
Az R adatelemzési nyelv
alapjai I.

Egészségügyi informatika és biostatisztika

Gézsi András
gezsi@mit.bme.hu



What R is and what it is not

• R is
• a programming language

• a statistical package

• an interpreter

• Open Source

• R is not
• SPSS, Statistica, etc.

• a collection of “black boxes” 

• a spreadsheet software package

• commercially supported



What R is

• data handling and storage: numeric, textual

• matrix algebra

• regular expressions

• high-level data analytic and statistical functions

• classes (“OO”)

• graphics

• programming language: loops, branching, 
functions



What R is not

• has no click-point user interfaces

• language interpreter can be very slow, but allows to 
call own C/C++ code 

• no spreadsheet view of data, but connects to 
Excel/MsOffice

• no professional /commercial support



R and statistics

• Packaging: a crucial infrastructure to efficiently 
produce, load and keep consistent software 
libraries from (many) different sources / authors

• Statistics: most packages deal with statistics and 
data analysis

• State of the art: many statistical researchers 
provide their methods as R packages



History of R

• Statistical programming language S developed at 
Bell Labs since 1976 (at the same time as UNIX)

• Intended to interactively support research and data 
analysis projects

• Exclusively licensed to Insightful (“S-Plus”)

• R: Open source platform similar to S developed by 
R. Gentleman and R. Ihaka (U of Auckland, NZ) 
during the 1990s

• Since 1997: international “R-core” developing team

• Updated versions available every couple months



Getting started

• To obtain and install R on your computer
• Go to http://cran.r-project.org/mirrors.html to choose a 

mirror near you

• Click on your favorite operating system (Linux, Mac, or 
Windows)

• Download and install the “base”

• To install additional packages
• Start R on your computer

• Choose the appropriate item from the “Packages” menu

http://cran.r-project.org/mirrors.html








RStudio An IDE that wraps R



RStudio An IDE that wraps R

Editable 
files/scripts

Console 
interactions

Live data

Plots and help



Getting help… and quitting 

• Getting information about a specific command

> help(rnorm)

> ?rnorm

• Finding functions related to a keyword

> help.search("boxplot") 

• Starting the R installation help pages

> help.start()

• Quitting R

> q()



Basic data types



Objects

• variables = objects

• types of objects: vector, factor, array, 
matrix, data.frame, ts, list

• attributes
• mode: integer, numeric, character, complex, logical

• length: number of elements in object

• creation
• assign a value

• create a blank object



Naming Convention

• must start with a letter (A-Z or a-z)

• can contain letters, digits (0-9), and/or 
• periods “.”

• underscore “_”

• case-sensitive
• mydata different from MyData



Assignment

• “<-” used to indicate assignment

x<-c(1,2,3,4,5,6,7)

x<-c(1:7)

x<-1:7

• note: as of version 1.4 “=“ is also a valid assignment operator



R as a calculator

> 5 + (6 + 7) * pi^2

[1] 133.3049

> log(exp(1))

[1] 1

> log(1000, 10)

[1] 3

> sin(pi/3)^2 + cos(pi/3)^2

[1] 1

> Sin(pi/3)^2 + cos(pi/3)^2

Error: couldn't find function "Sin"



R as a calculator

> log2(32)

[1] 5

> sqrt(2)

[1] 1.414214

> seq(0, 5, length=6)

[1] 0 1 2 3 4 5

> plot(sin(seq(0, 2*pi, length=100)))

0 20 40 60 80 100

-1
.0

-0
.5

0
.0

0
.5

1
.0

Index

s
in

(s
e

q
(0

, 
2

 *
 p

i,
 l
e

n
g

th
 =

 1
0

0
))



Basic (atomic) data types

• Logical

> x <- T; y <- F

> x; y

[1] TRUE

[1] FALSE

• Numerical

> a <- 5; b <- sqrt(2)

> a; b

[1] 5

[1] 1.414214

• Character

> a <- "1"; b <- 1

> a; b

[1] "1"

[1] 1

> a <- "character"

> b <- "a"; c <- a

> a; b; c

[1] "character"

[1] "a"

[1] "character"



Data Type Conversion

• Type conversions in R work as you would expect. For 
example, adding a character string to a numeric 
vector converts all the elements in the vector to 
character. 

