplier

• A low-pass filter

s(t;�) r(t; ^�) vd(t)
The analog multiplier in the PD multiplies the input signal
s(t, Φ) =

√
2A sin(ω0t + θi) and VCO output r(t, Φ̂) =

√
2Vo cos(ω0t + θo)

and produces both the difference- and sum-frequency terms. The low-pass filter
eliminates the sum-frequency component. The PD output is obtained as

vd = FILT {s(t, Φ)r(t, Φ̂)} = AVo sin(θi − θo) = AVo sin θe = KdA sin θe

where the phase error is defined by

θe(t) = θi(t) − θo(t)

and Kd = Vo, a dimensionless quantity, is the gain of PD

Géza KOLUMBÁN — Dept. of Measurement and Information Systems 14



Budapest University of Technology and Economics Laboratory 2 - Experiment 9

Properties of phase detector

vd = KdA sin θe

• Phase detector is a nonlinear device

• Its output depends on the difference of input and VCO phases

• Its output also depends on A(t), i.e., on the AM of input signal

Loop filter and adder

The VCO control voltage vc(t) is the sum of the loop filter output vf(t) and
external control voltage ve(t)

vc(t) = vf(t) + ve(t) = F (p)vd(t) + ve(t)

where F (p) = F (s)|s=p and p = d
dt

is the Heaviside operator
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Equations we obtained up to this point

VCOPD vd(t) ve(t)vf (t)++F (s)
r(t; ^�) v
(t)

s(t;�) dθo

dt
= Kvvc =⇒ pθo = Kvvc

vc = F (p)vd + ve

vd = KdA sin θe

θe = θi − θo

LOOP EQUATIONS

θo =
Kv

p
vc =

KvF (p)

p
vd +

Kv

p
ve =

KvKdF (p)

p
A sin θe +

Kv

p
ve

=
KF (p)

p
A sin θe +

Kv

p
ve

where K = KdKv defines the loop gain in rad/Vs

θe = θi − θo = θi −
KF (p)

p
A sin θe −

Kv

p
ve
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Loop equations
θe = θi − θo

θo =
KF (p)

p
A sin θe +

Kv

p
ve =

Kv

p
[F (p)KdA sin θe + ve]

NONLINEAR BASEBAND MODELF (p) vfv
 vevd+�i �o� ++KdKvp
�e A sin(�) Recall:

vd = KdA sin θe

vf = F (p)vd

vc = vf + ve
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Properties of nonlinear baseband modelF (p) vfv
 vevd+�i �o� ++KdKvp
�e A sin(�) Real input and output signals:

s(t, Φ) =
√

2A sin(ω0t + θi)

r(t, Φ̂) =
√

2Vo cos(ω0t + θo)

Note:

• Baseband model contains only low-pass signals because the carrier has been removed

• Input and output signals of baseband model are the input θi and output θo phase

modulations

• Real input and output signals do not appear in the baseband model they have to be

calculated from θi and θo

• Since the VCO can generate only angle modulated signals, only angle modulated signals

can be produced by the PLL

• Because of the nonlinear PD characteristic, this model is nonlinear, consequently, its

analysis must be performed in time domain. Transfer function concept may not be used
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LINEAR OPERATION OF PLL

The linear operation of PLL assumes that

• Phase-locked condition has been achieved and is maintained

• Phase error remains in the neighborhood of its quiescent value, i.e. we
may linearize the PLL using the small-signal approximation

Mathematical background of linearization: Taylor series representation

Steps of linearization

1. Determination of the quiescent point

2. Approximation of nonlinear characteristic by its tangent (Linear term in
the Taylor series approximation)
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Determination of quiescent point

If a PLL operates in steady-state and all its input signals are constant then the
PLL is operating in the quiescent point

Let the PLL loop equation rearranged as

θe = θi −θo = θi −
KF (p)

p
A sin θe−

Kv

p
ve ⇒ pθe = pθi−KF (p)A sin θe −Kvve

Under steady-state conditions, all signals are constant, but a constant input
frequency error may be present

