Formal Modelling and Verification

Design and Integration of Embedded Systems

Istvan Majzik

Department of
Measurement and
Information Systems

Budapest University of Technology and Economics © BME-MIT

Department of Measurement and Information Systems

The role of formal verification

[_[Ofx]

User
JAYITAS_Rt :RELIABILITY:1,0e-7 Oin 20 1,0e-15

SELECTION | YALUES | DRAHING PARAHETERS | PRINT | EXPORT | QUIT

<<EFE_8W, Redundaney Manager, Variant2->
]

<<SFE_8W, Redundancy Manager; Variantl -~
A

==propagation== =<propagation=» 9' —
<<GFE_H=» <<SFE_Hyy>»
Murikaallomas_A_HWY Munkaallomas_B_HWY
e ——————— —————
e —— e ——
7.9500e—01 |

<<SLE_HWi=» <<SLE_GW, Variant! > <<SLE_g¥, Variant2=> <<SLE_HW>»
Komm_A_HWw Komm_A Komim_8 Komm_B_Hii
t | I i 1 t |
\ / 5.000e01 |
<<GLE_GW=> <<SLE_SW=> <<SLE_SW>» <<SLE_SW=> 2.501e01 L
Adatoyiftn__1 Adatoyuftn_A_2 Adatowuit_B_2 Adatgyuito_B_1
I |
[1 [11 1 [1

f \ \ e ‘ . . n
\[\z Xf \/ 1,000e+00 2,476e+03 4,9651e+03 7,426e+03 9,9%1e+03
‘ <<SLE_HW=~ ‘ ‘ <<SLE_HW»= | «<SLE_HW/»» | - - -
{+time)LINLIN Xmin- 1,000e+00 Xmax= 9,901e+03 Ymin- 1,673 04 Ymax= 9,99901

| <=5LE_HW>> |
Adatgyujta_A_1_HW Adatgyujto_A_2 HW ‘ ‘ Adatgyujto_B_2_HW Adatgyujta_B_1_HW
I | I |

T © BME-MIT 2

EGYETEM 1762

Example software lifecycle (V-model)

Operation,
maintenance
~ ‘ N\
Requirement Is the design correct w.r.t. the specification?

analysis

System
specification

Answer: Formal (mathematically precise) modeling
+ verification of properties

)

Architecture System
design |/ 1 design | 7 integration
Module test Module
. - - - > I
design verification

Module
implementation

Techniqgues and measures in standards

IEC 61508:

Functional
safety in
electrical /
electronic /
programmable
electronic
safety-related
systems

Example:
Software
architecture
design

Table A.2 — Software design and development:
software architecture design (see 7.4.3)

Technique/Measure* Ref SIt1 SiL2 SIL3 SiLa
1 Fault detection and diagnosis C.3.1 R HR HR
2 Error detecting and correcting codes C.3.2 R R HR
3a Failure assertion programming C.3.3 R R HR
3b Safety bag technigues C.3.4 -s R R R
3c Diverse programming C.3.5 R R R HR
3d Recovery block C.3.6 R R R
3e Backward recovery C.3.7 R R R
3f Forward recovery C.3.8 R R R 3]
3g Re-try fault recovery mechanisms c.39 R R R HR
3h Memorising executed cases C.3.10 - R R HR
4 Gracetul degradation C.3.11 R R MR HR
Artificial intelligence - fault correction C.3.12 —=- NR NR NR
6 Dynamic reconfiguration C.3.13 NR NR NR
7a Structured methods including for exampie, JSD, c.2.1 HR HR HR HR
MASCOT, SADT and Yourdon.
7b Semi-formal methods Tgb7le R R HR HR
7¢ Formal methods including for exampte, CCS, CSP, HOL, C.2.4 R R HR
LOTOS, OBJ, temporal logic, VDM and Z
U e Uy SPoC I IC Ao oS B e ——
NOTE - The measures in this table concerning fault tolerance {control of failures) should be considered with the
requirements for architecture and control of failures for the hardware of the programmable electronics in
IEC 61508-2.
* Appropriate techniques/measures shall be selected according to the saiety integrity level. Alternate or
equivalent techniques/imeasures are indicated by a letter following the number. Only one of the alternate or
equivalent techniques/measures has to be satisfied.