• Use is.foo to test for data type foo. Returns TRUE or 
FALSE
Use as.foo to explicitly convert it.

• is.numeric(), is.character(), is.vector(), is.matrix(), 
is.data.frame()
as.numeric(), as.character(), as.vector(), as.matrix(), 
as.data.frame) 



Vectors, Matrices, Arrays

• Vector

• Ordered collection of data of the same data type

• Example: 

• last names of all students in this class

• Mean intensities of all genes on an oligonucleotide microarray

• In R, single number is a vector of length 1

• Matrix

• Rectangular table of data of the same type

• Example

• Intensities of all genes measured during a microarray experiment

• Array

• Higher dimensional matrix



Vectors

• Vector: Ordered collection of data of the same data 
type
> x <- c(5.2, 1.7, 6.3) 

> log(x)

[1] 1.6486586 0.5306283 1.8405496

> y <- 1:5

> z <- seq(1, 1.4, by = 0.1)

> y + z

[1] 2.0 3.1 4.2 5.3 6.4

> length(y)

[1] 5

> mean(y + z)

[1] 4.2



Vectors
> Mydata <- c(2,3.5,-0.2) Vector (c=“concatenate”)

> Colors <-

c("Red","Green","Red") Character vector

> x1 <- 25:30

> x1

[1] 25 26 27 28 29 30 Number sequences

> Colors[2]

[1] "Green" One element (1-index!)

> x1[3:5]

[1] 27 28 29 Various elements



Operation on vector elements

• Test on the elements

• Extract the positive elements

• Remove elements

> Mydata

[1] 2 3.5 -0.2

> Mydata > 0 

[1] TRUE TRUE FALSE

> Mydata[Mydata>0]

[1] 2 3.5

> Mydata[-c(1,3)]

[1] 3.5



Vector operations
> x <- c(5,-2,3,-7)

> y <- c(1,2,3,4)*10 Operation on all the elements

> y

[1] 10 20 30 40

> sort(x) Sorting a vector

[1] -7 -2 3 5

> order(x)

[1] 4 2 3 1 Element order for sorting

> y[order(x)]

[1] 40 20 30 10 Operation on all the components

> rev(x) Reverse a vector

[1] -7 3 -2 5



Matrices
• Matrix: Rectangular table of data of the same type
> m <- matrix(1:12, 4, byrow = T); m 

[,1] [,2] [,3]

[1,]    1    2    3

[2,]    4    5    6

[3,]    7    8    9

[4,]   10   11   12

> y <- -1:2

> m.new <- m + y

> t(m.new)

[,1] [,2] [,3] [,4]

[1,]    0    4    8   12

[2,]    1    5    9   13

[3,]    2    6   10   14

> dim(m)

[1] 4 3

> dim(t(m.new))

[1] 3 4



Matrices

> x <- c(3,-1,2,0,-3,6)

> x.mat <- matrix(x,ncol=2) Matrix with 2 cols

> x.mat

[,1] [,2] 

[1,]    3    0

[2,]   -1   -3

[3,]    2    6

> x.mat <- matrix(x,ncol=2,

byrow=T) By row creation 

> x.mat

[,1] [,2] 

[1,]    3   -1

[2,]    2    0

[3,]   -3    6

Matrix: Rectangular table of data of the same type



Dealing with matrices
> x.mat[,2] 2nd col

[1] -1 0 6

> x.mat[c(1,3),] 1st and 3rd lines

[,1] [,2] 

[1,]    3   -1

[2,]   -3    6

> x.mat[-2,] No 2nd line

[,1] [,2] 

[1,]    3   -1

[2,]   -3    6



Dealing with matrices
> dim(x.mat) Dimension
[1] 3 2

> t(x.mat) Transpose

[,1] [,2] [,3] 

[1,]    3    2   -3

[2,]   -1    0    6

> x.mat %*% t(x.mat) Multiplication

[,1] [,2] [,3] 

