
© BME-MITBudapest University of Technology and Economics

Department of Measurement and Information Systems

Formal Modelling and Verification

Design and Integration of Embedded Systems

István Majzik

Department of
Measurement and
Information Systems

© BME-MIT 2

The role of formal verification

© BME-MIT 3

Example software lifecycle (V-model)

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System val. designIs the design correct w.r.t. the specification?

Answer: Formal (mathematically precise) modeling
+ verification of properties

© BME-MIT 4

Techniques and measures in standards

 IEC 61508:
Functional
safety in
electrical /
electronic /
programmable
electronic
safety-related
systems

 Example:
Software
architecture
design

© BME-MIT 5

Goals of formal modeling and verification

System model Formalized properties

Automated
model checker tool

OK
Counter-
example

correct faulty

Design decisions Specified requirements

© BME-MIT 6

Modeling with timed automata

© BME-MIT 7

Goals of formal modeling and verification

• Modeling with timed automata

• Timed automata can also be derived from higher-
level models (e.g., from UML state machines)

System model Formalized properties

Automated
model checker

OK
Counter-
example

correct faulty

© BME-MIT 8

Automata and variables

 Goal: Modeling event driven, state based behavior

 Basic formalism: Finite state machine (FSM)

o Control locations (with names), as part of the state of the FSM

o Transitions among control locations

 Extension: Using integer variables

o Modelling computations with integer arithmetic

o Types and ranges of potential values can be specified

o Constants can be defined

 Using integer variables on transitions

o Guard: Conditions on variables
(guard shall be true in order to enable the transition)

o Action: Assignments to the variables

© BME-MIT 9

Example: Automaton with variables

Declarations:
bool blocked0 = false;
bool blocked1 = false;
int turn = 0;

Pseudo-code and model of an automaton:

P0

9

© BME-MIT 10

Extensions using clock variables
 Goal: Modelling time dependent behavior

o Time passes in given states of the component

o Relative time measurement by resetting and reading timers;
behavior depends on timer value (e.g., timeout)

 Model extension: Clock variables
o Represent timers

o Automatically measure time elapse by a uniform constant rate

 Using clock variables on transitions:
o Guard: Condition over clock variables and constants

o Action: Resetting selected clock variables (independently)

 Use of clock variables in control locations:
o Location invariant (state invariant): Condition over clock

variables, being in a location is valid until its invariant holds

© BME-MIT 11

Timed automata (in the UPPAAL tool)

Control location
name

Guard

Invariant

Action

clock x;

bool activated;

Example: Revolving door

Action:
clock reset

© BME-MIT 12

Role of state invariants and guards

Guard

Invariant

The value of clock x is in the range [4, 8] when leaving the location open

4 8 t

clock x;

bool activated;

© BME-MIT 13

Extensions for modeling distributed systems

 Goal: Modeling networks of interacting timed automata

o Interaction: Simultaneous execution of transitions in different automata

o Represents synchronous communication (rendezvous)

• Sending and receiving of a message occurs at the same time

• This primitive can also be used to model asynchronous communication

 Model extension: Synchronized actions

o Channels for message exchange (synchronous channels)

o Message sending action: ! operator on the channel
Message receiving action: ? operator on the channel

o E.g., on the channel a the actions are a! and a?

 Parameterization

o Arrays of channels (indexed)

• E.g., a[id] is a channel indexed by the value of variable id

• Useful in case of several participants and interactions

a! a?

chan a;

© BME-MIT 14

Example: Modeling an interaction (pushing a button)

Declarations:

clock t, u;

chan press;

Switch:

User:

“Receiving a message”

(interaction)

“Sending a message”

(interaction)

© BME-MIT 15

Further extensions
 Broadcast channel

o Single sender (able to send without receiver)
o Several receivers (all synchronized that are

ready for synchronization)

 Urgent channel: prohibit time delay
o The synchronization is executed

without delay
(instant transitions are possible before it)

 Urgent state: prohibit time delay
o Time is not allowed to progress in the state

 Committed state: Atomic state transitions
o Before executing the outgoing transition, execution of a

transition of another automaton is not allowed:
the incoming and the outgoing transitions are executed in an
atomic operation

a!

No state invariant
is allowed here

No time related guard
is allowed here

urgent chan a;

C

U

a!

broadcast chan a;

a? a? a?

