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5. Quantities and variables in real-time systems
Known concepts: Real-time variable, real-time image, temporal accuracy, 

observation: 

periodic update,

state observation, event observation, real-time object,

idempotence,action delay,

permanence,

credibility (Byzantine errors), sphere of control, …

Modelling of the recipient environment: What can not be avoided: 

The cognition of the recipient environment, and its installation into the software.

An important tool of this latter is the measurement process: which is an inherent part of the
cognition process within which we are increasing and expanding our knowledge. 

The figure helps the interpretation.

This is made preferably by quantities 
which show stability.

Obviously, such quantities are results of 
abstractions.

- state variables (x), the changes of which follow 

energy processes (voltage, pressure, 

temperature, speed, etc.) due to interactions; 

- parameters (a), which characterize the 
strength of the interactions; 

- structures (S), which describe the

relations of the system components.
The Space of the real world is such an 
abstraction, where the values of the 
investigated features correspond to one 
point of the space.

While taking measurement, we try to 
grasp the different phenomena of the 
real world. 

The following quantities/features play

key role:

Reminder:
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The coordinates of this points are 
unknown before the measurement. 

It is well known, that due to measurement errors, only an estimate of the measurand can be
provided. 
Further difficulty, that there is no direct access to the quantity to be measured, only some

kind of indirect mapping is possible. This mapping is called observation.

The path from the quantity to be measured and the observation is called measuring channel.

A/D converter

Environment to be 
modelled

Computer to be
programmed

Model Inverse model

Observation in case of 
deterministic channel:

The observed reality is described by a 
discrete model, and it is supposed to be 
an autonomous system.
The state equations and the 

observation equation describing 

the reality and the observation: 

𝑥(𝑛 + 1) = 𝐴𝑥(𝑛),

)𝑦(𝑛) = 𝐶𝑥(𝑛

𝑑𝑖𝑚 𝑥 𝑛 = 𝑁, 𝑑𝑖𝑚 𝐴 = 𝑁 ∗ 𝑁

𝑑𝑖𝑚 𝑦 𝑛 = 𝑀, 𝑀 ≤ 𝑁, 𝑑𝑖𝑚 𝐶 = 𝑀 ∗ 𝑁

Can we invert such a system? Generally not! When is it possible? If 𝐶−1 exists!

Reminder:
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If 𝐶−1 does not exist, then something else is to do! The solution is a simulator!
The model should be built into the computer! This is controlled by the observed values!

Our aim is the estimation of 
the state variable x(n).

The name of this device is: observer, which tries to produce a copy of the reality by 
following it; thanks to a correction/training/adaptation mechanism, and gives an estimate 
of the value to be measured. This estimator ො𝑥(𝑛) can be read from the observer.

The state and the observation equations of the observer are:

)ො𝑥(𝑛 + 1) = 𝐴ො𝑥(𝑛) + 𝐺𝑒(𝑛

)ො𝑦(𝑛) = 𝐶 ො𝑥(𝑛

𝐺: correction matrix; 𝑑𝑖𝑚 𝐺 = 𝑁 ∗ 𝑀, )𝑒(𝑛) = 𝑦(𝑛) − ො𝑦(𝑛

Matrix 𝐺 should be designed to get: ො𝑥(𝑛) → 𝑥(𝑛).
The difference of the state variables is to be minimized:

𝑥(𝑛 + 1) − ො𝑥(𝑛 + 1) = 𝐴𝑥(𝑛) − 𝐴ො𝑥(𝑛) − 𝐺𝑒(𝑛) = (𝐴 − 𝐺𝐶)(𝑥(𝑛) − ො𝑥(𝑛)).

)𝜀(𝑛 + 1 )𝜀(𝑛𝐹
)𝜀(𝑛 + 1) = 𝐹𝜀(𝑛

Is the state equation of the error system.

The design of matrix 𝐺: 𝜀(𝑛)
𝑛→∞

0, therefore 𝜀 𝑛 + 1 < 𝜀 𝑛 , is forced, possibly for

𝐹 reduces the size of vector, i.e. it is „contractive”. This property can be interpreted 𝑛.

also in such a way that the internal energy of the error system is dissipated.
If this is the case in every step, then the decrease of the size of the error vector will be

a monotonic process.

Reminder:
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Special cases:
1. 𝐹 = 𝐴 − 𝐺𝐶 = 0. In this case 𝐺 = 𝐴𝐶−1. This is possible if C is a square matrix, 

i.e. the observation has as many components as the state vector itself. 
The equation can be solved in an explicite way! The system converges in one step!