θe(t) = θss

ve(t) = ve0

θi(t) = (ωi − ω0)t + θi0 = ∆ωit + θi0

Since the Heaviside operator means derivation d/dt in the time domain we get

0 = ∆ωi − KF (0)A sin θss − Kvve0
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0 = ∆ωi − KF (0)A sin θss − Kvve0

From which the quiescent point θss of PLL is obtained as

θss = sin−1

(

∆ωi − Kvve0

KF (0)A

)

where F (0) is the dc gain of loop filter

Note: To get the quiescent point, a nonlinear dc analysis had to be performed

To get the best system performance, the quiescent value of phase error has to
be set to zero, i.e.,

θss = 0

It can be achieved if the dc gain of loop filter goes infinite F (0) → ∞. This
conditions may be satisfied by the most commonly used active loop filter. In
the remaining part of discussion we assume that an active loop filter is used
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Mathematical background of linearization: Taylor series approximation

y = g(θ) = g(θss) +
1

1!

dg(θ)

dθ

∣

∣

∣

∣

θss

(θ − θss) + · · · + 1

n!

dgn(θ)

dθn

∣

∣

∣

∣

θss

(θ − θss)
n + . . .

Only the linear term is considered in the small-signal model

∆y = y − g(θss) =
1

1!

dg(θ)

dθ

∣

∣

∣

∣

θss

(θ − θss) =
dg(θ)

dθ

∣

∣

∣

∣

θss

∆θ

where dg(θ)
dθ

∣

∣

∣

θss

is the tangent of the nonlinear function f(θ) at the quiescent

point θss, ∆y and ∆θ are called perturbations

If θss = 0 and g(0) = 0 then the variables θ and y, and their perturbations ∆θ
and ∆y, respectively, become identical. Consequently, we obtain

y =
dg(θ)

dθ

∣

∣

∣

∣

θss

θ
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Linearization of nonlinear baseband model
(Determination of the small-signal model)

The only nonlinear loop component is the phase detector

vd = KdA sin θe

Since θss = 0 and vd(0) = 0, ∆vd = vd and ∆θe = θe. If during the operation
the phase error always remains in the neighborhood of θss then we may linearize
the phase detector

vd = KdA sin θe ≈ KdAθe

Substituting sin θe ≈ θe in the nonlinear loop equation, the linear loop equations
are obtained as

θe = θi − θo

θo =
KF (p)

p
Aθe +

Kv

p
ve =

Kv

p
[F (p)KdAθe + ve]
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Linearized loop equations
θe = θi − θo

θo =
KF (p)

p
Aθe +

Kv

p
ve =

Kv

p
[F (p)KdAθe + ve]

LINEAR BASEBAND MODEL vfv
 vevd ++�i + ��o�e KdA F (p)Kvp

Recall:

vd = KdAθe

vf = F (p)vd

vc = vf + ve

Based on the linear baseband model, the transfer functions may be developed

To show explicitly the dependence of PLL parameters on the amplitude of input
signal, A is not lumped with Kd
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TRANSFER FUNCTIONS

A linear (and only a linear) system may be characterized by its transfer
functions. The transfer function expresses the output signal of the linear system
as a function of an input signal

Transfer function gives the response of a linear system to an arbitrary input in
closed form

A linear system may have many inputs and outputs, transfer functions may be
developed between each pair of output and input

The transfer functions may be expressed starting from

• Loop equations

• Linear baseband model applying the rules of block diagram algebra
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An example: Express Θo(s) as a function of Θi(s) in the complex frequency
domain s

Step 1: Linearized PLL loop equations in the time domain

θo =
KF (p)

p
Aθe +

Kv

p
ve =

Kv

p
[F (p)KdAθe + ve]