© BME-MIT 4

Goals of formal modeling and verification

Design decisions Specified requirements
System model Formalized properties

correct Automated faulty
model checker tool

Counter-
example

OK

© BME-MIT 5

Modeling with timed automata

o press? t=0 Light press? t<3 Bright
Q < >
prest

© BME-MIT 6

Goals of formal modeling and verification

~

(s Modeling with timed automata

 Timed automata can also be derived from higher-
level models (e.g., from UML state machines)

-)

System model Formalized properties

Automated faulty
model checker

Counter-
example

correct

OK

© BME-MIT V4

Automata and variables

" Goal: Modeling event driven, state based behavior
= Basic formalism: Finite state machine (FSM)

o Control locations (with names), as part of the state of the FSM

o Transitions among control locations

= Extension: Using integer variables
o Modelling computations with integer arithmetic
o Types and ranges of potential values can be specified
o Constants can be defined

= Using integer variables on transitions

o Guard: Conditions on variables
(guard shall be true in order to enable the transition)

o Action: Assignments to the variables

© BME-MIT 8

Example: Automaton with variables

Declarations:
bool blockedO = false;

bool blocked1 = false;
int turn =0;

Pseudo-code and model of an automaton:

while (true) {
blocked0 := true;
while (turn!=0) {
while (blockedl—true)
skip;
}
turn := 0;
}
// Critical section (cs)

blocked0 := false;

// Do other things

PO

{

Cs

blockedO:=false

-~

W
Check_turn N
>

Check_blocked

© BME-MIT 9

turm:=0

blocked1==true

PO

My _turn

blocked1==false

Wait_blocked

Extensions using clock variables

Goal: Modelling time dependent behavior
o Time passes in given states of the component

o Relative time measurement by resetting and reading timers;
behavior depends on timer value (e.g., timeout)

Model extension: Clock variables

o Represent timers

o Automatically measure time elapse by a uniform constant rate
Using clock variables on transitions:

o Guard: Condition over clock variables and constants

o Action: Resetting selected clock variables (independently)
Use of clock variables in control locations:

o Location invariant (state invariant): Condition over clock
variables, being in a location is valid until its invariant holds

© BME-MIT

10

clock x:

|

Control location

name

Timed automata (in the UPPAAL tool)

Example: Revolving door

g bool activated:; / Action
idle

x=0,
activated=false

O activated = frue
(;2{:) <ii§:)1wan
=0

Action:

clock reset

¥
Invariant
apening
X<=h

.

Guard

ClIIISir‘IgO< == =[]
X<=6

© BME-MIT

11

Role of state invariants and guards

clock x: dle 5 activated = true
bool activated,; % é) wait

x=0

closed apening
<=5 (A)Q X<=h

ek w==R Guard }
=0, _
activated=false

clasing O(N ==d] w=(] é jp.-n

X<=h

The value of clock x is in the range [4, 8] when leaving the location open

[
»

4 8 t

© BME-MIT 12

Extensions for modeling distributed systems

= Goal: Modeling networks of interacting timed automata
o Interaction: Simultaneous execution of transitions in different automata

o Represents synchronous communication (rendezvous)
* Sending and receiving of a message occurs at the same time

* This primitive can also be used to model asynchronous communication

= Model extension: Synchronized actions P Y iR}
o Channels for message exchange (synchronous channels) : Q: : Q :

o Message sending action: | operator on the channel I gl 1 [ao1
Message receiving action: ? operator on the channel I 11 I

o E.g., on the channel a the actions are a! and a? : : : :

= Parameterization T Thana

o Arrays of channels (indexed)
e E.g., a[id] is a channel indexed by the value of variable id

e Useful in case of several participants and interactions

© BME-MIT 13

Example: Modeling an interaction (pushing a button)

Declarations:

clock t, u;
chan press;

“Receiving a message”
(interaction)

press? t>=3

Switch: Off e o Lght o g Bright
O “ =
press?
User- oressl U=0 LightOn “Sending a message”
Py (interaction)
Think N A
Press u=>a
press! u=0 ToBright press BrightOn
> =
u=3
pPress

© BME-MIT 14

Further extensions

= Broadcast channel broadcast chan a:

o Single sender (able to send without receiver) é)
o Several receivers (all synchronized that are
a? a? a?

ready for synchronization) 1a!
= Urgent channel: prohibit time delay , urgent chan a;

o The synchronization is executed No state invariant
WithOUt deIaY : : : Q\ is allowed here
(instant transitions are possible before it) l al No time related guard