2. 𝐹𝑁 = (𝐴 − 𝐺𝐶)𝑁 = 0. In this case the error system converges in N steps:

𝑥(𝑁) − ො𝑥(𝑁) = 𝐴 − 𝐺𝐶 𝑁(𝑥(0) − ො𝑥(0)) = 0 The matrices wth property 𝐹𝑁 = 0

can be characterized by the fact that all they eigenvalues are zero. 

Systems having state transition matrix of this property are of finite impulse response (FIR) 
systems, the initial error will disappear in finite steps. 

3. If 𝐹𝑁 = (𝐴 − 𝐺𝐶)𝑁 ≠ 0, then the size of the state vector of a stabile error system will

decrease exponentially. The error system is stable, if all its eigenvalues are within the unit circle.

In this case our expectation is not 𝜀 𝑛
𝑛→∞

0, but the trace of 𝐸 𝜀 𝑛 𝜀𝑇 𝑛
𝑛→∞

𝑚𝑖𝑛. 

𝜀 𝑛 =

𝜀0 𝑛

𝜀1 𝑛
⋮

𝜀𝑁−1 𝑛

therefore 𝑡𝑟𝑎𝑐𝑒 ሿ𝐸[𝜀(𝑛)𝜀𝑇(𝑛) = σ𝑘=0
𝑁−1𝐸 ൯𝜀𝑘

2(𝑛 .

)𝜀(𝑛 + 1) = 𝐹𝜀(𝑛Instead of

𝐸[𝜀(𝑛 + 1)𝜀𝑇(𝑛 + 1)ሿ = 𝐹𝐸[𝜀(𝑛)𝜀𝑇(𝑛)ሿ𝐹𝑇 Is used for error system characterization.

Systems having state transition matrix of this property have infinite impulse response (IIR
systems), because the initial error will disappear in infinite steps.

Observation in the case of noisy observation channel: 

Reminder:
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plays a central role in the famous Kalman predictor and filter.P= ሿ𝐸[𝜀(𝑛)𝜀𝑇(𝑛)Matrix

Comments:
1. Thanks to the principle of superposition, the system observed and the observer itself can

have an additional, common 
external excitation without 
any change in the convergence 
properties.

2. The above introduced observer is called Luenberger observer. According to Luenberger
almost any system is an observer. The only requirement is that the observer should be
faster than the observed system; otherwise it will not be able to follow its changes.

3. The bridge-branch containing the impedance to be 
measured within an impedance measuring bridge implements 
the physical model of the reality, while the tuneable bridge-
branch correspond to the model built into the observer.

The difference between the outputs of the 
voltage divider bridge-branches controls the 
correction mechanism. Finally the value of 
the unknown impedance will be computed 
from the correction value.
This setup, together with the operator
responsible for tuning, implements an
observer.

Example:

Given 𝐴 =
1 0
0 −1

;𝐶 =
1 0
0 1

How to set matrix 𝐺?

𝐺 = 𝐴𝐶−1 = 𝐴 =
1 0
0 −1

Reminder:
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Given 𝐴 =
1 0
0 −1

; 𝐶 = 1 1 . How to set matrix 𝐺? 𝐺 =
𝑔0
𝑔1

=?

𝐺𝐶 =
𝑔0
𝑔1

1 1 =
𝑔0 𝑔0
𝑔1 𝑔1

, 𝐴 − 𝐺𝐶 =
1 − 𝑔0 −𝑔0
−𝑔1 −1 − 1𝑔1

, 𝐴 − 𝐺𝐶 2 = 0based on

1 − 𝑔0 −𝑔0
−𝑔1 −1 − 𝑔1

1 − 𝑔0 −𝑔0
−𝑔1 −1 − 𝑔1

=
1 − 2𝑔0 + 𝑔0

2 + 𝑔0𝑔1 −𝑔0 + 𝑔0
2 + 𝑔0 + 𝑔0𝑔1

−𝑔1 + 𝑔1
2 + 𝑔1 + 𝑔0𝑔1 1 + 2𝑔1 + 𝑔1

2 + 𝑔0𝑔1
=

=
0 0
0 0

Substituting expressions of the minor diagonal into the main diagonal we get: 

1 − 2𝑔0 = 0, 1 + 2𝑔1 = 0, where from: 𝑔0 = 0.5 és 𝑔1 = −0.5. 

