
Embedded
Information

Systems
Power-aware systems

6. Real-time communication

November 17, 2020

1

2
Embedded Information systems, Lecture #10, November 17, 2020.

Power Aware Systems – Low Power Design
Example: The capacity/capability of two AA (Mignon) type battery cells in sensor network

applications (microcontroller+radio+sensors):

2 pieces of AA battery cells have an average capacity of 3000 mAh.

How long can we use our system in a day, if we require a total availability of services

for minimum 1 year (8760 hours), while Pon=150 mW (Ion=50mA) and Istandby=50µA?

𝐼𝑎𝑣𝑔 =
𝐼𝑜𝑛𝑇𝑜𝑛

𝑇𝑜𝑛 + 𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦
+
𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦
𝑇𝑜𝑛 + 𝑇𝑠𝑡𝑎𝑛𝑑𝑏𝑦

= 𝐼𝑜𝑛𝜆 + 𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦 1 − 𝜆

𝐼𝑎𝑣𝑔𝑚𝑎𝑥 =
3000𝑚𝐴ℎ

8760ℎ
= 342𝜇𝐴

𝜆 =
𝐼𝑎𝑣𝑔𝑚𝑎𝑥 − 𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦

𝐼𝑜𝑛 − 𝐼𝑠𝑡𝑎𝑛𝑑𝑏𝑦
= 0.0058 ≈ 0.6%

≈ 8
𝑚𝑖𝑛𝑢𝑡𝑒𝑠

𝑑𝑎𝑦
. If we take measurements in every hour, then they can take (only) 20 seconds!

Power Consumption of a CMOS Gate:

The two FETs are alternately open and closed. Main sources of power consumption:
(1) charging and discharging capacitors,
(2) short circuit path between supply rails during switching,
(3) leaking diodes and transistors (becomes one of the major factors due
to shrinking feature sizes in semiconductor technology).

Reminder:

3
Embedded Information systems, Lecture #10, November 17, 2020.

Power consumption of CMOS circuits (ignoring leakage): 𝑃~𝛼𝐶𝐿𝑉𝐷𝐷
2 𝑓,

where 𝑉𝐷𝐷: stands for power supply,α: switching activity (for a clock it is 1),𝐶𝐿: a load capacity,
f: clock frequency. Delay for CMOS circuits:

𝜏~𝐶𝐿
𝑉𝐷𝐷

𝑉𝐷𝐷 − 𝑉𝑇
2

where 𝑉𝑇: threshold voltage,

𝑉𝑇 ≪ 𝑉𝐷𝐷.It can be stated:
- reduces 𝑃 quadratically (𝑓constant);
- The gate delay increases only reciprocally;
- Maximal frequency 𝑓𝑚𝑎𝑥 decreases linearly.

Decreasing 𝑉𝐷𝐷

Potential for Energy Optimization (Dynamic Voltage Scaling: DVS): 𝑃~𝛼𝐶𝐿𝑉𝐷𝐷
2 𝑓 ,

𝐸~𝛼𝐶𝐿𝑉𝐷𝐷
2 𝑓𝑡 = 𝛼𝐶𝐿𝑡𝑉𝐷𝐷

2 #𝑐𝑦𝑐𝑙𝑒𝑠 . Saving energy for a given task:

- reduce the supply voltage 𝑉𝐷𝐷;
- reduce switching activity;
- reduce the load capacitance;
- reduce the number of cycles (#cycles).

Power Supply Gating:

It is one of the most effective ways of minimizing
static power consumption (leakage).
Power Supply Gating cuts-off power supply to

inactive units/components: a header switch

provides virtual power, while a footer switch

provides virtual ground and thus reduces leakage.

Use of Parallelism:
Duplicated hardware with half of the

supply voltage, and half of the clock

frequency.

𝐸1~𝑉𝐷𝐷
2 #𝑐𝑦𝑐𝑙𝑒𝑠 , 𝐸2 =

𝐸1

4
.

Use of Pipelining:

The number of the operations is the same, the

energy consumption is lowered to its fourth.

Reminder:

4Embedded Information systems, Lecture #10, November 17, 2020.

The application of Very Long Instruction Word (VLIW) architectures is an alternative:

parallel instruction sets are applied.
Not all components require same

performance. Required performance

may change over time:

Slow module
1.3 V 50MHz

Standard
modules

1.8 V
100 MHzBusy module

3.3 V 200 MHz
Busy mode

3.3 V 200 MHz

Normal mode
1.3 V 50 MHz

Optimal strategy (Dynamic Voltage Scaling):

Since the power is a convex (quadratic) function of 𝑉𝐷𝐷 , therefore 𝑃 𝑧 < 𝑎𝑃 𝑥 +

1 − 𝑎 𝑃 𝑦 , i.e. it worth executing at constant voltage. (The linear combination gives a

string above the parabola.)
Example:

VDD [V] 5.0 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHz] 50 40 25
cycle time [ns] 20 25 40

Task execution needs 109

cycles within 25 seconds.

a. Complete task ASAP: 109 cycles @ 50 MHz.

Energy consumption: 𝐸𝑎 = 109 ∗ 40 ∗ 10−9 = 40 J ,
time requirement: 109 ∗ 20 ∗ 10−9 = 20𝑠.
b.Execution at two voltages: 0.75*109 cycles @ 50 MHz

+ 0.25*109 cycles @ 25 MHz.
Energy consumption: 𝐸𝑎 = 0.75 ∗ 109 ∗ 40 ∗

10−9 + 0.25 ∗ 109∗ 10 ∗ 10−9 = 32.5 J ,
time requirement: 0.75 ∗ 109 ∗ 20 ∗ 10−9 +

0.25 ∗ 109 ∗ 40 ∗ 10−9 = 𝟐𝟓𝐬.