< isallowed here

= Urgent state: prohibit time delay !

o Time is not allowed to progress in the state

= Committed state: Atomic state transitions

o Before executing the outgoing transition, execution of a
transition of another automaton is not allowed: @
the incoming and the outgoing transitions are executed in an l

atomic operation

15

© BME-MIT

Example: Modeling the transfer of messages

Message sequence: Structure of the model:
i SenderMessage .
Sender Receiver Sender 8 Receiver
I SenderToReceiver
I process > process
| |
Start Start ReceiverMessage
: REQUEST : ReceiverToSender
i > €
Connecting Connecting k
) ACCEPT ; .
€ : int SenderMessage; Message buffer
: : chan SenderToReceiver; and channel for
: ACKNOWLEDGE : synchronization
: > int ReceiverMessage;
Connected Connected chan ReceiverToSender;
| DATA):
: DATA : const !nt REQUEST =1;
[g const int ACCEPT = 2;
: DATA >: const int ACKNOWLEDGE = 3;
| I
| |

const int DATA = 4;

© BME-MIT 19

Example: Automata models

Sender:
/ Committed Start @
state be.tween S_end?rMe_ssaEe:;{EaJEET N
setting I
message buffer l
Content_ an_d \ SenderToReceiver J
synchronization _——m=

kon the channel

ReceiverMessage==ACCEPT
ReceiverToSender?

Sending is
prepared and
executed from /| SenderMessage:=ACKNOWLEDGE |
an urgent state | i
: l
senderToReceiver

- S - - - e e e
Connected

SenderMessage:=DATA

© BME-MIT

Receiver:

Start @

SenderMessage==REQUEST
SenderToReceiver?

¥
Connecting U

ReceiverMessage:=ACCEPT
©
ReceiverToSender

O

SenderMessage==ACKNOWLEDGE
SenderToReceiver?

W
Connected

SenderMessage==DATA
SenderToReceiver?

20

Example: Design of real protocols

ul?
5 CONN_DISCONN
m_T_rtd=m_clock-s.cts

T
©
m lirner i=0, s 2==CONN_DISCONN
m_timer_h=0 @ m_T_rid=m_clock-s.cts
=
:.Ef;saﬁe‘;:EONN REQ, m_timer_h=T _h open_m? m_timer_h>T_h
n.'l T i=T ma‘x. open_m? m_timer_h:=0
m ljmer i= s.messagesCONN_ACK,
@ m_timer_h:=0 /E\ s.ts=m_clock, ls_tmp=s.ts,
o = m_timer_i=0, s.cts=ts_tmp, m_timer_h=0
open_mi I(,_\m timer h=0f\m T =T _max-m T rtd
m_timer_i=m_T_i 1_out? \(—:/ \(—:/
m_timer 5 CONN_ANS _
m_clock=0 m T rid=m dode-s.cts s.message=CONN_DATA,

s.ts=m_clock,
s.cts=ts_tmp

s.message=CONN_DISCONN, ts tmp=s.ts

s.ts=m_clock, m_timer_i=0,

s.cls=ts_tmp E\ m_timer_h=0
=

m_timer_h=T_h
m_timer_h:=0

3_m2s_in! m_timer_i>m_T _i

m_T_rtd=m_clock-s.cls
s.message=CONN_DISCONM, ts tmp=sts

s.1s=m_clock, m_timer_i=0 m_timer_i=0,
s.cls=ts_tmp = m_timer_hb=0 m timer &=m T i m_timer_h=0,
() (S m_T_i=T_max-m_T_ri
= (= T =T T rtd
s_timer_i=0 INN_DISCONN
s_timer_h=0 s_T rd=s_clock-s.cts
s_timer_i=0, s JONN_DISCONN
s_timer_h=0 clock-s.cls

s T _iFT_max-s T _rid
s_timer_i=0,
s_timer_h=0

s_timer_h>T_h
s_timer_h=0

s_timer_h=T_h
s_timer_h=0

open_s?

open_s?