Checking: 0.5 −0.5
0.5 −0.5

0.5 −0.5
0.5 −0.5

=
0 0
0 0

Let us compute eigenvalues of matrix 𝐴 − 𝐺𝐶 :

Example:

Example: 𝑑𝑒𝑡 𝜆𝐼 − 𝐴 + 𝐺𝐶 = 0

𝑑𝑒𝑡
𝜆 − 0.5 0.5
−0.5 𝜆 + 0.5

= (𝜆 − 0.5)(𝜆 + 0.5) + 0.25 = 𝜆2 − 0.25 + 0.25 = 0.

Both eigenvalues are zero.
Comments: 

1. This property is valid in every system capable to converge in finite steps.

2. The transfer function of such systems is a rational function having all its poles at the origin:

𝐻(𝑧) = 𝑎1𝑧
−1 + 𝑎2𝑧

−2+. . . +𝑎𝑁𝑧
−𝑁 =

𝑎𝑁 + 𝑎𝑁−1𝑧 + 𝑎𝑁−2𝑧
2+. . . +𝑎1𝑧

𝑁−1

𝑧𝑁
These are the so-called Finite Impulse Response (FIR) filters.

The time-domain equivalent: 𝑦(𝑛) = 𝑎1𝑥(𝑛 − 1) + 𝑎2𝑥(𝑛 − 2)+. . . +𝑎𝑁𝑥(𝑛 − 𝑁),

where due to computability reasons only previous samples of 𝑥(𝑛) are used.

Reminder:
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The condition for the eigenvalues can be used to compute 𝑔0 and 𝑔1:Example:

𝑑𝑒𝑡 𝜆𝐼 − 𝐴 + 𝐺𝐶 = 0, 𝑑𝑒𝑡
𝜆 − 1 + 𝑔0 𝑔0

𝑔1 𝜆 + 1 + 𝑔1
= 𝜆2 + 𝜆 𝑔0 + 𝑔1 + 𝑔0 − 𝑔1 − 1 =

= 𝜆2 = 0. Where from: 𝑔0 + 𝑔1 = 0 and 𝑔0 − 𝑔1 = 1, thus: 𝑔0 = 0.5 és 𝑔1 = −0.5.

Linear Least Squares (LS) Estimation:

It happens that the dynamics of recipient environment is not known: 
The state equation is not known or 𝐴 = 𝐼. In this case we have only observations.

No a priori information is available neither from
the parameter to be measured, nor from the channel characteristics/noise.

that the observation equation is linear: 𝑦 𝑛 = 𝐶𝑥 𝑛 + 𝑤 𝑛 ; 𝑤 𝑛 is the observation noise.

We assume that the unknown 𝑥 𝑛 takes value ො𝑥 𝑛 , and we set up the model of the 
observation. We compare this with the observation, and we are looking for the best

𝐽 𝑥 𝑛 , ො𝑥 𝑛 = 𝑦 𝑛 − 𝐶 ො𝑥 𝑛
𝑇
𝑦 𝑛 − 𝐶 ො𝑥 𝑛 =

= 𝑦 𝑛 𝑇𝑦 𝑛 − 𝑦 𝑛 𝑇𝐶 ො𝑥 𝑛 − ො𝑥 𝑛 𝑇𝐶𝑇𝑦 𝑛 + ො𝑥 𝑛 𝑇𝐶𝑇𝐶 ො𝑥 𝑛 =
= 𝑦 𝑛 𝑇𝑦 𝑛 − 2ො𝑥 𝑛 𝑇𝐶𝑇𝑦 𝑛 + ො𝑥 𝑛 𝑇𝐶𝑇𝐶 ො𝑥 𝑛 The minimum of which is given by:

อ
൯𝜕𝐽(𝑥 𝑛 , ො𝑥 𝑛

𝜕 ො𝑥 𝑛
ො𝑥 𝑛 = ො𝑥𝐿𝑆

= 0 −2𝐶𝑇𝑦 𝑛 + 2𝐶𝑇𝐶 ො𝑥 𝑛 = 0, ො𝑥 𝑛 = 𝐶𝑇𝐶 −1𝐶𝑇𝑦 𝑛

Due to 𝐴 = 𝐼 here 𝑥 𝑛 is practically a constant parameter.
We take more observations, and the (noisy) observed values are collected into vector 𝑦 𝑛 . 
If 𝐶 = 1 1 ⋯ 1 𝑇 , then

ො𝑥𝐿𝑆 =
1

𝑁
෍

𝑘=0

𝑁−1

𝑦𝑘(𝑛)
i.e. the result is simple linear averaging.