Reminder:

5
Embedded Information systems, Lecture #10, November 17, 2020.

VDD [V] 5.0 4.0 2.5
Energy per cycle [nJ] 40 25 10
fmax [MHz] 50 40 25
cycle time [ns] 20 25 40

c.Execution at optimal voltage: 109 cycles @ 40 MHz.

Energy consumption: 𝐸𝑎 = 109 ∗ 25 ∗ 10−9 = 𝟐𝟓 𝑱 ,

time requirement:109 ∗ 25 ∗ 10−9 = 𝟐𝟓𝒔.
Comment: Obviously some spare-time is always

required at task executions.

Dynamic Power Management (DPM): tries to assign optimal power saving states

Example: reduce power according to workload:

Comment:
Shutdown only if long idle times occur.

There is a trade-off between savings and overhead “costs”.

Reminder:

6Embedded Information systems, Lecture #10, November 17, 2020.

Example: Dynamic power management:
Suppose that the power consumption 𝑃 𝑓 of a given CMOS processor at frequency 𝑓 is:

𝑃 𝑓 = 10
𝑓

100𝑀𝐻𝑧

3

+ 20 𝑚𝑊𝑎𝑡𝑡

To reduce the power consumption, one can adjust
the execution frequency.
The maximum/minimum available frequency:

𝑓𝑚𝑎𝑥 = 1000𝑀𝐻 Τ𝑧 𝑓𝑚𝑖𝑛 = 50𝑀𝐻𝑧

Frequency switching has negligible overhead and the processor can operate at any frequency
between 50𝑀𝐻𝑧 and 1000𝑀𝐻𝑧.
One can also apply dynamic power management to turn the processor to the sleep mode (or
turn the processor off) to reduce the power consumption.
When the processor is in the sleep mode, it consumes no power.
However, turning the processor on to the run mode requires additional energy consumption,
i.e. 3 × 10−5𝐽𝑜𝑢𝑙𝑒. (Switching from run mode to sleep mode consumes no energy.)
Turning on/off the processor can be done instantly.

arrival time deadline execution cycles
𝜏1 0 2ms 100000

𝜏2 2ms 6ms 100000

𝜏3 6ms 7ms 80000

The processor is in the run mode at time 0 and
is required to be in the run mode at time 7 ms.

Problem#1: The energy consumption to

execute C cycles is
𝐶𝑃 𝑓

𝑓
.

There is a critical frequency 𝑓𝑐𝑟𝑖𝑡between
50𝑀𝐻𝑧 and 1000𝑀𝐻𝑧 at which the energy
consumption to execute any C cycles is
minimized.

What is the critical frequency of
the processor?

The system has three jobs to execute:

Reminder:

7Embedded Information systems, Lecture #10, November 17, 2020.

Solution#1: As we lower the frequency the power consumed falls.
But beyond a critical frequency, the rate of fall in power is overweighed by the fall in frequency
and thus the power consumed per cycle increases.

To compute this critical frequency,

we have to minimize
𝑃 𝑓

𝑓
.

Let f be normalized to 100𝑀𝐻𝑧. The first derivative of
𝑃 𝑓

𝑓
is 20𝑓 −

20

𝑓2
, which equals 0 if 𝑓 = 1.

𝑃 𝑓 = 10
𝑓

100𝑀𝐻𝑧

3

+ 20 𝑚𝑊𝑎𝑡𝑡

Thus 𝑓𝑐𝑟𝑖𝑡 = 100𝑀𝐻𝑧.

Problem#2: When the processor is idle at frequency 𝑓𝑚𝑖𝑛for t seconds, then the energy
consumption is 𝑃 𝑓𝑚𝑖𝑛 × 𝑡. The break-even time is defined as the minimum idle interval for
which it worth turning the processor off. What is the break-even time of the processor?

Solution#2: Going into the sleep mode must provide sufficient energy saving to compensate for
the additional energy consumption (overhead) of 3 × 10−5 + 0 𝐽𝑜𝑢𝑙𝑒.

Energy(idle state, 𝑓𝑚𝑖𝑛) – Energy(sleep state) ≥ Energy(turning from sleep to run state)

𝑃 𝑓𝑚𝑖𝑛 × 𝑡𝑏𝑒𝑣 − 0 ≥ 3 × 10−5𝐽𝑜𝑢𝑙𝑒
𝑡𝑏𝑒𝑣 ≥

3×10−5𝐽𝑜𝑢𝑙𝑒

10−3× 10×0.53+20 𝑊𝑎𝑡𝑡
= 1.412𝑚𝑠.

Problem#3:

A workload-conserving schedule is defined as a schedule which always executes some jobs
when the ready queue is empty. Provide the workload conserving schedule for the 3 tasks
which minimizes the energy consumption without violating the timing constraints.
For this apply the critical frequency 𝑓𝑐𝑟𝑖𝑡 as the frequency for active task execution.

Reminder:

8
Embedded Information systems, Lecture #10, November 17, 2020.

What is the energy consumption of the schedule?

Solution#3:

thus the energy consumption of the schedule is

Since 𝑃 𝑓𝑐𝑟𝑖𝑡 = 30𝑚𝑊𝑎𝑡𝑡,

and 𝑃 𝑓𝑚𝑖𝑛 = 21.25𝑚𝑊𝑎𝑡𝑡,

30 × 1 + 21.25 × 1 + 30 × 1 + 3 × 101 + 30 × 0.8 + 21.25 × 0.2 𝜇𝐽𝑜𝑢𝑙𝑒 = 0.1395 𝑚𝐽𝑜𝑢𝑙𝑒.