[1,]   10    6  -15

[2,]    6    4   -6

[3,]  -15   -6   45

> solve() solves the equation A %*% X = B for X, 
> eigen() Eigenvectors and eigenvalues



Missing values

• R is designed to handle statistical data and therefore predestined to deal with missing values

• Numbers that are “not available”

> x <- c(1, 2, 3, NA)

> x + 3

[1] 4  5  6 NA

• Testing for Missing Values

> is.na(x) # returns TRUE if x is missing

> y <- c(1,2,3,NA)

> is.na(y) # returns a vector (F F F T) 

• “Not a number”

> log(c(0, 1, 2))

[1]      -Inf 0.0000000 0.6931472

> 0/0

[1] NaN



Missing values

• Excluding Missing Values from Analyses
• Arithmetic functions on missing values yield missing 

values. 
> x <- c(1,2,NA,3)

> mean(x) # returns NA

> mean(x, na.rm=TRUE) # returns 2 

• The function complete.cases() returns a logical 
vector indicating which cases are complete. 
# list rows of data that have missing values 

> mydata[!complete.cases(mydata),]

• The function na.omit() returns the object with 
listwise deletion of missing values. 
# create new dataset without missing data 

> newdata <- na.omit(mydata) 



Subsetting
• It is often necessary to extract a subset of a vector or 

matrix
• R offers a couple of neat ways to do that
> x <- c("a", "b", "c", "d", "e", "f", 
"g", "h")

> x[1]

> x[3:5]

> x[-(3:5)]

> x[c(T, F, T, F, T, F, T, F)]

> x[x <= "d"]

> m[,2]

> m[3,]



Lists, data frames, and 
factors



Lists

vector: an ordered collection of data of the same type.
> a = c(7,5,1)

> a[2]

[1] 5

list: an ordered collection of data of arbitrary types. 
> doe = list(name="john",age=28,married=F)

> doe$name

[1] "john"

> doe$age

[1] 28



Lists 1

• A list is an object consisting of objects called 
components.

• The components of a list don’t need to be of the 
same mode or type and they can be a numeric 
vector, a logical value and a function and so on.

• A component of a list can be referred as aa[[i]] 
or aa$times, where aa is the name of the list 
and times is a name of a component of aa.



Lists 2

• The names of components may be abbreviated 
down to the minimum number of letters needed to 
identify them uniquely.

• aa[[1]] is the first component of aa, while 
aa[1] is the sublist consisting of the first 
component of aa only.

• There are functions whose return value is a List. 



Lists are very flexible
> my.list <- list(c(5,4,-1),c("X1","X2","X3"))

> my.list

[[1]]:

[1]  5  4 -1

[[2]]:

[1] "X1" "X2" "X3"

> my.list[[1]]

[1]  5  4 -1

> my.list <- list(c1=c(5,4,-1),c2=c("X1","X2","X3"))

> my.list$c2[2:3]

[1] "X2" "X3"



Lists 3

Empl <- list(employee=“Anna”, spouse=“Fred”, 

children=3, child.ages=c(4,7,9))

Empl[[4]]

Empl$child.a

Empl[4] # a sublist consisting of the 4th component of Empl

names(Empl) <- letters[1:4]

Empl <- c(Empl, service=8)

unlist(Empl) # converts it to a vector. Mixed types will 

be converted    to character, giving a character vector.



More lists
> x.mat

[,1] [,2] 

[1,]    3   -1

[2,]    2    0

[3,]   -3    6

> dimnames(x.mat) <- list(c("L1","L2","L3"),

c("R1","R2"))

> x.mat

R1 R2 

L1  3 -1

L2  2  0

L3 -3  6



Data frames
data frame: represents a spreadsheet.

Rectangular table with rows and columns; data within each 

column has the same type (e.g. number, text, logical), 

but different columns may have different types.

Example:
> cw = chickwts

> cw

weight      feed

1     179       horsebean

11    309       linseed

23    243       soybean

37    423       sunflower

...