© BME-MIT 19

Example: Modeling the transfer of messages

ReceiverSender

REQUEST

ACKNOWLEDGE

ACCEPT

DATA

DATA

DATA

Connecting

Start Start

Connecting

Connected Connected

Receiver
process

Sender
process

SenderToReceiver

SenderMessage

ReceiverToSender

ReceiverMessage

Structure of the model:Message sequence:

int SenderMessage;

chan SenderToReceiver;

int ReceiverMessage;

chan ReceiverToSender;

const int REQUEST = 1;

const int ACCEPT = 2;

const int ACKNOWLEDGE = 3;

const int DATA = 4;…

Message buffer
and channel for
synchronization

Message buffer
and channel for
synchronization

© BME-MIT 20

Example: Automata models

Sender: Receiver:

Sending is
prepared and
executed from
an urgent state

Committed
state between

setting
message buffer

content and
synchronization
on the channel

© BME-MIT 22

Example: Design of real protocols

© BME-MIT 23

Example: Design of real protocols

What happens
in case of irrelevant

input messages

What happens in case of timeout waiting for an
expected input message

Time-
dependent
transfer of
messages

Setting timers for
measuring timeout
and assuring timely

communication

© BME-MIT 24

The UPPAAL tool set
 Development (1999-):

o Uppsala University, Sweden

o Aalborg University, Denmark

 Web page (information, downloading, examples):
http://www.uppaal.org/

 Related tools:
o UPPAAL CoVer: Test generation

o UPPAAL TRON: On-line testing

o UPPAAL PORT: Designing component based systems

o …

 Commercial version:
http://www.uppaal.com/

http://www.uppaal.org/
http://www.uppaal.com/

© BME-MIT 25

A
u

to
m

at
o

n
 m

o
d

el

© BME-MIT 26

Si
m

u
la

to
r

© BME-MIT 27

Formalizing requirements
with temporal logics

 --> 

© BME-MIT 28

Goals of formal modeling and verification

System model Formalized properties

OK
Counter-
example

correct faulty

• Precise formalization of properties
(requirements) to support automated
checking

Automated
model checker

© BME-MIT 29

What are the formalized properties?

An example to illustrate the properties to be formalized:

 The operating modes of an air-conditioner:

o Switched-off, switched-on, faulty,
light cooling, strong cooling, heating, ventilating

 Requirements for the air-conditioner:

o After switched-on, it shall start ventilating

o Strong cooling is allowed only after light cooling

o Heating shall be followed by ventilating

o The faulty air-conditioner shall not perform heating

o ...

© BME-MIT 30

State based properties

 Local: Properties to be evaluated in a given state
o Evaluation is possible using the current values of the

state variables (and clock variables)

o Example: „In the initial state ventilating shall be
provided”

 Reachability: Properties to be evaluated on a
sequence (trace) of states
o Evaluation is possible on the state space of the system

• Example: „Heating shall be followed by ventilating”

o Typical categories of reachability properties:
• „Safety” of the system

• „Liveness” of the system

© BME-MIT 31

Safety and liveness properties
 Safety properties: Specify that each state shall be safe,

i.e., “something bad shall never happen”

o ”In each state the pressure shall be lower than the critical value.”

o ”In each operating state the door shall be closed.”

o “There is no deadlock in the protocol.”

o Invariant properties (i.e., for each state)

 Liveness properties: Specify that a desired state is reachable,
i.e., ”something good will happen”

o “After switch-on, the press shall eventually produce the plate.”

o “After sending a request the reply shall be received”

o “The process shall compute the required result”

o Existential properties (i.e., for the desired state)

© BME-MIT 32

Language to formalize reachability properties

 Reachable states are considered in logic time:

• The present: The current state

• The next time point: The subsequent state(s)

 Temporal operators (referring to logic time) are
defined to express the reachability properties

o Typical temporal operators: „always”, „eventually”,
„before”, „until”, „after”, …

o Temporal logic: Formal language to express
propositions qualified in terms of logic time

© BME-MIT 33

Temporal logics

 Linear time:
The subsequent states form a linear sequence:
each state has only one successor
→ logic time forms a linear timeline

 Branching time:
The subsequent states form
a tree structure:
each state may have
multiple successors
→ logic time forms branching timelines

s2s1 s3

{Green} {Yellow} {Red}

s4

{Red, Yellow}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3s3

{Red}

© BME-MIT 34

The computational tree

Computational tree:
Structure of the
potential successor
states

s5

s2s1 s3 s4

{Green} {Yellow} {Red} {Red, Yellow}

{Blinking}

s4

{Red, Yellow}

s5

{Blinking}

s3

{Red}

s4

{Red, Yellow}

s5

{Blinking}

s1

{Green}

s5

{Blinking}

s2

{Yellow}

s3

{Red}

s5

{Blinking}

s3

{Red}



Automaton (FSM)
with labelled states

© BME-MIT 35

Quantifying paths and characterizing states
 Operators that quantify the paths starting

from a given state:
o A: for all paths from the given state

o E: for at least one (existing) path from the given state

 Operators that characterize states along
a given path:
o F: for a state eventually along the path (“future”)

o G: for all states along the path (“globally”)

o X: for the next state of the path (“next”)

o U: for states until reaching a specified state (“until”)
• E.g., Yellow U Red means that states shall be labeled with

