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Nonconventional modelling
Hybrid systems: Hybrid systems combine continuous and discrete dynamics.

Sometimes they are called modal systems, because controlled by a Finite State Machine (FSM), 
they are switched into different modes of operation where they behave as continuous systems.

Concerning the mode changes, hybrid systems behave like discrete systems, but between these 
mode changes time dependency is present.
Discrete systems:
Example:
Number of cars in a 
parking house (max. M, 
which is the capacity of 
the house)

Condition1/action1: 𝑢𝑝 ∧ ¬𝑑𝑜𝑤𝑛 ∧ 𝑐 < 𝑀/𝑐 + 1
Condition2/action2: 𝑑𝑜𝑤𝑛 ∧ ¬𝑢𝑝 ∧ 𝑐 > Τ0 𝑐 − 1

Example: Thermostat with hysteresis
Condition1/action1: Temperature ≤ 18 Co/heating on

Condition2/action2: Temperature ≥ 22 Co/heating off

System input: Temperature of the environment
System output: heating on/heating off commands:

The corresponding time functions: ℎ(𝑡) = 1, ℎ(𝑡) = 0.

Timed automaton:
Example: Thermostat with timing instead of hysteresis: this is solved by the so-called timed
automaton, which is the simplest nontrivial hybrid system.

Reminder
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These automata, behind their states measure the evolvement of time for a given 
value of duration: ∀𝑡 ∈ 𝑑𝑚, and the derivative of the clock function is ሶ𝑐 𝑡 = 𝑎, i.e. its value
changes with the evolvement of time.

Condition1/action1: 𝑇(𝑡) ≤ 20 ∧ 𝑐(𝑡) ≥ 𝑑𝑐𝑜𝑜𝑙𝑖𝑛𝑔/𝑐(𝑡) =0.

Condition2/action2: 𝑇(𝑡) ≥ 20 ∧ 𝑐(𝑡) ≥ 𝑑ℎ𝑒𝑎𝑡𝑖𝑛𝑔/𝑐(𝑡) =0.
Comments:
(1) ℎ(𝑡) and 𝑐(𝑡) can be considered as tools of state refinement.They define some details of the

operation (Modal systems). 
(2) On the time diagram 𝑇 > 20 𝐶°. If it would be lower, then immediately the heating mode

would start. This is served by the initial condition of the clock.
Example: Automated Guided Vehicle, AGV

ሶ𝑥 𝑡 = 𝑣 𝑡 cos(𝜑 𝑡 )

ሶ𝑦 𝑡 = 𝑣 𝑡 sin 𝜑 𝑡

ሶ𝜑 𝑡 = 𝜔(𝑡)

Two-level control: The AGV runs 
with a constant speed of 10 km/h.
It has four operational mode: left, 
right, straight, stop.

To every mode of operation, a 
separate differential equation 
is assigned. 

Reminder



4
Embedded Information systems, Lecture #13 December 8, 2020.

ሶ𝑥 𝑡 = 𝑣 𝑡 cos(𝜑 𝑡 )

ሶ𝑦 𝑡 = 𝑣 𝑡 sin 𝜑 𝑡

ሶ𝜑 𝑡 = 𝜔(𝑡)

ሶ𝑥 𝑡 = 10cos(𝜑 𝑡 )

ሶ𝑦 𝑡 = 10 sin 𝜑 𝑡

ሶ𝜑 𝑡 = 0

ሶ𝑥 𝑡 = 10cos(𝜑 𝑡 )

ሶ𝑦 𝑡 = 10 sin 𝜑 𝑡

ሶ𝜑 𝑡 = 𝜋

ሶ𝑥 𝑡 = 10cos(𝜑 𝑡 )

ሶ𝑦 𝑡 = 10 sin 𝜑 𝑡

ሶ𝜑 𝑡 = −𝜋

ሶ𝑥 𝑡 = 0
ሶ𝑦 𝑡 = 0
ሶ𝜑 𝑡 = 0

straight: left: right:

stop:

original:

Four different modesThe sensor of the AGV: 
a set of photodiodes perpendicular to 
the direction of the movement.

