- 1) Two kinds of candy, lime and cherry flavoured, can be in a bag and there are three bags: mostly cherry (C) with 90% cherry, equally mixed (M) with 50% cherry-50% lime and mostly lime (L) with 90% lime (ratios do not change after drawing candies). Your *a priori* beliefs that your bag for drawing samples is the C, M or L bag are as follows: p(Bag=C)= p(Bag=L)=0.25, p(Bag=M)=0.5. After drawing 4 lime candies answer the following questions:
 - a) What are the a posteriori probabilities for the bags?
 - b) Which is the maximum a posteriori bag?
 - c) Which is the maximum likelihood bag?
 - d) What is the probability of drawing cherry candy for the fifth draw?

15p

2) For the following probability distribution:

X	Υ	Z	P(x,y,z)
0	0	0	0.504
0	0	1	0.056
0	1	0	0.216
0	1	1	0.024
1	0	0	0.126
1	0	1	0.014
1	1	0	0.054
1	1	1	0.006

- a) enumarate the valid (conditional) independencies,
- b) construct a Bayesian network (with minimum number of parameters),
- c) give a corresponding factorization and explain its relation to the Bayesian network structure.

15p

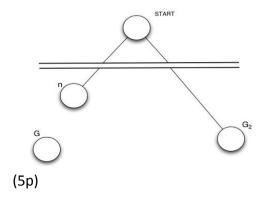
3) For a binary outcome the costs of our binary actions are denoted by $C_{0|1}$ and $C_{1|0}$, corresponding to the decision 0 in case of outcome 1 (o₁)and respectively to the decision 1 in case of outcome 0 (o₀). Our unconditional belief in outcome 1 is denoted by p. Assume that a test is available for cost C_t with sensitivity 0.95 and specificity 0.8.

	outcome:0	outcome:1
decision:0	0	C _{0 1}
decision:1	C _{1 0}	0

Derive and explain the equation for the value of this test. Define the equation/inequality for selecting optimal actions.

10p

4) 4. Prove that A^* never terminates with the suboptimal goal G_2 (see figure and use the following notation f(n)=g(n)+h(n)).



- 5) In a diagnostic problem three devices can be faulty A, B, C (A,B,C denote respectively that A, B, C is faulty). The devices cannot be investigated separately, but we know the following facts about their system (knowledge base KB).
- S1: The system is fault tolerant, which means that it works with one faulty device, but it breaks down with two or more faulty devices.
 - S2: A and B cannot be faulty at the same time.
 - S3:The system breaks down.
 - a) Define the statements S1, S2, S3 using the propositions A, B, C.
 - b) Convert the KB to conjunctive normal form (CNF).
 - c) Indicate the models of the knowledge base.
 - d) Show with truth-table that the knowledge base KB entails that C is faulty.
 - e) Prove that C is faulty with resolution assuming the knowledge base KB.

(15p)