𝜏1 𝜏3𝜏2idle idleturning on to run

Note that the interval [1,2] is shorter than the break/even time, therefore there is no

reason to switch to sleep mode.

Problem#4: Would it be possible to provide another workload-conserving schedule without
violating the timing constraints for the 3 tasks, and with less energy consumption?

Solution#4: Yes, the solution is to use the convex nature of the power consumption: to slow
down execution of tasks 𝜏1 and 𝜏3 to such extent as to avoid idle times after their executions.
Thus, even though we work below the critical frequency, we can save on energy consumption.

The energy consumption of

the schedule is (see figure):

21.25 × 2 + 30 × 1 + 3 × 101 + 10 × 0.83 + 20 × 1 𝜇𝐽𝑜𝑢𝑙𝑒 = 0.12762𝑚𝐽𝑜𝑢𝑙𝑒.

𝜏1 𝜏2 turning on to run 𝜏3

Reminder:

9Embedded Information systems, Lecture #10, November 17, 2020.

Problem#5: Would it be possible another schedule without violating the timing
constraints for the 3 tasks that is not workload-conserving but the energy consumption
is even lower than the optimal work/load conserving schedule?

Solution#5: Yes, the idea here is to batch the sleep mode into one block and execute
𝜏1 with critical frequency. This illustrates that to conserve energy; workload-conserving
strategies are not necessarily the best.
The energy consumption of the schedule is

(see figure):

ሺ

ሻ
30 × 1 + 3 × 101 + 30 × 1 + ሺ

ሻ
10 × 0.83 +

20 × 1 𝜇𝐽𝑜𝑢𝑙𝑒 = 0.115120𝑚𝐽𝑜𝑢𝑙𝑒.

0.115120𝑚𝐽𝑜𝑢𝑙𝑒

0.12762𝑚𝐽𝑜𝑢𝑙𝑒

0.1395 𝑚𝐽𝑜𝑢𝑙𝑒

Reminder:

10Embedded Information systems, Lecture #10, November 17, 2020.

6. Real-time (RT) communication
The general scheme:

In general, complicated

mechanisms, different queues.

The RT requirements are hard

to meet.

The criticality of time conditions
can be identified even on the
physical level.

In case of asynchronous communication
handshaking is unavoidable.

Handshaking with two wires:

The speed and time conditions of

the asynchronous communication

are determined by both actors,

since till the processing of the

received data, the transmitter

cannot forward the next data.

Requirements:

1. A RT communication protocol should have a predictable, and small maximum protocol
latency and a minimal jitter. The standard communication topology in distributed real-time
systems is multicast, not point-to-point. A message should be delivered to all receivers
within a short and known time interval.

2. Support for Composability: (1) Temporal encapsulation of the nodes:

11
Embedded Information systems, Lecture #10, November 17, 2020.

the communication system should erect a temporal firewall around the operation of the host,

forbidding the exchange of control signals across the Communication Network Interface (CNI).

Thus, the communication system becomes autonomous and can be implemented and validated
independently of the application software in the host.

(2) Fulfilling the obligations of the Client: a host implementing server functions can guarantee

its deadlines if the clients fulfill their obligations, and do not overload the host with too
many, uncoordinated service requests.

3. Flexibility: An RT protocol should be flexible to accommodate different system configurations

without requiring a software modification and retesting of the operational nodes that are not
affected by the change. As an example, imagine a car with and without extras.

4. Error detection: The communication system must provide predictable and dependable

services. Errors must be detected and corrected without increasing the jitter of the protocol

latency. If the errors cannot be corrected, the receivers should be informed about the error

with low latency. Loss of information is of particular concern.

Consider a node, at a control valve, that receives output commands from another node.

In case the communication is interrupted because the wires are cut, the control valve node
should enter a safe state autonomously, e.g. it should close the valve.
The communication system must inform the control valve node about the loss of communication
with low error detection latency. End-to-end protocols are needed.

(Three Mile Island Nuclear Reactor #2 accident on March 28, 1978).

12
Embedded Information systems, Lecture #10, November 17, 2020.

Flow control:
Explicite flow control:

5. Physical structure: point-to-point communication can easily result in high costs.
Physical networks should be based on a bus or a ring structure.

Example: PAR (Positive Acknowledgement or Retransmission) protocol:

Many variants of the basic PAR protocol are known, but they all rely on the following principle:
(1) The client at the sender’s site initiates the communication.
(2) The receiver has the authority to delay the sender via the bi-directional comm. channel.
(3) The communication error is detected by the sender, and not by the receiver.

The receiver is not informed when a communication error has been detected.
(4) Time redundancy is used to correct a communication error, thereby increasing the
protocol latency in case of errors.
Program of the sender:
(1) The sender initializes a retry counter to zero.
(2) The sender starts a local time-out interval.
(3) The sender sends the message to the receiver.
(4) The sender receives an acknowledgement message from the receiver within the
specified time-out interval.
(5) The sender informs its client about the successful transmission, and duly terminates.
If the sender does not receive a positive acknowledgement message from the receiver
within the specified time-out interval:
(a) The sender checks the retry counter to determine whether the given maximum number
of retries has already been exhausted.
(b) If so, the sender aborts the communication, and informs its client about the failure.
(c) If not, the sender increments the retry counter by one, and returns to (2).

13Embedded Information systems, Lecture #10, November 17, 2020.

Program of the receiver:
(1) If new message arrives at the receiver, the receiver checks whether this message has
already been received.

Example: Consider a bus system where a token protocol controls media access to the bus.