Its output signal: 𝑒 𝑡 = 𝑓 𝑥 𝑡 , 𝑦 𝑡 .

If 𝑒 𝑡 > 0, then it deviates to the left, 
if 𝑒 𝑡 < 0, then to the right.

𝑒1 > 0, 𝑒2 > 0The control law of the AGV:

if 𝑒(𝑡) < 𝑒1, then go straight; 
if 0 < 𝑒2 < 𝑒 𝑡 , then go to right;
if 0 > −𝑒2 > 𝑒(𝑡), then go to left.

The set of the input events: 𝑢 𝑡 ∈ {𝑠𝑡𝑜𝑝, 𝑠𝑡𝑎𝑟𝑡, 𝑎𝑏𝑠𝑒𝑛𝑡}. 
Since stop and start are instantaneous events, absent 
gives the interpretation for other time instants. 

State-transition generating conditions:

start = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 = 𝑠𝑡𝑎𝑟𝑡
go straight   = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 ≠ 𝑠𝑡𝑜𝑝, 𝑒(𝑡) < 𝑒1

go right = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 ≠ 𝑠𝑡𝑜𝑝, 𝑒2 < 𝑒(𝑡)
go left  = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 ≠ 𝑠𝑡𝑜𝑝, −𝑒2 > 𝑒(𝑡)

stop = 𝑣 𝑡 , 𝑥 𝑡 , 𝑦 𝑡 , 𝜑(𝑡) ȁ𝑢 𝑡 = 𝑠𝑡𝑜𝑝

Reminder
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Qualitative modelling and control I.
Example:The design of such a controller which keeps the level of the liquid in the second tank
at a prescribed level. 

This is possible by setting u(t) at pump1 properly.

Problems of the quantitative model: 
a) The physical limits are not modelled;
b) The equations are linearized;
c) Numerical values are inaccurate and change with time.

Qualitative Reasoning: Only the orientation of the quantities is considered. 
Possible “values”: −, 0, + . 
The basic physical 
constraints are kept!

If at branching of a node the liquid flows out in two 
directions, then through the third tube the liquid 
should flow in.

The qualitative value of a quantity “Q” with respect to “a”: 𝑄 𝑎

The qualitative value of the change of a quantity “Q” is the qualitative derivative:

𝛿𝑄 𝑎, 𝛿2𝑄 𝑎, …

Reminder
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Operations: 𝑖𝑛𝑣𝑒𝑟𝑡 𝐴 : Changes the sign.
𝑣𝑜𝑡𝑒 𝐴1, 𝐴2, … , 𝐴𝑛 : Gives back the value in majority.

Qualitative control of the level of tank2: denotes the level relative to the desired value: 𝐿2

[𝐿2] = + :  higher than required. [𝛿𝑈] = +:  increase pumping rate.

[𝐿2] = 0 :  equals. [𝛿𝑈] = 0: pumping rate is appropriate.

[𝐿2] = − ∶ lower than required. [𝛿𝑈] = −: decrease pumping rate.

[𝛿𝑈] = +: a fixed amount of increase of the pumping rate: Δ𝑈.

The qualitative values exist only at the sampling instants. 
Between sampling instants there is no level detection. 