Let us assume 

setting of ො𝑥 𝑛 assuming squared error:

Reminder:
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Model fitting: In the case of LS estimators, we do not have prior information about 
parameter to be measured, therefore what we do is model fitting.

The problem of model fitting is manifold.
A classical version is regression calculus: The determination of a possibly deterministic relation

of independent and dependent variables can be considered as a special case of model fitting.

In the figure below the function to be modelled 𝑦 =
𝑔(𝑢, 𝑛) has two types of independent variables: the one
denoted by 𝑢 𝑛 , is known and can be influenced, while
the other, denoted by 𝑛 𝑛 , is unknown, and cannot be
influenced.

For modelling we use a “tuneable” function ො𝑦 = ො𝑔(𝑢) the free parameters of which are 
tuneable. We aim at applying such setting of parameters which is optimal in some sense.
Typically quadratic criterion is applied:

𝐽 = 𝐸 𝑦 − ො𝑦 𝑇 𝑦 − ො𝑦

Linear regression: The function to be fitted is a scalar linear function ො𝑔(𝑢) = 𝑎0 + 𝑎1𝑢, 
the parameters of which are set to minimize 𝐸 𝑦 − ො𝑔 𝑢

2
.

To get the minimum of 𝐽 = 𝐸 𝑦 − 𝑎0 − 𝑎1𝑢
2 we take the derivative to 𝑎0 and 𝑎1 :

𝜕𝐽

𝜕𝑎0
= −2𝐸 𝑦 − 𝑎0 − 𝑎1𝑢 = −2 𝐸 𝑦 − 𝑎0 − 𝑎1𝐸 𝑢 = 0

𝜕𝐽

𝜕𝑎1
= −2𝐸 𝑢 𝑦 − 𝑎0 − 𝑎1𝑢 = −2 𝐸 𝑢𝑦 − 𝑎0𝐸 𝑢 − 𝑎1𝐸 𝑢2 = 0

This latter is typically a noise process, or
disturbance modelled as a noise process.

Reminder:
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Polynomial regression:

ො𝑔(𝑢) =෍
𝑘=0

𝑁

𝑎𝑘 𝑢
𝑘

Important property that it is linear in its parameters.

Linear regression based on measured data: 
The above development can be carried out also for the case where no a priori information is 
available. In this case 𝑦𝑛 = 𝑎0 + 𝑎1𝑢𝑛 + 𝑤𝑛, 

which is the model of the observation at the 𝑛-th time instant.

Let us take 𝑁 observations! The input and the observed samples are ordered into vectors.

𝒛 =

𝑦0
𝑦1
⋮

𝑦𝑁−1

=

1 𝑢0
1 𝑢1
⋮ ⋮
1 𝑢𝑁−1

𝑎0
𝑎1

+

𝑤0

𝑤1
⋮

𝑤𝑁−1

We recognize that this structure is the same as 

the model of the LS estimation!

+𝑤 𝑛𝑦 𝑛 = 𝐶 ∗ 𝑥 𝑛
𝑪𝑇𝒛 =

σ𝑛=0
𝑁−1𝑦𝑛

σ𝑛=0
𝑁−1𝑢𝑛𝑦𝑛

,
ො𝑥 𝑛 = 𝐶𝑇𝐶 −1𝐶𝑇𝑦 𝑛

ො𝑎0
ො𝑎1

=
1

1

𝑁
σ𝑛=0
𝑁−1 𝑢𝑛

2−
1

𝑁
σ𝑛=0
𝑁−1 𝑢𝑛

2

1

𝑁
σ𝑛=0
𝑁−1𝑢𝑛

2 −
1

𝑁
σ𝑛=0
𝑁−1𝑢𝑛

−
1

𝑁
σ𝑛=0
𝑁−1𝑢𝑛 1

1

𝑁
σ𝑛=0
𝑁−1 𝑦𝑛

1

𝑁
σ𝑛=0
𝑁−1𝑢𝑛𝑦𝑛

,

𝑪𝑇𝑪 =
𝑁 σ𝑛=0

𝑁−1𝑢𝑛
σ𝑛=0
𝑁−1𝑢𝑛 σ𝑛=0

𝑁−1𝑢𝑛
2 ,

We recognize the approximations of the statistical characterizations!