Data frames

Creating a data frame

> d <- c(1,2,3,4)

> e <- c("red", "white", "red", NA)

> f <- c(TRUE,TRUE,TRUE,FALSE)

> mydata <- data.frame(d,e,f)

> names(mydata) <- c("ID","Color","Passed")

Adding a new column
> mydata$Height <- c(100,120,120,130)

> mydata$Shape <- "circle"



Individual elements of a vector, matrix, array or data frame are 

accessed with “[ ]” by specifying their index, or their name
> cw = chickwts

> cw

weight      feed

1     179       horsebean

11    309       linseed

23    243       soybean

37    423       sunflower

...

> cw [3,2]

[1] horsebean

6 Levels: casein horsebean linseed ... sunflower

> cw [3,]

weight      feed

3    136 horsebean

Subsetting



Other ways to subset…

# columns 3,4,5 of dataframe
> myframe[3:5]

# columns ID and Age from dataframe
> myframe[c("ID","Age")] 

# variable ID in the dataframe
> myframe$ID

# using subset function
> subset( myframe, Age < 35, c("ID","Age") )

Subsetting



Merging

To merge two dataframes (datasets) horizontally, use the merge
function. In most cases, you join two dataframes by one or more 
common key variables (i.e., an inner join). 

# merge two dataframes by ID
total <- merge(dataframeA,dataframeB,by="ID")

# merge two dataframes by ID and Country
total <- merge(dataframeA,

dataframeB,
by=c("ID","Country")) 



Merging

ADDING ROWS 

To join two dataframes (datasets) vertically, use the rbind function. The 
two dataframes must have the same variables, but they do not have to 
be in the same order.

total <- rbind(dataframeA, dataframeB) 

If dataframeA has variables that dataframeB does not, then either:

• Delete the extra variables in dataframeA or 

• Create the additional variables in dataframeB and set them to NA (missing) before 
joining them with rbind. 

http://www.statmethods.net/input/missingdata.html


Applied Statistical Computing and Graphics 47

Aggregating

• It is relatively easy to collapse data in R using one or 
more BY variables and a defined function. 

• # aggregate dataframe mtcars by cyl, returning means
for numeric variables

> attach(mtcars)
> aggdata <- aggregate( mtcars,

by=list(cyl),
FUN=mean,
na.rm=TRUE )

> print(aggdata)



Applied Statistical Computing and Graphics 48

Factors

Tell R that a variable is nominal by making it a factor. The factor stores 
the nominal values as a vector of integers in the range [ 1... k ] 
(where k is the number of unique values in the nominal variable), 
and an internal vector of character strings (the original values) 
mapped to these integers. 

variable gender with 20 "male" entries and 30 "female" entries 
gender <- c(rep("male",20), rep("female", 30)) 

gender <- factor(gender) 

stores gender as 20 1s and 30 2s and associates

1=female, 2=male internally (alphabetically)

R now treats gender as a nominal variable 
summary(gender) 



Control structures



Slide credits: thanks to JHU's R. D. Peng







How are these two 
conditionals different? 





seq_along creates 

a list of indices











Applied Statistical Computing and Graphics 60

Arithmetic Operators

Operator Description

+ addition

- subtraction

* multiplication

/ division

^ or ** exponentiation

x %% y modulus (x mod y) 5%%2 is 1 

x %/% y integer division 5%/%2 is 2 



Arithmetic Operators

Functions: abs(), sign(), log(), log10(), sqrt(),

exp(), sin(), cos(), tan()

gamma(), lgamma(), choose()

Rounding: round(x,3)

Rounding: floor(2.5) => 2, ceiling(2.5) => 3



Vector functions
> vec <- c(5,4,6,11,14,19)

> sum(vec)

[1] 59

> prod(vec)

[1] 351120

> mean(vec)

[1] 9.833333

> median(vec)

[1] 8.5

> var(vec)

[1] 34.96667

> sd(vec)

[1] 5.913262

> summary(vec)
Min. 1st Qu.  Median    Mean 3rd Qu.    Max.