The length of time-out interval: 10+1+10+1=22 ms,

Here 𝑑𝑚𝑖𝑛 = 𝟏𝑚𝑠, a 𝑑𝑚𝑎𝑥 = ሺ𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑡𝑟𝑖𝑒𝑠ሻ ∗ 𝑡𝑖𝑚𝑒𝑜𝑢𝑡 + 10 𝑚𝑠 + 1 𝑚𝑠.
If the number of retries is two (i.e. we apply three trials), then dmax= 55 ms.

The value of some important features:

- jitter= 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 = 54 𝑚𝑠.
- The action delay, if we have global clock: 𝑑𝑚𝑎𝑥 = 55 𝑚𝑠.

- The action delay, if the global clock is not available:: 2 ∗ 𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛 = 109 ms.
- The error detection latency: 3*time-out: 66 ms.

This example illustrates that the explicit flow control in RT applications might be

disadvantageous due to the large jitter and error detection latency.

(2) If not, the receiver sends an acknowledgement message to the sender, and delivers the
message to its client.
(3) If yes, it just sends another acknowledgement message back to the sender.

(In this case the previous acknowledgement message has arrived at the sender out of the
specified time-out interval or failed to arrive).

If the granularity of the global
clock is 100 𝜇𝑠, then the message becomes permanent after 𝑑𝑚𝑎𝑥 + 2𝑔 = 55.2𝜇𝑠.

The maximum token rotation time (TRT) is 10 𝑚𝑠.The time needed to transport the message
on the bus is 1 ms.
since in worst-case the sender should wait 10 ms for the token, the message takes further 1 ms,
and on the way back the worst case is the same.

14
Embedded Information systems, Lecture #10, November 17, 2020.

Implicite flow control:

The communication is time-triggered. Both the sender and the receiver have a message
scheduling timetable, which were fixed in design-time. From this schedule it is clear at what
time the message is to be sent and received. The sender at the corresponding clock tick pushes
the message, while at the same time the receiver pulls the message (push-pull mechanism).
This approach fits better to the real-time requirements in many cases. E.g. error detection by
the receiver is immediately possible, if the expected message fails to arrive. (For the sender this
means a so-called fail-silent mode, where the absence of the message means the error state of
the sender.)

Global time-base is needed. The sender transmits only at fixed time instants, no handshaking

is applied, error detection is the role of the receiver, since it knows when a message should arrive.
Fault tolerance is solved by active redundancy: k copies of the message are transmitted, and
the transmission is successful unless at least one message arrives.
Summary of implicit flow control:
(1) The communication is initiated by clock tick.
(2) The receiver is expecting the message following the clock tick.

(3) Error is detected by the receiver, typically by realizing the absence of the message.

(4) For error correction active/hardware redundancy is applied.

The Time Triggered Architecture (TTA) and the Time-Triggered Protocols (TTPs)
A detailed description can be found in:

HERMANN KOPETZ, GÜNTHER BAUER: The Time-Triggered Architecture,
PROCEEDINGS OF THE IEEE, VOL. 91, NO. 1, JANUARY 2003, pp. 112-126.

15Embedded Information systems, Lecture #10, November 17, 2020.

Here follows only a brief description of TTA and TTP: It is devoted to implement hard real-time
(HRT) systems. The basic building block of the TTA is a node.
A node comprises in a self-contained unit (possibly on a single silicon die) a processor with
memory, an input–output subsystem, a TT communication controller,an operating system,
and the relevant application software.
Two replicated communication channels connect
the nodes, thus forming a cluster.
The cluster communication system comprises the
physical interconnection network and the
communication controllers of all nodes of the cluster.
In the TTA, the communication system is
autonomous and executes periodically
an a priori–specified time-division
multiple access (TDMA) schedule.
It reads a state message from the Communication Network Interface (CNI) at the sending node
at the a priori–known fetch instant and delivers it to the CNIs of all other nodes of the cluster
at the a priori–known delivery instant, replacing the previous version of the state message.

The times of the periodic fetch and delivery actions are contained in the message scheduling
table [the message descriptor list (MEDL)] of each communication controller.
It has two versions: the TTP/C, which serves fault tolerant solutions,

the TTP/A, which is suitable for cheap field bus applications.

Each node consists of a Host computer and a Communication Controller (CC).
The CNI is the interface within node between the host and the CC.

It is a dual-port RAM (DPRAM).

16Embedded Information systems, Lecture #10, November 17, 2020.

Data integrity is solved by the Non-Blocking Write
(NBW) Protocol (see later).
The local memory of the CC contains the
Message Description List (MEDL), that
determines which node can send, and which
can receive a message at a given time.
The size of the MEDL is determined by the
cluster round.

The TTP controllers contain - as independent hardware so-called Bus Guardian units, which
monitor the bus access patterns of the controlling bus, and stop the operation of the controller,
if the timing of the regular access patterns fails.
Important properties:
(1) The TTP is a time-division-multiple-access (TDMA) protocol.
(2) The CC is autonomous, which is controlled by the MEDL and the global clock.

This serves composability. The error of the hosts cannot influence the communication system,
because control signal cannot get through the CNI, and neither the MEDL can be accessed
from the host.

(3) The communication system is decided in design time (it is like a timetable at the railways):
it knows in advance when a message arrives, and when a message is to be sent.
If the message fails to arrive, the error is immediately detected.

(4) Naming: the name of the message and the sender should not be part of the message, it can
be read from the MEDL. At the same time, we can give different names to a given RT variable
within the software of different hosts.

(5) Acknowledgement: We know in advance that all correct receivers receive the message

of the correct sender.