We prefer models linear in their parameters, because in case of

squared error criterion, finding the optimum requires the solution of

a set of linear equations.

Reminder:
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Generalization of the regression scheme: 

Adaptive linear combiner

A frequently used model-family. 
The fix part generates a sequence of values

𝑿𝑇(𝑛) = 𝑥𝑜(𝑛) 𝑥1(𝑛) … 𝑥𝑁−1(𝑛)
and the linear combination of these values results in ො𝑦(𝑛).

𝐽(𝑾(𝑛)) = 𝐸 )𝑦(𝑛) − 𝑿𝑇(𝑛)𝑾(𝑛 𝑇 )𝑦(𝑛) − 𝑿𝑇(𝑛)𝑾(𝑛 =

= 𝐸 𝑦𝑇(𝑛)𝑦(𝑛) − 2𝑾𝑇(𝑛)𝐸 𝑿(𝑛)𝑦(𝑛) +𝑾𝑇(𝑛)𝐸 𝑿(𝑛)𝑿𝑇(𝑛) 𝑾(𝑛).

𝐸 )𝑿(𝑛)𝑦(𝑛 = 𝑷 𝐸 )𝑿(𝑛)𝑿𝑇(𝑛 = 𝑹

)𝜕𝐽(𝑾(𝑛)

)𝜕𝑾(𝑛
= −2𝑷 + 2𝑹𝑾(𝑛) = 0 𝑾∗ = 𝑹−1𝑷

This is called Wiener-Hopf equation. 

The model fitting problem is

presented as a regression scheme:

The response 𝑦 to the input 𝑢 is to be compared 
with the response ො𝑦 of the model. 

It worth comparing this structure with the 
observer scheme: the similarity is obvious; we 
are fitting a model in both cases.

For the observer we know the parameters, and the state
variables are to be estimated, while for the regression 
scheme the state variables are known and the parameters 
are to be estimated. Both schemes are parallel.

The model consists of two parts.

We are looking for the minimum squared error by searching the 
optimum 𝐖𝑇(𝑛) = 𝑤0(𝑛) 𝑤1(𝑛) … 𝑤𝑁−1(𝑛) setting.

We are minimizing

Let us introduce the following notations:
The minimum will be obtained at

Thus the optimum setting is:
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𝐽𝑚𝑖𝑛 = 𝐸 )𝑦𝑇(𝑛)𝑦(𝑛 − 𝑷𝑇𝑹−1𝑷 = 𝐸 )𝑦𝑇(𝑛)𝑦(𝑛 − 𝑷𝑇𝑾∗

The optimum setting results in minimum error, which can be derived by substitution:

𝐽 𝑾 𝑛 = 𝐽𝑚𝑖𝑛 + 𝑾 𝑛 −𝑾∗ 𝑇𝑹 𝑾 𝑛 −𝑾∗ = 𝐽𝑚𝑖𝑛 + 𝑽𝑇 𝑛 𝑹𝑽 𝑛

Using this we get:

where 𝑽(𝑛) = 𝑾(𝑛) −𝑾∗ stands for the parameter error. Example:

Imagine 𝑿𝑇(𝑛) = 𝑠𝑖𝑛( 2𝜋𝑛/𝑁) 𝑠𝑖𝑛( 2𝜋(𝑛 − 1)/𝑁) ,
i.e. two subsequent samples of a discrete sine wave.

Here 𝑁 denotes the 
number of samples taken 
from one period of the
sine wave.

The signal to be approximated is: 𝑦(𝑛) = 2 𝑐𝑜𝑠( 2𝜋𝑛/𝑁). 𝑾𝑇(𝑛) = )𝑤0(𝑛 )𝑤1(𝑛

The matrices 𝑹 and 𝑷 can be computed by averaging sine and cosine waveforms for the
complete period:
𝐸 𝑥0

2 𝑛 = 𝐸 𝑥1
2 𝑛 = 𝐸 𝑠𝑖𝑛2൫2 Τ𝜋 𝑁 = 𝐸 𝑠𝑖𝑛2 2𝜋(𝑛 − 1 Τ) 𝑁 = 0.5,

𝐸 𝑥0 𝑛 𝑥1 𝑛 = 𝐸 𝑠𝑖𝑛 2𝜋 Τ𝑛 𝑁 𝑠𝑖𝑛 2𝜋(𝑛 − 1 Τ) 𝑁 = 0.5 𝑐𝑜𝑠 Τ2𝜋 𝑁

𝐸 𝑥0 𝑛 𝑦 𝑛 = 𝐸 2 𝑠𝑖𝑛 2𝜋 Τ𝑛 𝑁 𝑐𝑜𝑠 2𝜋 Τ𝑛 𝑁 = 0,

𝐸 𝑥1 𝑛 𝑦 𝑛 = 𝐸 2 Τ𝑠𝑖𝑛 )2𝜋(𝑛 − 1 𝑁 𝑐𝑜𝑠 2𝜋 Τ𝑛 𝑁 = −𝑠𝑖𝑛 Τ2𝜋 𝑁 .