𝐿2 𝑘 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑙𝑒𝑣𝑒𝑙 𝑘 − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 𝑙𝑒𝑣𝑒𝑙 𝑘

A very simple control law: 𝑄1 ฎ=
𝑑𝑒𝑓

𝛿𝑈 𝑘 = 𝑖𝑛𝑣𝑒𝑟𝑡 𝐿2 𝑘

Comment:

If 𝛥𝑈 is larger, then larger overshoot and oscillation can be expected, but the reaction is faster.
If 𝛥𝑈 is smaller, then the overshoot and the oscillation will be smaller, but also the reaction is 
slower. 
Improved controllers: Quantities considered:
Level error of tank2: +, 0, −

Speed of the level change of tank2: +, 0, −

Speed of the level change of tank1: +, 0, −

3 ∗ 3 ∗ 3 = 27

Reminder
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𝑄2 ฎ=
𝑑𝑒𝑓

𝛿𝑈 𝑘 = 𝑖𝑛𝑣𝑒𝑟𝑡 𝑣𝑜𝑡𝑒 𝑣𝑜𝑡𝑒 𝐿2 𝑘 , 𝛿𝐿2 𝑘 , 𝛿𝐿1 𝑘
𝑘

𝑄3 ฎ=
𝑑𝑒𝑓

𝛿𝑈 𝑘 = 𝑖𝑛𝑣𝑒𝑟𝑡 𝑣𝑜𝑡𝑒 𝐿2 𝑘 , 𝛿𝐿2 𝑘 , 𝛿𝐿1 𝑘
𝑘

Determination of [δL1]: 𝛿𝐿1 = 𝐿2 𝑘 − 𝐿2 𝑘−1 − 𝐿2 𝑘−1 − 𝐿2 𝑘−2 = 𝛿2𝐿2

For the 27 combinations of the possible qualitative values the outputs of the three controllers 
can be summarized in the table below: 

𝑳𝟐 𝜹𝑳𝟐 𝜹𝑳𝟏 𝑸𝟏 𝑸𝟐 𝑸𝟑

1 + + + - - -

2 + + 0 - - -

3 + + - - 0 -

4 + 0 + - - -

5 + 0 0 - - -

⋯

20 - + 0 + 0 0

⋯

27 - - - + + +

Comments:

(1) A rule-based system was also elaborated 
for this problem.
It could not handle the case: Tank2 shows a 
constant value above the required level, and 
the level of Tank1 lowers. 

(2) Setting sampling rate and the value of ΔU is 
a critical issue, and a crucial decision of the 
designer.

Reminder
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Example: Modelling an inverted pendulum with nondeterministic automaton. 

This approach might be required for systems where the about the state vector 𝑥(𝑘) only 
quantized [𝑥(𝑘)] values are available due to limited precision measurements of angles and 
angular velocity. 

After linearisation of the equations around 𝜃 = 0:

ሶ𝑥 𝑡 =

0 1
0 0

0 0

−
𝑚𝑔

𝑀
0

0 0
0 0

0 1
𝑚 +𝑀 𝑔

𝑀𝑙
0

𝑥 𝑡 +

0
1

𝑚
0

−
1

𝑀𝑙

𝑢 𝑡

𝑀 = 1𝑘𝑔,𝑚 = 0.1𝑘𝑔, 𝑙 = 0.5𝑚, 𝑔 = 9.81
𝑚

𝑠2

Measurement insensitivity: 0.0175 rad for θ, and 0.0175/20ms for ሶ𝜃.

The pole can no longer be stabilised if  𝑥3 > 0.21 𝑟𝑎𝑑 (12°), and 𝑥4 > 0.87.

For the angle (3rd element of the state vector) and for the angular speed (4th element of the 
state vector) the bounds corresponding to the figure:

-1     0    1    2
𝑔3,−1 = −0.210, 𝑔3,0 = −0.0175, 𝑔3,1 = 0.0175, 𝑔3,2 = 0.210

𝑔4,−1 = −0.870, 𝑔4,0 = −0.0175, 𝑔4,1 = 0,0175, 𝑔4,2 = 0.870
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If we denote staying in one of the two central regions by 0, by  - 1 staying in 
the left-hand-side region, and by +1 staying in the right-hand-side one, we 
can define the following qualitative states:

-1     0    1    2

𝑧1 =
−1
−1

, 𝑧2 =
−1
0

, 𝑧3 =
−1
1

, 𝑧4 =
0
−1

, 𝑧5 =
0
0
,

𝑧6 =
0
1
, 𝑧7=

1
−1

, 𝑧8=
1
0
, 𝑧9 =

1
1
, 𝑧10 = 𝑜𝑢𝑡𝑠𝑖𝑑𝑒,

The qualitative values of the force on the vehicle (input signal): 

𝑢 𝑘 = 10 ⟺ 𝑣 𝑘 = 1, 𝑢 𝑘 = 0 ⟺ 𝑣 𝑘 = 0, 𝑢 𝑘 = −10 ⟺ 𝑣 𝑘 = −1

By assigning proper input to the qualitative states, the pole can be stabilized: 

𝒛 𝒌 𝒛𝟏 𝒛𝟐 𝒛𝟑 𝒛𝟒 𝒛𝟓 𝒛𝟔 𝒛𝟕 𝒛𝟖 𝒛𝟖

𝑣 𝑘 -1 0 0 -1 0 1 0 0 1

The qualitative controller: 𝑢 𝑘 = 𝑓 𝑧 𝑘

0

0 𝜃

ሶ𝜃

The real trajectories due to noise/disturbance do return to
themselves.

Comments: 
Setting sampling rate and the value of ΔU is a critical issue, and
a crucial decision of the designer.
The figure shows the idealized trajectories of the motion.
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Example: Adaptive target tracking with fuzzy modelling and control

The target tracking system consists of two channels: it maps azimuth-elevation inputs to motor
control outputs. The nominal target moves through azimuth-elevation space.
Two motors adjust the platform to continuously point towards the target.

azimuth (0 … 180 degrees), elevation (0 … 90 degrees). 

Sensor:
The platform can be any directional 
device that accurately points towards 
the target. 
The device may be a laser, radar,
video camera or high-gain antenna.

Notation: tk target position;
nk observation noise;
ρk tracking position;
ek tracking error;
ሶ𝑒𝑘 tracking error change;

vk estimated angular velocity;
𝑇 sampling time.

𝜌𝑘 = 𝜌𝑘−1 + 𝑇𝑣𝑘−1 + 𝑒𝑟𝑟𝑜𝑟 error = positioning uncertainty

Fuzzy controller: We restrict the output angular velocity of the fuzzy controller to the interval:
(This is a decision of the designer, a scaling factor)[-6,6]. 

Since  𝑣𝑘 ≤
9.0

𝑇
𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠𝑒𝑐 azimuth, and 𝑣𝑘 ≤

4.5

𝑇
𝑑𝑒𝑔𝑟𝑒𝑒𝑠/𝑠𝑒𝑐 elevation, thus the output 

gains of the channels are: 1.5/T and 0.75/T.
The fuzzy controller uses heuristic control set-level “rules” or fuzzy-associative-memory 
(FAM) associations, based on quantised values of ek,, ሶ𝑒𝑘 and vk-1.
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We define seven fuzzy levels by the following library of fuzzy-set values of the fuzzy variables 
ek,, ሶ𝑒𝑘 and vk-1: 

We assign each 
system input to a fit 
vector of length 7:

We formulate control FAM rules by associating output 
fuzzy sets with input fuzzy sets: For example the i-th

rule: 𝐼𝐹 𝑒𝑘 = 𝑀𝑃 ∧ ሶ𝑒𝑘 = 𝑆𝑁 ∧ 𝑣𝑘−1 = 𝑍𝐸 𝑇𝐻𝐸𝑁 𝑣𝑘 = 𝑆𝑃 We abbreviate this 
to: (MP,SN,ZE;SP). 