17Embedded Information systems, Lecture #10, November 17, 2020.

As one of the receivers acknowledges the message, it can be assumed that all correctly
operating host has also received it.

(6) Fail-silence in the time domain: TTP assumes that the nodes support the “fail silence”
abstraction in the time domain, which means that the node either sends a message at right
time, or sends nothing. This property within the TTP controller is solved by the bus guardian.
The error handling in the magnitude domain is the responsibility of the host.
The TTP provides only CRC.

The basic CNI:
The CNI is the most important interface within a time-triggered architecture because it is the
only interface of the communication system that is visible to the software of the host computer.
It thus constitutes the programming interface of a TTP network.

Status Registers Control Registers
(S1) Global Internal Time (C1) Watchdog

(S2) Node Time (C2) Timeout Register
(S3) Message Description List (C3) Mode Change Request

(S4) Membership (C4) Reconfiguration Request
(S5) Status Information (C5) External Rate Correction

The Status Registers are written by the TTP controller, while the Control Registers by the host.
S1: The common clock of the cluster on two bytes.
S2: The clock of node.
S3: MEDL Pointer.
S4: As many bits as the number of participants within the cluster.

If one of the bits is “TRUE”, then that node was in operation within the last time-slot.

18
Embedded Information systems, Lecture #10, November 17, 2020.

Status Registers Control Registers
(S1) Global Internal Time (C1) Watchdog

(S2) Node Time (C2) Timeout Register
(S3) Message Description List (C3) Mode Change Request

(S4) Membership (C4) Reconfiguration Request
(S5) Status Information (C5) External Rate Correction

C1: The host periodically restarts; the controller checks it.
If the restart fails, then the controller – supposing error – stops sending messages.

C2: Written by the host. If the time is over, it will cause interrupt.
For example, later, the host can synchronize its clock to that of the cluster.

C3: Using this a new scheduling can be introduced.
C4: In case of error a reconfiguration can be initiated.
C5: Makes possible external clock synchronization.

Node Time Address D L I A
When What: message pointer direction length

The Message Description List (MEDL)

I: specifies whether the
message is an
initialization message or
a normal message.

A: contains additional protective information concerning mode changes and mode role changes.
Fault-Tolerant Units: Its role is to mask the failure of a node. If it implements fail-silent
abstraction, then it is enough to duplicate the nodes to tolerate a single value failure.
If the node does not implement the fail-silent abstraction, and can have value-failure at
the CNI, then Triple Modular Redundancy (TMR) is to be applied.

19
Embedded Information systems, Lecture #10, November 17, 2020.

If in case of node failure, nothing is known about the behaviour of the node, then byzantine
error might also occur, i.e. four nodes can mask the error.

Fundamental conflicts in protocol design
A balanced protocol design tries to reconcile many requirements.

which requirements are compatible with each other, and which requirements are in

It is important to understand

fundamental conflict with each other, and cannot be reconciled by any design decisions that
are made.

Conflict: External control ↔ Composability
Consider a distributed real-time system consisting of a set of nodes that communicate with each
other. Each node has a host computer with CNI. Composability in the temporal domain requires
that:
- The CNI of every node is fully specified in the temporal domain;
- The integration of a set of nodes into the complete system does not led to any change of

the temporal properties of the individual CNIs, and
- The temporal properties of every host can be tested in isolation with respect to the CNI.

If the temporal properties are not contained in the CNI specification, e.g. because the moment

when a message must be transmitted is external and unknown to the communication system,
then it is not possible to achieve composability in the temporal domain. If the temporal
properties of the CNI are fully specified, then low-level composability can be achieved.
There is, however, always the possibility that the application functions interact in an
unpredictable manner that precludes high-level composability.
In an event-triggered system, the temporal signals originate external to the communication
system, in the hosts of the nodes. It is thus not possible to achieve low-level

composability.

20
Embedded Information systems, Lecture #10, November 17, 2020.

Example: If all the nodes can compete at any point in time for a single communication channel
on a demand basis,then, it is impossible to avoid the side effects caused by the extra
transmission delay resulting from conflicts regarding the access to this single channel,
no matter how clever the medium access protocol may be. These extra transmission delays
can invalidate the temporal accuracy of the real-time images that are transported in the
message.
Conflict: Flexibility ↔ Error detection

Flexibility implies that the behaviour of a node is not restricted a priori.
In an architecture without replication, error detection is only possible if the actual behaviour
of the node can be compared to some a priori knowledge of the expected behaviour.
If such knowledge is not available, it is not possible to protect the network from a faulty node.
Example: Consider an event-triggered system with no regularity assumptions, where access
to a single bus is determined solely by the message priority: if there is no restriction on the rate
at which a node may send messages, it is impossible to avoid the monopolization of the network
by a single (possibly erroneous) node that sends a continuous sequence of messages of the
highest priority.

Example: If a node is not required to send a “heartbeat message” at regular intervals, it is
not possible to detect a node failure with a bounded latency.

Conflict: Sporadic data ↔ Periodic data

A RT protocol can be effective in either the transmission of periodic data or the transmission
of sporadic data, but not with both. The transmission of periodic data (e.g. data exchanges
needed to coordinate a set of control loops) must take place with minimal latency jitter.
Because the repetitive intervals between the transmissions of periodic data are known
a priori, conflict-free schedules can be designed in design time.

21
Embedded Information systems, Lecture #10, November 17, 2020.

Sporadic data must be transmitted with minimal delay, on demand, at a priori unknown points
in time. If an external event requiring the transmission of a sporadic message occurs at the
same time as the next transmission of the periodic data, then, the protocol must decide either
to delay the sporadic data, or to modify the schedules of the periodic data.