θe = θi − θo

Step 2: Transformation of the signals and system into the complex frequency
domain s by means of Laplace transform

p = s

Θi(s) = L{θi(t)} . . . Vc(s) = L{vc(t)}

Recall: Fourier transform can be determined from the Laplace transform by
substituting s = j2πf
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Step 3: Development of the transfer function H(s)

Θo(s) =
KF (s)

s
AΘe(s) +

Kv

s
Ve(s) where Ve(s) = 0

Θe(s) = Θi(s) − Θo(s)

Θo(s) =
AKF (s)

s
[Θi(s) − Θo(s)]

[

1 +
AKF (s)

s

]

Θo(s) =
AKF (s)

s
Θi(s)

Θo(s) =
AKF (s)

s + AKF (s)
Θi(s) = H(s)Θi(s)

where H(s) is the closed-loop transfer function
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PLL transfer functions

+++ � KdA�o(s) F (s) Vf (s)V
(s)Kvs
�e(s) Vd(s) Ve(s)�i(s)

Θe(s) = [1 − H(s)]

[

Θi(s) −
Kv

s
Ve(s)

]

Θo(s) = H(s)Θi(s) + [1 − H(s)]
Kv

s
Ve(s)

Note: Only two transfer functions

• Closed-loop transfer function H(s)

• Error function [1 − H(s)]

are required to characterize completely the PLL
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Closed-loop transfer function (Low-pass characteristic)

H(s) =
AKF (s)

s + AKF (s)

Error function (High-pass characteristic)

1 − H(s) =
s

s + AKF (s)

Parameters of closed-loop transfer and error functions are determined by

• Loop gain K = KdKv

• Transfer function of loop filter F (s)

and, unfortunately, by

• Amplitude (and if there is any, the AM) A(t) of input signal

In the majority of applications, this dependence on A(t) is not allowed. Solution:
An AGC circuit preceding the PLL is used to fix the amplitude of input signal
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PLL IMPLEMENTED WITH ACTIVE LOOP FILTER

Circuit diagram of active loop filter

R1 R2 C+�
If an ideal operational amplifier (op amp) is used then the transfer function of
loop filter is

F (s) =
1 + sτ2

sτ1

, where τ1 = R1C and τ2 = (R1 + R2)C

Due to the infinite dc gain of ideal op amp, F (0) → ∞ and, consequently, the
steady-state phase error θss is equal to zero
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Closed-loop transfer function (PLL implemented with active loop filter)

H(s) =
2ξωns + ω2

n

s2 + 2ξωns + ω2
n

where the natural frequency ωn of the loop is defined by

ωn =

√

AK

τ1

and the damping factor ξ of the PLL is defined by

ξ =
τ2ωn

2

PLL implemented with an active loop filter is a second-order, type-two feedback
system. Unfortunately, both the natural frequency ωn and damping factor ξ
depend on A(t) which may be an AM or the effect of a time-varying channel
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Frequency response of the PLL implemented with ideal loop filter

Θo(f) = H(s)|s=j2πf Θi(f)

= H(f)Θi(f)

Transfer response has a low-pass
characteristic to the input PM
Parameter is the damping
factor (0.3 ≤ ξ ≤ 2)

10
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10
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1
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−10
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Recall: The real input and output signals measured in a built PLL may be
calculated from θi and θo

s(t, Φ) =
√

2A sin(ω0t + θi)

r(t, Φ̂) =
√

2Vo cos(ω0t + θo)
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Error function (PLL implemented with active loop filter)

1 − H(s) =
s2

s2 + 2ξωns + ω2
n

where the natural frequency ωn of the loop is defined by

ωn =

√

AK

τ1

and the damping factor ξ of the PLL is defined by

ξ =
τ2ωn

2

Note again, both the natural frequency ωn and damping factor ξ depend on
A(t). This dependence may be prevented by an AGC circuit preceding the PD.
The duty of AGC is to remove A(t) caused by either AM or introduced by the
time-varying channel
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Error response of the PLL implemented with ideal loop filter