𝑹 =

0.5 0.5 𝑐𝑜𝑠
2𝜋

𝑁

0.5 𝑐𝑜𝑠
2𝜋

𝑁
0.5

𝑷 =

0

−𝑠𝑖𝑛
2𝜋

𝑁
.
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𝑹 =

0.5 0.5 𝑐𝑜𝑠
2𝜋

𝑁

0.5 𝑐𝑜𝑠
2𝜋

𝑁
0.5

𝑷 =

0

− 𝑠𝑖𝑛
2𝜋

𝑁
.

Computing the inverse of 𝑹 :

𝑹−1 =
1

0.25 𝑠𝑖𝑛2
2𝜋
𝑁

0.5 −0.5 𝑐𝑜𝑠
2𝜋

𝑁

−0.5 𝑐𝑜𝑠
2𝜋

𝑁
0.5

𝑾∗ = 𝑹−1𝑷 =

2

൯𝑡𝑎𝑛൫2 Τ𝜋 𝑁

−
2

൯𝑠𝑖𝑛൫2 Τ𝜋 𝑁

With this setting the 
output of the model:

ො𝑦 𝑛 = 𝑋𝑇 𝑛 𝑊∗ = 2
൯𝑠𝑖𝑛൫2𝜋 Τ𝑛 𝑁

൯𝑡𝑎𝑛൫2 Τ𝜋 𝑁
− 2

൯𝑠𝑖𝑛൫2𝜋(𝑛 − 1 Τ) 𝑁

൯𝑠𝑖𝑛൫2 Τ𝜋 𝑁
= 2𝑐𝑜𝑠 2𝜋𝑛/𝑁

Since cosine waveforms can be generated as linear combination of different phase sine

waves, therefore for the case of the example 𝐽𝑚𝑖𝑛, i.e. the lowest point of the error

surface (paraboloid) reaches the hyper-plane of the parameters.

Towards adaptive procedures:

𝑾∗ = 𝑹−1𝑷

At any point of the error surface the relative rate of the achievable error reduction can be

measured by the gradient:

𝜵(𝑛) =
𝜕𝐽(𝑾(𝑛))

𝜕𝑾(𝑛)
= 2𝑹[𝑾(𝑛) −𝑾∗ሿ

Multiplying both sides from the left by

matrix
1

2
𝑹−1 :

𝑾∗ = 𝑾(𝑛) −
1

2
𝑹−1𝜵(𝑛), Where we utilized:
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Assuming that our knowledge about matrix 𝑹 and thus about the gradient is not complete, this 
equation can be rewritten into an iterative form:

𝑾∗ = 𝑾(𝑛) −
1

2
𝑹−1𝜵(𝑛) 𝑾(𝑛 + 1) = 𝑾(𝑛) −

1

2
෡𝑹−1෡𝜵(𝑛),

And finally by introducing the convergency factor 𝟎 < 𝝁 < 𝟏, and replacing the perfect

matrix 𝑹 and the perfect gradient:

𝑾(𝑛 + 1) = 𝑾(𝑛) − 𝜇𝑹−1𝜵(𝑛)
Comments:

1. 1. If matrix 𝑹 matrix and the gradient are perfectly known, then setting 𝜇 =
1

2
provides

one-step convergence from an arbitrary (but finite) initial value 𝑾(𝑛).
2. Since 𝜵(𝑛) = 2𝑹[𝑾(𝑛) −𝑾∗ሿ, therefore substituting it into equation (*) and subtracting

from both sides the value of 𝑊∗ we get:

(*)

𝑾(𝑛 + 1) −𝑾∗ = (1 − 2𝜇)(𝑾(𝑛) −𝑾∗) = 𝑽(𝑛 + 1) = (1 − 2𝜇)𝑛+1𝑽(0),

i.e. the initial error will decrease exponentially, if 𝜇 ≠
1

2
. 