In either case, the latency jitter increases: one cannot satisfy both goals simultaneously.

Conflict: Single locus of control ↔ Fault tolerance
Any protocol that relies on a single locus of control has a single point of failure.
This is evident for a communication protocol that relies on a central master.
However, even the access method of token passing relies on a single locus of control at any
particular moment, with no consideration of time as the control element.
If the station holding the token fails, no further communication is possible until the token loss
has been detected by an additional time-out mechanism, and the token has been recovered.
This takes time, and also interrupts the real-time communication.
In some respects, the nontrivial problem of token recovery is related to the problem of
switching from a central master to a standby master in a multi-master protocol.

Conflict: Probabilistic access ↔ Replica determinism
Another fundamental conflict exists between the property of replica determinism (needed if
active redundancy is to be applied) and that of medium access based on probabilistic
mechanisms. If systems that rely on a single winner emerging from fine-grained race conditions
(e.g. bit arbitration, conflict resolution based on random numbers), it cannot be guaranteed
that the access to the replicated communication channels is always resolved identically by
competing nodes. Without replica determinism, each replica can come to different
correct result, thereby leading to inconsistency in the system as a whole.

22
Embedded Information systems, Lecture #10, November 17, 2020.

Performance Limits in TT systems

As in any distributed computing system, the performance of the TTA depends primarily on the
available communication bandwidth and computational power.
Because of physical effects of time distribution and limits in the implementation of the
guardians,

If a bandwidth utilization of about 80% is
a minimum interframe gap of about 5 µs must be maintained between frames to

guarantee the correct operation of the guardians.
intended, then the message-send phase must be in the order of about 20 µs, implying that
about 40 000 messages can be sent per second within such a cluster.

With these parameters, a sampling period of about 250 µs can be supported in a cluster
comprising ten nodes.
The amount of data that can be transported in the 20 µs window depends on the bandwidth:

If the bandwidth is 5Mbit/s then 5*106*20*10-6 = 100 bit (~12 byte) can be forwarded.

If the bandwidth is 1Gbit/s then 1*109*20*10-6 = 20 000 bit (2500 byte) can be forwarded.

Synchronizing ET and TT systems
The processor of the host operates in ET mode, while the network in TT mode.
This means that the CNI cannot be blocked without consequences.
The writing from the network is investigated.

Non-blocking Write Protocol (NBW):
At the interface there is one writer, the communication system, and many readers, the tasks
of the host. A reader does not destroy the information written by the writer, but the writer
can interfere with the operation of the reader.

In the NBW protocol, the writer is never blocked.

23
Embedded Information systems, Lecture #10, November 17, 2020.

It will thus write a new version of the message into the DPRAM of the CNI whenever a new
message arrives.
If a reader reads the message while the writer is writing a new version, the retrieved message
will contain inconsistent information and must be discarded.

If the reader is able to detect the interference, then the reader can retry the read operation
until it retrieves a consistent version of the message.
It must be shown that the number of retries performed by the reader is bounded.
The protocol requires a concurrency control field, CCF, for every message written.

Atomic access to the CCF must be guaranteed by the hardware.

The CCF is initialized to zero and incremented by the writer before start of the write operation.
It is again incremented after the completion of the write operation.
The reader starts by reading the CCF at the start of the read operation.
If the CCF is odd, then the reader retries immediately because a write operation is in progress.
At the end of the read operation the reader checks whether the CCF has been changed by the
writer during the read operation.
If so, it retries the read operation again until it can read an uncorrupted version of the data
structure.

Initialization: CCF:=0

Writer:

Start: CCF_old:=CCF;

CCF:=CCF_old+1;

<write into data srtucture>

CCF:=CCF_old+2;

Reader:

Start: CCF_begin:=CCF;

if CCF_begin=odd then goto Start;

<read data structure>

CCF_end:=CCF;

if CCF_end  CCF_begin then goto Start;

It can be shown that upper bound for the
number of read retries exists if the time
between write operation is significantly longer
than the duration of a write or read operation.

24
Embedded Information systems, Lecture #10, November 17, 2020.

Characteristics of a Communication Channel:

A communication channel is characterized by its bandwidth and its propagation delay.

Bandwidth: The bandwidth indicates the number of bits that can traverse a channel in unit time.

It is determined by the physical characteristics of the channel.

In a harsh environment, such as a car, it is not possible to transmit more than 10kbit/sec over a
single-wire channel or 1 Mbit/sec over an unshielded twisted pair because of EMI constraints.
In contrast, optical channels can transport gigabits of data per second.

Propagation Delay: The propagation delay is the time interval it takes for a bit to travel from
one end of the channel to the other end. It is determined by the length of the channel and the
transmission speed of the wave (electromagnetic, optical) within the channel.

The transmission speed of an electromagnetic wave in vacuum is about 300 000 km/sec, or
1 foot/nsec. Because the transmission speed of a wave in a cable is approximately 2/3 of the

transmission speed of light in vacuum, it takes a signal about 5 µs to travel across a cable of
1 km length.
The term bit length of a channel is used to denote the number of bits that can traverse the
channel within one propagation delay.

For example, if the channel bandwidth is 100 Mbit and the channel is 200 m long,
the bit length of the channel is 100 bits, since the propagation delay of this channel is 1 µs.

Limit to Protocol Efficiency: In a bus system, the data efficiency of any media access protocol
to a single channel is limited by the need of to maintain a minimum time interval of one
propagation delay between two successive messages.

Assume the bit length of a channel to be 𝑏𝑙 bits and the message length to be 𝑚 bits.