Θe(f) =
[

1 − H(s)|s=j2πf

]

Θi(f)

= [1 − H(f)]Θi(f)

Error response has a high-pass
characteristic to the input PM
Parameter is the damping
factor (0.3 ≤ ξ ≤ 2)
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Recall: θi(t) and θe(t) cannot be measured in a built PLL. The signals that
may be measured in a built PLL are calculated from θi and θe

s(t, Φ) =
√

2A sin(ω0t + θi)

vd(t) = KdA sin θe
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STABILITY CONSIDERATIONS
PLL baseband model +++ � KdA�o(s) F (s) Vf (s)V
(s)Kvs

�e(s) Vd(s) Ve(s)�i(s)

where the error signal is
Θe(s) = Θi(s) − Θo(s)

Conclusion: PLL is a negative feedback system which may become unstable

Mathematical background of stability analysis

Transient response is determined by the characteristic equation

A system is stable, if it does not generate an output without an input signal.
Transient response is determined by the characteristic equation. A system is
stable if all roots of characteristic equation have a negative real value

The characteristic equation is equal to the denominator of closed-loop transfer
function H(s)
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STABILITY CONDITION

The characteristic equation is equal to the denominator of closed-loop transfer
function H(s)

Consequently, a linear system is asymptotically stable if all poles of its transfer
function, that is, the roots of the denominator of closed-loop transfer function
H(s) are in the left side of the s-plane

A necessary and sufficient condition for the stability of a linear feedback system
is that all the poles of the closed-loop transfer function lie in the left half s-plane
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Stability of PLL implemented with active loop-filter

Closed-loop transfer function

H(s) =
2ξωns + ω2

n

s2 + 2ξωns + ω2
n

Characteristic equation (denominator of closed-loop transfer function)

s2 + 2ξωns + ω2
n = 0

The two poles of PLL implemented with an active loop filter always lie in the
left half-plane, consequently, this circuit is unconditionally stable

Even if the amplitude A(t) of input signal varies and changes the closed-loop
parameters ωn and ξ, the PLL implemented with an active loop filter remains
always stable
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An example for PLL application: COHERENT FM DEMODULATOR

FM waveform: s(t) = Ac sin
[

2πfct + 2πkf

∫ t

0
m(τ)dτ

]

Input of the FM demodulator

s(t, Φ) =
√

2A sin(ω0t + θi)

To simplify the problem, assume ω0 = 2πfc

Input FM

θi(t) = 2πkf

∫ t

0

m(τ)dτ

Output of the FM demodulator

vc(t)

vfv
 vevd ++�i + ��o�e KdA F (p)Kvp
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Basic equations in the complex frequency domain:

Θo(s) = H(s)Θi(s)

θi(t) = 2πkf

∫ t

0

m(τ)dτ =⇒ Θi(s) = 2πkf

1

s
M(s)

Θo(s) =
Kv

s
Vc(s)

Development of FM demodulator output in the complex frequency domain:

Vc(s) =
s

Kv

Θo(s) =
s

Kv

H(s)Θi(s) =
s

Kv

H(s)2πkf

1

s
M(s) =

2πkf

Kv

H(s)M(s)

If the maximum modulation frequency is much less than the PLL natural
frequency

max{fm} << fn =
ωn

2π
=⇒ H(s) ≈ 1

and
Vc(s) ≈ 2πkf

Kv

M(s)

Géza KOLUMBÁN — Dept. of Measurement and Information Systems 39



Budapest University of Technology and Economics Laboratory 2 - Experiment 9

FM demodulator output in the complex frequency domain:

Vc(s) =
2πkf

Kv

M(s)

FM demodulator output in the time domain:

vc(t) =
2πkf

Kv

m(t)

Coherent FM and PM demodulation by an analog phase-locked loop

PD VCO DemodulatedFM outputDemodulatedPM output F (s) � d�idt� �i(t)signalInputs(t;�)
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