Yellow until reaching a state labeled with Red

© BME-MIT 36

The Computational Tree Logic (CTL)
 Composite operators are formed

o First quantifying paths using operators A, E; then
characterizing states along the path by operators F, G, X, U

o Composite operators:
• For all paths: AF, AG, AX, A(. U .)

• For at least one path: EF, EG, EX, E(. U .)

o Examples:
• EF Red: There shall exist a path where a state with Red is reached

• AG Green: For all paths, all states shall be labeled with Green

• E(Yellow U Red): For at least one path, states shall be labeled with
Yellow until a state with label Red is reached

 UPPAAL: Restricted version of CTL is used
o AF, AG, EF, EG operators at the beginning of the formula

© BME-MIT 37

Summary of temporal operators in UPPAAL

 and  are Boolean expressions on clocks, variables and location names

Operator Informal semantics UPPAAL notation

AG  For all paths,
for all states 

A[] 

AF  For all paths,
for a state eventually 

A<> 

EG  For at least one path,
for all states 

E[] 

EF  For at least one path,
for a state eventually 

E<> 

AG( => AF ) After  always   --> 

There is no deadlock AG not deadlock

© BME-MIT 38

Composite operators for all paths

AG : For all paths,
for all states  is true

AG  AF 

AF : For all paths,
for a state eventually 
becomes true

© BME-MIT 39

Composite operators for at least one path

 Is there a relation between AG and EF?

 Is there a relation between AF and EG?

EG  EF 

EG : There is at least one path,
where for all states  is true

EF : There is at least one path,
where eventually  becomes
true

© BME-MIT 40

Conditional reachability

 AG( => AF )   --> 
For all paths, for all states: if  is true then it implies that on all
paths eventually a state occurs in which  becomes true

 Reachability with a timing condition:  --> ( and x <= t)
where x is a clock variable that is reset when  becomes true

 --> 

© BME-MIT 41

Examples: formalizing properties using temporal logic

Let us consider an air-conditioner
 States are characterized using the following local properties:

{Switched-off, Switched-on, Faulty, Cooling, Heating,
Ventilating}

To formalize requirements:
 The local properties can be used in the requirements

 In a state several local properties may hold

 The reachability properties are defined considering behaviour
from the initial state of the system

 The behaviour of the air-conditioner may not be known when
the properties are formalized

© BME-MIT 42

Examples: formalizing properties using temporal logic

States of the air-conditioner are characterized using propositions:

{Switched-off, Switched-on, Faulty, Cooling, Heating, Ventilating}

Examples for formalized properties:

 The air-conditioner shall not perform cooling and heating at the
same time:

AG ((Cooling  Heating))

 The ventilating mode shall eventually be turned on:

AF (Ventilating)

 The air-conditioner can be operated (being switched on) in such a
way that it does not perform cooling:

EG (Switched-on  ( Cooling))

 If the air-conditioner is faulty then it shall eventually be switched
off:

AG(Faulty => AF (Switched-off)) or Faulty --> Switched-off

© BME-MIT 43

Model checking

System model Formalized properties

OK
Counter-
example

correct faulty

Temporal logic propertiesTimed automata model

Automated
model checker

© BME-MIT 44

The UPPAAL model checker
 Properties can be formalized using temporal logic

o Verification of the properties is automated

 Verification is performed by an exhaustive exploration
of the state space of the model
o Breadth-first, or depth-first search can be configured

 Diagnostic trace can be generated
o Counter-example (for safety properties) or

witness (for liveness properties)

o Shortest, fastest, or some (any) diagnostic trace can be
configured

o The diagnostic trace can be loaded into the simulator to
investigate and debug the behaviour

© BME-MIT 45

The UPPAAL model checker

© BME-MIT 46

Counter-example in the simulator

© BME-MIT 47

A case study

© BME-MIT 48

An engineering task
 Let us consider a concurrent (multi-process) system

 At most one process is allowed to access a shared
resource at a time: mutual exclusion is required
o Example: Use of communication channel as resource

o Access to resource: “Critical sections” in the programs;
at most one process is allowed to be in critical section

o The platform (OS, framework) does not give support:
no semaphore, no monitor, etc.