s message=CONN_ANS s_timer_h=T_h

R open_s? CONN_REQ sts=s_clock,
. s_timer_i=0, m2s_out? s_timer i=0, s.cis=is_tmp
S s_timer_h=0

s T rid=s_clock-s.cts s timer h=0 _ s T i=T_max meg_som i)
© © ©

T_i=T_max-s_T rd,
s_timer_i=0,
s_timer_h=0

Is_tmp=s.ts
s_timer_h=0

s_timer_i=s T i
s_timer_h=T_h s_timer_i:=0
s_timer_h=0

P y s.message=CONN_DATA,
" in! & essae-conN DiscONN ey ok,

sts=s_clock,

scls=ls_lmp s_limer_h=0
msg_s2m_in! @ @ A e timer_i»s T i

& s message=CONN_DISCONN, & 1s_tmpssils &
sts=s_clock, s_timer
scls=ls_lmp s_limer_h=0

© BME-MIT 22

Example: Design of real protocols

-

Setting timers for A
measuring timeout

What happens

> in case of irrelevant ime-
and assuring timely . Ui
communication input messages dependent
) transfer of
messages
m_timer h=T h open_mY m_timer h=T h
m_timer h:=0
s.message=COMNM ACK,
s tmp=s.s, s.ts=m_clock, s tmp=s.ts,
m_timer i=0, s.clts=ts_tmp, m timer b=l
m_timer h=l_‘lﬁl'l'l T_i=T_max-m_T_rtd @ Msg_m2s_in!
: -© ~©
m_T_ridorm_dock-s.ts s message=CONN_DATA,
s.cts=ts_tmp
msg_s2m_out?

CONN_REQ |
CONN_ANS ||
CONN_ACK

s.message==CONN DATA
m_T rtd=m clodk-s.cts

m_timer i=m_T i

s

©

What happens in case of timeout waiting for an
expected input message

© BME-MIT 23

The UPPAAL tool set

= Development (1999-):
o Uppsala University, Sweden
o Aalborg University, Denmark

= Web page (information, downloading, examples):
http://www.uppaal.org/

= Related tools:
o UPPAAL CoVer: Test generation
o UPPAAL TRON: On-line testing
o UPPAAL PORT: Designhing component based systems

O ...

= Commercial version:
http://www.uppaal.com/

© BME-MIT 24

http://www.uppaal.org/
http://www.uppaal.com/

& E:/Tools/Uppaal/demo/2doors.xml - UPPAAL

File Edit View Tools

Options Help

=10l x|

PR TS

Editor | Simulator | verifier |

Drag out

-

)| Mame: IDoor Parameters: Ibool &activated, urgent chan &pushed, urgent chan &closed1, urgent chan &closed2

. | Project
-4 Declarations

Y

_ pushed?
(- & User

O , osed1! activated = true
O -4 System declarations O - ,-: é l closed|
E %?idle Wi
C closed2?
O K>=5H x=0
'tE; closed!
(8 closed CS opening
E / ; X <;::5 N X <j:,3
4_)) == §'
> x=0, x=0
< activated=false
closing @M. = é open
X<=0 ¥ :0 X <=0
R © BME-MIT 25

ools/Uppaal/demo/2doors.xml - UPPAAL
File Edit

View Tools Options Help

|IGalE e & R@-»o

Edito i Verifier|
Drag out I: Drag out ‘:
activatedl =1
Enabled Transitions :rh'- % =1

L
closed2: Door2 --= Doorl

i |

Mext I Reset |

Simulation Trace

Simulator

(idle, idle, idle, idle)
Userl
(idle, idle, -, idle)

pushedl: Userl --> Doorl
(wait, idle, idle, idle)

Trace File: I

Prev Mdext Replay

Open Save Random

tedz

Doorl
Door2

Userl.w=0

=
Door1 Door2
pushed1? pushed2?
closad1! activated1 = true closed activated2 = true
2@ ,.g) cdosed1! 2. ,(F] closzd2!
idle wait idle wait
dosed2? closed1?
=5 x=0 x=0
clossd1! cosed2!
2 (dosed opening dosad 5 opening
V' x<=5 C V' x<=B <=5 (x<=Q
==0 ==5 ==8 =]
x=0, X= x=0, x=0
activatedi=fals= activated2=false
2 =4 . 4o =4 .
dosing open dosing oper
X<=b =0 X<=g x<=b %=0 X<=!
User1 User2
idle pushed1! idle pushed?2!
lacti vated! lact vated?
we=0 we0
Door1 Door2 User1 User2

()

pushed1

@ e
- — o] [~

Formalizing requirements
with temporal logics

© BME-MIT 27

Goals of formal modeling and verification
)

€ Precise formalization of properties
(requirements) to support automated

checking
\ /

|

System model Formalized properties

Automated
model checker

Counter-
example

correct faulty

OK

© BME-MIT 28

What are the formalized properties?