If 0 < 𝜇 < 0.5, then the error will decrease monotonically, otherwise with oscillating sign.

3. The gradient methods of model fitting are distinguished by the a priori knowledge
available to evaluate (*).

(**)

4. Note that matrix 𝑹 provides „global” information about the error surface, while gradient
𝜵(𝑛) gives a „local” characterization of the error surface. Based on this local information we
descend on the error surface to be closer and closer to the minimum.

If the 𝑹 and 𝑷 matrices are known, the equations describing the behaviour of adaptive 
linear combinator are (*) and (**).
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Replica determinism:The reliability of a system can be improved by active redundancy, i.e. by

(1) the same externally visible RAM state,

(2) and produce the same output messages at points in time that are at most an interval of d
time unit apart.

Example: Consider an airplane with a three-channel flight-control system and a majority voter.
Each channel has its own sensors and computers to minimize the possibility of a common-
mode error.

Within a specified time after the event “start of take-off”, the control system must check 
whether the plane has attained the take-off speed.
If yes, the lift-off procedure is initiated, and the engines are further accelerated.
If not, the take-off must be aborted, and the engines must be stopped.
The table below describes such a situation, where the condition of replica determinism is
not met, and the faulty channel governs the decision.

A set of replicated RT objects is replica determinate if all thereplicated physical components.
members of this set have 

In a fault-tolerant system, the time interval 𝑑 determines the time it takes to
replace a missing message or an erroneous message from a node by a correct message from 
redundant replicas.

Channel Decision Action
Channel 1 Take off Accelerate engine
Channel 2 Abort Stop engine
Channel 3 Abort Accelerate engine

Because of random effects (deviation in the 
sensor calibration, digitalization error, etc.), 
channels 1 and 2 reach different conclusions: 

Channel 1 decides that the take-off speed has been reached and that the plane should take off. 
Channel 2 decides that the take/off speed has not been reached: abort the and the take-off. 
Channel 3 is faulty and decides to abort, and to accelerate the engine.

The faulty channel wins!
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In the majority vote of the action, the faulty channel wins, because the correct channels are
not replica determinate!

Sampling and polling:

We use the term sampling, if the data is written into a memory element at the sensor:

From the point of view of system specification, a sampling system can be seen as protecting a
node from more events in the environment than are stated in the system specification.

We use the term polling, if the data memory is resided inside the computer:

From functional point of view, there is no difference between sampling and polling as long as
no faults occur. Under fault conditions, the sampling system is more robust than the polling
system.
Comment: The interrupt mechanism can be characterized by the figure introduced for polling. 

The memory is at the sensor and thus outside the sphere of control of the computer. 

The interrupt mechanisms empower a device outside the sphere of control of the computer 
to govern the temporal control pattern inside the computer. This is a potentially dangerous
mechanism that must be used with great care. 
From the fault-tolerance point of view, an interrupt mechanism is even less robust than the 
already denounced polling mechanism. Every transient error on the transmission line

will interfere with the temporal control scheme within the computer.
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Power Aware Systems – Low Power Design
Example: The capacity/capability of two AA (Mignon) type battery cells in sensor network

applications (microcontroller+radio+sensors):

2 pieces of AA battery cells have an average capacity of 3000 mAh.

How long can we use our system in a day, if we require a total availability of services

for minimum 1 year (8760 hours), while Pon=150 mW (Ion=50mA) and Istandby=50µA?

𝐼𝑎𝑣𝑔 =
𝐼𝑜𝑛𝑇𝑜𝑛

𝑇𝑜𝑛 + 𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦
+
𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦
𝑇𝑜𝑛 + 𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦

= 𝐼𝑜𝑛𝜆 + 𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦 1 − 𝜆

𝐼𝑎𝑣𝑔𝑚𝑎𝑥 =
3000𝑚𝐴ℎ

8760ℎ
= 342𝜇𝐴

𝜆 =
𝐼𝑎𝑣𝑔𝑚𝑎𝑥 − 𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝐼𝑜𝑛 − 𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦
= 0.0058 ≈ 0.6%

≈ 8
𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝑑𝑎𝑦
. If we take measurements in every hour, then they can take (only) 20 seconds!