25
Embedded Information systems, Lecture #10, November 17, 2020.

Then an upper bound for the data efficiency of any media access protocol in a bus system is
given by:

𝑑𝑎𝑡𝑎 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 <
𝑚

𝑚 + 𝑏𝑙

Example: Consider a 1 km bus with a bandwidth equal to 100 Mbits/sec.
The message length that is transmitted over the channel is 100 bits.
length of the channel is 500 bits, and the limit to
the data efficiency is 100/ሺ500 + 100ሻ = 16.6%.

It follows that the bit

Properties of Transmission Codes:

The terms asynchronous and synchronous have different meanings depending on whether
they are used in the computer-science community or in the data-communication community.
In asynchronous communication, the receiver synchronizes its receiving logic with that of the
sender only at the beginning of a new message.

Since the clocks of the receiver and the sender drift apart during the interval of the message
reception, the message length is limited in asynchronous communication,
e.g. to about 10 bits in a UART (Universal Asynchronous Receiver Transmitter) device that
uses a low-cost resonator with a drift rate of 10−2𝑠𝑒𝑐/𝑠𝑒𝑐.

In synchronous communication, the receiver resynchronizes its receive logic during the
reception of a message to the ticks of the sender’s clock. This is only possible if the selected
data encoding guarantees frequent transitions in the bit stream.
A code that supports the resynchronization of the receiver’s logic to the clock of the sender
during transmission is called synchronizing code.

26
Embedded Information systems, Lecture #10, November 17, 2020.

NRZ code: (non-return-to-zero): non-synchronizing code
11010001: “1” corresponds to high level, “0” correspond to low level

Manchester code: synchronizing code

11010001: “1” corresponds to rising edge: from low to high, “0” corresponds to a
falling edge: from high to low. These edges appear in the middle of the clock interval. Always

the next bit tells whether the signal should return to the other level at time instant of the clock,
or not. If the new bit equals the previous one, then it should return.

This code is ideal from the point of view of resynchronization, but it has the disadvantage
that the size of a feature element, i.e. the smallest geometric element in the transmission

sequence, is half of the bit cell.

Modified Frequency Modulation Code (MFM):
The MFM code is a code that has a feature size of one-bit cell and is also synchronizing.
The encoding scheme requires distinguishing between a data point and a clock point.

A “0” is encoded by no signal change at data point;

a “1” requires a signal change at data point.

If there are more than two “0”s in sequence, the encoding rules require a signal change at
clock points.

27

Time Synchronization in Wireless Sensor Networks

Embedded Information systems, Lecture #10, November 17, 2020.

Classes of Synchronization:

- Internal versus external

The synchronization of all clocks in the network to a time supplied from outside the network
is referred to as external synchronization. NTP performs external synchronization, and so
do sensor nodes synchronizing their clocks to a master node.
Internal synchronization is the synchronization of all clocks in the network, without
a predetermined master time.The only goal here is the consistency among the network nodes.

- Lifetime: Continuous versus on-demand

The lifetime of synchronization is the period of time during which synchronization is required
to hold. If time synchronization is continuous, the network nodes strive to maintain
synchronization (of a given quality) at all times. For some sensor-network applications,

on-demand synchronization can be as good as continuous synchronization in terms of
synchronization quality, but much more efficient. During the (possibly long) periods of time

between events, no synchronization is needed, and communication and hence energy
consumption can be kept at a minimum. As the time intervals between successive

events become shorter, a break-even point is reached where continuous and on-demand
synchronization perform equally well. There are two kinds of on-demand synchronizations:

Event-triggered on-demand synchronization is based on the idea that to timestamp a sensor
event, a sensor needs a synchronized clock only immediately after the event has occurred.

It can then compute the timestamp for the moment in the recent past when the
event occurred (Post-facto synchronization).

28
Embedded Information systems, Lecture #10, November 17, 2020.

Time-triggered synchronization is used if we are interested in obtaining sensor data from
multiple sensor nodes for a specific time. This means that there is no event that triggers
the sensor nodes, but the nodes must take a sample at precisely the right time.

This can be achieved via immediate synchronization (where sensor nodes receive the order
to immediately take a sample and time-stamp it) or anticipated synchronization (where the

order is to take the sample at some future time, the target time). Anticipated synchronization

is necessary if it cannot be guaranteed that the order can be transmitted rapidly and
simultaneously to all involved sensor nodes. This is especially the case if sensor nodes are
more than one hop away from the node giving the order.
Analogously to the event-triggered post-facto synchronization, we might refer to time-
triggered synchronization as pre-facto synchronization.

- Scope: all nodes versus subsets
The scope of synchronization defines which nodes in the network are required to be
synchronized. Depending on the application, the scope comprises all or only a subset of the

nodes (where and when synchronization is required). Event-triggered synchronization can
be limited to collocated subset of nodes which observe the event in question.

- Rate synchronization versus offset synchronization
Rate synchronization means that nodes measure identical time-interval lengths.
In a scenario where sensor nodes measure the time between the appearance and
disappearance of an object, rate synchronization is a sufficient and necessary condition for
comparing the duration of the object’s presence within the sensor range of different nodes.

29
Embedded Information systems, Lecture #10, November 17, 2020.

Offset synchronization means that nodes measure identical points in time, that is at some
time t, the software clocks of all nodes in the scope show t. Offset synchronization is needed

for combining timestamps from different nodes.
- Timescale transformation versus clock synchronization

Time synchronization can be achieved in two fundamentally different ways.

We can synchronize clocks, that is make all clocks display the same time at any given moment.
To achieve this, we must perform rate and offset synchronization (or continuous offset
synchronization, which however is costly in terms of energy and bandwidth and requires
reliable communication links).