o Only shared variables can be used (atomic reading/writing)

 How to do it?
o Classical solutions (Peterson, Lamport, Fischer etc.)

o Custom algorithm

48

© BME-MIT 49

A solution for the mutual exclusion problem

 2 processes, 3 shared variables (H. Hyman, 1966)
o blocked0: The first process (P0) wants to enter the critical section

o blocked1: The second process (P1) wants to enter the critical section

o turn: Which process will enter (P0 in case of 0, P1 in case of 1)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section here

blocked0 = false;

// Do other things

}

while (true) {

blocked1 = true;

while (turn!=1) {

while (blocked0==true) {

skip;

}

turn=1;

}

// Critical section here

blocked1 = false;

// Do other things

}

Is this algorithm correct?

P0 P1

© BME-MIT 50

Properties to be verified

 Mutual exclusion:
o At most one process can be in the critical section

(it shall never happen that two processes are there)

 It is possible to enter the critical section:
o P0 is able to enter the critical section

o P1 is able to enter the critical section

 There is no starvation:
o P0 will eventually enter the critical section on all paths

o P1 will eventually enter the critical section on all paths

 Freedom from deadlock:
o The two processes shall not stop executing

© BME-MIT 52

The model in UPPAAL (first version)
Declarations:

bool blocked0;
bool blocked1;
int[0,1] turn=0;
system P0, P1;

The P0 automata:

Modeling techniques used:
• Global declaration of shared variables
• Limiting the range of variables

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

© BME-MIT 53

The model in UPPAAL (second version)
Declarations:

int[0,1] blocked[2];
int[0,1] turn;
P0 = P(0);
P1 = P(1);
system P0,P1;

The P template with pid parameter:

Modeling techniques used:
• Global declaration of shared variables
• Limiting the range of variables
• The processes are instantiated using the

same template
• Instantiation with parameters (here: pid)
• Using arrays for variables (here: blocked)

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

P0

© BME-MIT 54

Formalizing properties in UPPAAL

 Mutual exclusion:
o Only one process may enter the critical section at the same time:

A[] not (P0.cs and P1.cs)

 Freedom from deadlock:
o The two processes shall not stop executing: A[] not deadlock

 It is possible to enter the critical section:
o P0 is able to enter the critical section: E<>(P0.cs)

o P1 is able to enter the critical section: E<>(P1.cs)

 There is no starvation:
o P0 will eventually enter the critical section on all paths: A<>(P0.cs)

o P0 will eventually enter the critical section on all paths: A<>(P1.cs)

© BME-MIT 55

Verifying the properties in UPPAAL

 There is no deadlock

 It is possible to enter the critical section
o Each process is able to enter the critical section

 The mutual exclusion property is not satisfied!
o The model checker produces a diagnostic trace (counter-example):

There is a specific interleaved behavior in which both processes are
in the critical section at the same time

o The counter-example can be investigated in the simulator

 Starvation cannot be checked without modelling time-
dependent behavior
o Trivial counter-examples may include “waiting forever” in any state

o Modifying the model: Urgent states (if valid)

o Here: there is still a cyclic behavior that results in starvation

© BME-MIT 56

Correction of the mutual exclusion

New algorithm by Peterson

 For process P0
(for P1 it is similar):

Peterson:

while (true) {

blocked0 = true;

turn=1;

while (blocked1==true &&
turn!=0) {

skip;

}

// Critical section

blocked0 = false;

// Do other things

}

Hyman:

while (true) {

blocked0 = true;

while (turn!=0) {

while (blocked1==true) {

skip;

}

turn=0;

}

// Critical section

blocked0 = false;

// Do other things

}

© BME-MIT 58

Summary: Properties of model checking
 Advantages:

o It offers a complete exploration of the state space of the model

o It is possible to check huge state spaces (using compact representation)

• 1020, or even 10100 states can be checked automatically (in specific cases)

o There are fully automated tools, there is no need to perform manual
adjustment, mathematical operations, or heuristics

o Diagnostic trace is generated, which supports debugging and correction

 Problems:
o Scalability is limited (state space must fit into memory)

o Effective for control-oriented models

• Complex data structures result in huge state space

o It is not easy to generalize the results

• If a protocol is correct for 2 processes, is it correct for N processes as well?

o The formalization of properties is difficult

• There are different „temporal logic languages”