Power Consumption of a CMOS Gate:

The two FETs are alternately open and closed. Main sources of power consumption:
(1) charging and discharging capacitors, 
(2) short circuit path between supply rails during switching, 
(3) leaking diodes and transistors (becomes one of the major factors due 
to shrinking feature sizes in semiconductor technology).
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Power consumption of CMOS circuits (ignoring leakage): 𝑃~𝛼𝐶𝐿𝑉𝐷𝐷
2 𝑓,

where 𝑉𝐷𝐷: stands for power supply,α: switching activity (for a clock it is 1),𝐶𝐿: a load capacity, 
f: clock frequency. Delay for CMOS circuits:

𝜏~𝐶𝐿
𝑉𝐷𝐷

𝑉𝐷𝐷 − 𝑉𝑇
2

where 𝑉𝑇: threshold voltage,

𝑉𝑇 ≪ 𝑉𝐷𝐷.It can be stated:
- reduces 𝑃 quadratically (𝑓constant);
- The gate delay increases only reciprocally; 
- Maximal frequency 𝑓𝑚𝑎𝑥 decreases linearly.

Decreasing 𝑉𝐷𝐷

Potential for Energy Optimization (Dynamic Voltage Scaling: DVS): 𝑃~𝛼𝐶𝐿𝑉𝐷𝐷
2 𝑓 , 

𝐸~𝛼𝐶𝐿𝑉𝐷𝐷
2 𝑓𝑡 = 𝛼𝐶𝐿𝑡𝑉𝐷𝐷

2 #𝑐𝑦𝑐𝑙𝑒𝑠 . Saving energy for a given task:

- reduce the supply voltage 𝑉𝐷𝐷;
- reduce switching activity;
- reduce the load capacitance;
- reduce the number of cycles (#cycles).

Power Supply Gating:

It is one of the most effective ways of minimizing 
static power consumption (leakage).
Power Supply Gating cuts-off power supply to

inactive units/components: a header switch

provides virtual power, while a footer switch

provides virtual ground and thus reduces leakage.

Use of Parallelism: 
Duplicated hardware with half of the

supply voltage, and half of the clock

frequency.

𝐸1~𝑉𝐷𝐷
2 #𝑐𝑦𝑐𝑙𝑒𝑠 , 𝐸2 =

𝐸1

4
.

Use of Pipelining: 

The number of the operations is the same, the

energy consumption is lowered to its fourth.
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The application of Very Long Instruction Word (VLIW) architectures is an alternative: parallel

instruction sets are applied.
Not all components require same

performance. Required performance

may change over time:

Slow module
1.3 V 50MHz

Standard
modules

1.8 V
100 MHzBusy module

3.3 V 200 MHz
Busy mode

3.3 V 200 MHz

Normal mode
1.3 V 50 MHz

Optimal strategy (Dynamic Voltage Scaling):

Since the power is a convex (quadratic) function of 𝑉𝐷𝐷 , therefore 𝑃 𝑧 < 𝑎𝑃 𝑥 +

1 − 𝑎 𝑃 𝑦 , i.e. it worth executing at constant voltage. (The linear combination gives a

string above the parabola.)
Example:

VDD [V] 5.0 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHz] 50 40 25
cycle time [ns] 20 25 40

Task execution needs 109

cycles within 25 seconds.

a. Complete task ASAP: 109 cycles @ 50 MHz.

Energy consumption: 𝐸𝑎 = 109 ∗ 40 ∗ 10−9 = 40 J , 
time requirement: 109 ∗ 20 ∗ 10−9 = 20𝑠.
b.Execution at two voltages: 0.75*109 cycles @ 50 MHz

+ 0.25*109 cycles @ 25 MHz.
Energy consumption: 𝐸𝑎 = 0.75 ∗ 109 ∗ 40 ∗

10−9 + 0.25 ∗ 109∗ 10 ∗ 10−9 = 32.5 J ,
time requirement: 0.75 ∗ 109 ∗ 20 ∗ 10−9 +

0.25 ∗ 109 ∗ 40 ∗ 10−9 = 𝟐𝟓𝐬.
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VDD [V] 5.0 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHz] 50 40 25
cycle time [ns] 20 25 40

c.Execution at optimal voltage: 109 cycles @ 40 MHz.

Energy consumption: 𝐸𝑎 = 109 ∗ 25 ∗ 10−9 = 𝟐𝟓 𝑱 , 

time requirement:109 ∗ 25 ∗ 10−9 = 𝟐𝟓𝒔.
Comment: Obviously some spare-time is always

required at task executions.

Dynamic Power Management (DPM): tries to assign optimal power saving states

Example: reduce power according to workload:

Comment:
Shutdown only if long idle times occur. 

There is a trade-off between savings and overhead “costs”.