The other approach is to transform timescales, that is to transform local times of one node
into local times of another node.
The approaches in that clock synchronization requires either communication across the whole
network or some degree of global coordination.
Timescale transformation does not have this drawback, but instead requires additional
computations and memory overhead, since the received timestamps must be transformed.

- Time instants versus time intervals

Time information can be given by specifying time instants (e.g., “t=5”) or time intervals (“t∈
4.5,5.5 ”). In both cases, the time information can be refined by adding a statement of quality.

E.g., the time information may be guaranteed to be correct with a certain probability, or even
probability distributions can be given. Typically, the term time uncertainty is used.
In sensor networks the use of guaranteed time intervals can be very attractive.

d’

dCi(c)

Nj

Cj(a)

Ni

Ci(b)

Cj(c)

D

Nj

Ni

Ni Nj

d

Ci(b) Cj(b)
(b)

Cj(a)Ci(a)

30
Embedded Information systems, Lecture #10, November 17, 2020.

Synchronization techniques: Taking one sample

Unidirectional Synchronization: Node 𝑁𝑗 is not familiar with 𝑑, its knowledge is only
the fact, that the clock of node 𝑁𝑖 displayed the value
𝐶𝑖ሺ𝑎ሻ before the clock of node 𝑁𝑗 displayed 𝐶𝑗ሺ𝑏ሻ.

To perform synchronization, we must estimate either
the value of 𝐶𝑗ሺ𝑎ሻ or 𝐶𝑖ሺ𝑏ሻ.

If the limits 𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥 are known, then

መ𝐶𝑗 𝑎 ≈ 𝐶𝑗 𝑏 −
𝑑𝑚𝑖𝑛 + 𝑑𝑚𝑎𝑥

2
or መ𝐶𝑖 𝑏 ≈ 𝐶𝑖 𝑎 +

𝑑𝑚𝑖𝑛 + 𝑑𝑚𝑎𝑥

2

the clock of node Nj should be modified by መ𝐶𝑗 𝑎 − 𝐶𝑖ሺ𝑎ሻ or 𝐶𝑗 𝑏 − መ𝐶𝑖 𝑏 .

Having these estimates,

If the communication jitter ሺ𝑑𝑚𝑎𝑥 − 𝑑𝑚𝑖𝑛ሻ is large, then the synchronization will be inaccurate,

because the lower bound of 𝐶𝑗ሺ𝑎ሻ will be 𝐶𝑗ሺ𝑏ሻ − 𝑑𝑚𝑎𝑥, and the upper bound will be
𝐶𝑗ሺ𝑏ሻ − 𝑑𝑚𝑖𝑛, which is a wide range.

Bidirectional (round trip) synchronization:

Here node Nj knows that 0≤ 𝑑 ≤ 𝐷. 𝐷 = 𝐶𝑗 𝑐 − 𝐶𝑗 𝑎 . If 𝑑𝑚𝑖𝑛 ≤ 𝑑 ≤ 𝑑𝑚𝑎𝑥,

then maxሺ𝐷 − 𝑑𝑚𝑎𝑥 , 𝑑𝑚𝑖𝑛ሻ and minሺ𝑑𝑚𝑎𝑥, 𝐷 − 𝑑𝑚𝑖𝑛ሻ give the limits of d.

The estimate that can be computed here:

having lower bound 𝐶𝑗 𝑐 − 𝐷 − 𝑑𝑚𝑖𝑛 ,

and upper bound 𝐶𝑗 𝑐 − 𝑑𝑚𝑖𝑛.
መ𝐶𝑗 𝑏 ≈ 𝐶𝑗 𝑐 −

𝐷

2
,

The clock of node Nj

is to be modified by

መ𝐶𝑗 𝑏 − 𝐶𝑖 𝑏 .
With such a method the quality of the synchronization will be better.

Nk

Nj

Ni d’
d

Ci(b)

Ci(a) Cj(a)

Cj(b)
D

Ni Nj Nk

d’

dCi(c)

Nj

Cj(a)

Ni

Ci(b)

Cj(c)

D

31

The worst-case synchronization error:
𝐷

2
− 𝑑𝑚𝑖𝑛,

Embedded Information systems, Lecture #10, November 17, 2020.

that can be proved using the figure.
The method can be improved using the so-called probabilistic time
synchronization, where node Nj after receiving the timestamp checks

weather the value of
𝐷

2
− 𝑑𝑚𝑖𝑛 < than a defined threshold.

If not, then the request will be repeated.

Reference broadcasting synchronization:

In this case also a so-called beacon node 𝑁𝑘 is involved. The beacon sends a broadcast message
to the other nodes.

The delays are almost equal:

𝑑 ≈ 𝑑′. Thus መ𝐶𝑖 𝑏 ≈ 𝐶𝑖 𝑎 + 𝐷,

i.e., the clock of node Nj should be modified by 𝐶𝑗 𝑏 − መ𝐶𝑖 𝑏 .

It is an important property, that the synchronization of node Nj is performed without using it
radio channel.

Synchronization of multiple nodes:

(1) Single-hop synchronization with a set of master nodes which are synchronized e.g. using GPS;
(2) Partitioning the network into clusters: all nodes within a cluster can broadcast messages

to all other members of the cluster and thus reference-broadcast techniques can be used
to synchronize the cluster internally. Some nodes are members of several clusters and
participate independently in all corresponding synchronization procedures.
These nodes act as time gateways to translate time stamps from one cluster to the other;

(3) Tree construction: The most common solution of the multi-hop synchronization
problem is to construct a synchronization tree with a single master at the root.

The accuracy degrades with the
hop distance from the root!