4.000   5.250   8.500   9.833  13.250  19.000

And also: min()  max()

cummin()  cummax()

cumsum()  cumprod()

range()



Applied Statistical Computing and Graphics 63

Logical Operators

Operator Description

< less than 

<= less than or equal to 

> greater than 

>= greater than or equal to 

== exactly equal to 

!= not equal to 

!x Not x 

x | y x OR y 

x & y x AND y 

isTRUE(x) test if x is TRUE 



Statistical functions

Normal distr

dnorm(x)

-4 -2 0 2 4

0.0
0.1

0.2
0.3

0.42

2

1

2

1
),|(








 


 






x

exf

> dnorm(2,mean=1,sd=2)  PDF in point 2

[1] 0.1760327 for X ~ N(1,4)

> qnorm(0.975)  Quantile for

[1] 1.959964 the 0.975 for N~ (0,1)

> pnorm(c(2,3),mean=2)  = P(X<2) and P(X<3), where X ~ N(2,1)

[1] 0.5000000 0.8413447

> norm.alea <- rnorm(1000) Pseudo-random normally distributed numbers

> summary(norm.alea)

Min. 1st Qu.  Median     Mean 3rd Qu.  Max. 

-3.418 -0.6625 -0.0429 -0.01797  0.6377 3.153

> sd(norm.alea)

[1] 0.9881418



How to remember functions
For a normal distribution, the root is norm. Then add the letters

d density  ( dnorm() )

p probability( pnorm() )

q quantiles ( qnorm() )

r pseudo-random ( rnorm() )

Distribution Root Argument

normal norm mean, sd, log

t (Student) t df, log

uniform unif min, max, log

F (Fisher) f df1, df2
2 chisq df, ncp, log

Binomial binom size, prob, log

exponential exp rate, log

Poisson pois lambda, log

...



Function Description

dnorm(x) normal density function (by default m=0 sd=1)

# plot standard normal curve

x <- pretty(c(-3,3), 30)

y <- dnorm(x)

plot(x, y, type='l', xlab="Normal Deviate", ylab="Density", yaxs="i") 

pnorm(q) cumulative normal probability for q 

(area under the normal curve to the right of q)

pnorm(1.96) is 0.975 

qnorm(p) normal quantile. 

value at the p percentile of normal distribution 

qnorm(.9) is 1.28 # 90th percentile 

rnorm(n, m=0,sd=1) n random normal deviates with mean m 

and standard deviation sd. 

#50 random normal variates with mean=50, sd=10

x <- rnorm(50, m=50, sd=10) 

dbinom(x, size, prob)

pbinom(q, size, prob)

qbinom(p, size, prob)

rbinom(n, size, prob)

binomial distribution where size is the sample size 

and prob is the probability of a heads (pi) 

# prob of 0 to 5 heads of fair coin out of 10 flips

dbinom(0:5, 10, .5) 

# prob of 5 or less heads of fair coin out of 10 flips

pbinom(5, 10, .5) 

dpois(x, lamda)

ppois(q, lamda)

qpois(p, lamda)

rpois(n, lamda)

poisson distribution with m=std=lamda

#probability of 0,1, or 2 events with lamda=4

dpois(0:2, 4)

# probability of at least 3 events with lamda=4 

1- ppois(2,4) 

dunif(x, min=0, max=1)

punif(q, min=0, max=1)

qunif(p, min=0, max=1)

runif(n, min=0, max=1) 

uniform distribution, follows the same pattern 

as the normal distribution above. 

#10 uniform random variates

x <- runif(10)



Importing/
Exporting Data



Importing/Exporting Data
• Importing data

• R can import data from other applications
• Packages are available to import microarray data, Excel 

spreadsheets etc.
• The easiest way is to import tab delimited files
> SimpleData <- read.table(
file = "http://eh3.uc.edu/SimpleData.txt", 
header = TRUE, 
quote = "", 
sep = "\t", 
comment.char="")

• Exporting data
• R can also export data in various formats
• Tab delimited is the most common
> write.table(x, "filename") *)

*) make sure to include the path or 

to first change the working directory



Credits

• Roger D. Peng

• Gilberto Câmara (R – a brief introduction)

• Ralitza Gueorguieva (R Basics)