The scalar value of the i-th FAM rule : 𝑤𝑖 = min 𝑚𝑒𝑚𝑏𝑒𝑟𝑠ℎ𝑖𝑝 𝑣𝑎𝑙𝑢𝑒𝑠 .
Example: 𝑒𝑘 = 2.6, ሶ𝑒𝑘 = −2.0, 𝑣𝑘−1 = 1.8. The fit vectors of length 7:

LN MN SN ZE SP MP LP

0 0 0 0 1 0.4 0

0 0 1 0 0 0 0

0 0 0 0.1 1 0 0

The membership values 
associated to the rule:
𝑚𝑀𝑃 𝑒𝑘 = 0.4
𝑚𝑆𝑁 ሶ𝑒𝑘 = 1

𝑚𝑍𝐸 𝑣𝑘−1 = 0.1

The scalar value of the i-th rule:

𝑤𝑖 = min 0.4, 1, 0.1 = 0.1

The form of the output 
fuzzy set depends on the 
encoding of the FAM rule:

Correlation-product encoding:
𝑚𝑂𝑖 𝑥 = 𝑤𝑖𝑚𝐿𝑖(𝑥)

Correlation-minimum encoding:
𝑚𝑂𝑖 𝑥 = min(𝑤𝑖, 𝑚𝐿𝑖(𝑥)).

Here 𝑚𝐿𝑖(𝑥) stands for 

the membership 
function of the output 
associated to the i-th
FAM rule. 
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Two possible encoding strategies of the output fuzzy sets:

The defuzzifier assigns numerical value to the sum of the 
output fuzzy sets associated with the FAM rules. 
This summed set is the sum of weighted trapezoids.

It is like the probability density function of probability theory, 
except the integral of the summed function differs from one. 

The defuzzifier computes the 𝑣𝑘 value as a centroid, therefore it is called: fuzzy centroid.

The implementation of the fuzzy controller:
A FAMi rule: (MP,SN,ZE;SP). 

At the k-th time instant:  𝑒𝑘 = 2.6,
ሶ𝑒𝑘 = −2.0, 𝑣𝑘−1 = 1.8.

𝑤𝑖 = 𝑚𝑖𝑛 ቁ𝑚𝑀𝑃(𝑒𝑘),𝑚𝑆𝑁(𝑒
•

𝑘),𝑚𝑍𝐸(𝑣𝑘−1 =

= 𝑚𝑖𝑛(0.4,1,0.1) = 0.1

Since in this solution the shape of every fuzzy set is the same, we can write: e.g. 
𝑚𝑆𝑃 𝑥 = 𝑚𝑍𝐸 𝑥 − 2 . In general 𝑚𝐿𝑖 𝑥 = 𝑚𝑍𝐸 𝑥 − 𝑐𝐿𝑖 , where 𝑐𝐿𝑖 is the centroid of 
the given membership function. 
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𝑤𝑖 = 𝑚𝑖𝑛 ቁ𝑚𝑍𝐸(𝑒𝑘 − 𝑐𝑀𝑃),𝑚𝑍𝐸(𝑒𝑘
•
− 𝑐𝑆𝑁),𝑚𝑍𝐸(𝑣𝑘−1 − 𝑐𝑍𝐸

𝑤𝑖 = 𝑚𝑖𝑛 ቁ𝑚𝑀𝑃(𝑒𝑘),𝑚𝑆𝑁(𝑒
•

𝑘), 𝑚𝑍𝐸(𝑣𝑘−1 =𝑚𝑖𝑛(0.4,1,0.1) = 0.1

𝑤𝑖 = 𝑚𝑖𝑛 )𝑚𝑍𝐸(−1.4),𝑚𝑍𝐸(0), 𝑚𝑍𝐸(1.8 = 𝑚𝑖𝑛(0.4,1,0,1) = 0.1

In case of correlation-
product encoding: 
𝑚𝑂𝑖 𝑥 = 𝑤𝑖𝑚𝑍𝐸 𝑥 − 𝑐𝑖 , 

thus the implementation of 
the i-th FAM rule can have 
the following form:

iOiw

ke

1−kv

ke
•

MPc

SNc

ZEc

-

-

-

+

+

+

(...)ZEm

(...)ZEm

(...)ZEm

min Correlation 
product

Thank you for your attention!
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