An example to illustrate the properties to be formalized:

= The operating modes of an air-conditioner:

o Switched-off, switched-on, faulty,
light cooling, strong cooling, heating, ventilating

= Requirements for the air-conditioner:
o After switched-on, it shall start ventilating
o Strong cooling is allowed only after light cooling
o Heating shall be followed by ventilating
o The faulty air-conditioner shall not perform heating

© BME-MIT 29

State based properties

" Local: Properties to be evaluated in a given state

o Evaluation is possible using the current values of the
state variables (and clock variables)

o Example: ,In the initial state ventilating shall be
provided”

= Reachability: Properties to be evaluated on a
sequence (trace) of states
o Evaluation is possible on the state space of the system
* Example: ,,Heating shall be followed by ventilating”
o Typical categories of reachability properties:
» ,Safety” of the system
e ,Liveness” of the system

© BME-MIT 30

Safety and liveness properties

= Safety properties: Specify that each state shall be safe,
i.e., “something bad shall never happen”
o ”In each state the pressure shall be lower than the critical value.”
o ”In each operating state the door shall be closed.”
o “There is no deadlock in the protocol.”
o Invariant properties (i.e., for each state)

" Liveness properties: Specify that a desired state is reachable,
i.e., “something good will happen”

o “After switch-on, the press shall eventually produce the plate.”
“After sending a request the reply shall be received”

“The process shall compute the required result”

o O O

Existential properties (i.e., for the desired state)

© BME-MIT 31

Language to formalize reachability properties

= Reachable states are considered in logic time:
* The present: The current state
* The next time point: The subsequent state(s)

= Temporal operators (referring to logic time) are
defined to express the reachability properties

o Typical temporal operators: ,,always”, , eventually”,

Jbefore”, ,until”, ,after”, ...

o Temporal logic: Formal language to express
propositions qualified in terms of logic time

© BME-MIT 32

Temporal logics

= Linear time:
The subsequent states form a linear sequence:
each state has only one successor
— logic time forms a linear timeline

{Green} {Yellow} {Red} {Red, Yellow}
> s2 > s3 =\§ﬂ/

= Branching time:
The subsequent states form

{Green}

a tree structure: {B@k(g}

each state may have é;‘e‘” e Nyred)
multiple successors

— logic time forms branching timelines

© BME-MIT 33

The computational tree

{Green} {Yellow} {Red}

{Blinking}

T
Automaton (FSM)
with labelled states

Computational tree:
Structure of the
potential successor
states

© BME-MIT

{Red, Yellow}

{Blinking}

{Yellow}
{Blinking} {Red}

OmdO
@ {Blinking}

{Blinking} {Red, Yellow}

O

34

Quantifying paths and characterizing states

" Operators that quantify the paths starting /Q->
from a given state: >0

o A: for all paths from the given state g
o E: for at least one (existing) path from the given state

= Operators that characterize states along
a given path:
o F: for a state eventually along the path (“future”)
o G: for all states along the path (“globally”)
o X: for the next state of the path (“next”)

o U: for states until reaching a specified state (“until”)

* E.g., Yellow U Red means that states shall be labeled with
Yellow until reaching a state labeled with Red

>0

© BME-MIT 35

The Computational Tree Logic (CTL)

= Composite operators are formed

o First quantifying paths using operators A, E; then
characterizing states along the path by operators F, G, X, U

o Composite operators:
* For all paths: AF, AG, AX, A(. U .)
* For at least one path: EF, EG, EX, E(. U .)
o Examples:
* EF Red: There shall exist a path where a state with Red is reached

* AG Green: For all paths, all states shall be labeled with Green

* E(Yellow U Red): For at least one path, states shall be labeled with
Yellow until a state with label Red is reached

= UPPAAL: Restricted version of CTL is used
o AF, AG, EF, EG operators at the beginning of the formula

© BME-MIT 36

Summary of temporal operators in UPPAAL

Operator Informal semantics UPPAAL notation
AG @ For all paths, All ¢
for all states ¢
AF ¢ For all paths, A<> @
for a state eventually @
EG ¢ For at least one path, E[] ¢
for all states ¢
EF ¢ For at least one path, E<> ¢
for a state eventually ¢
AG(¢p => AF y) After ¢ always y Q--> Y
There is no deadlock AG not deadlock

¢ and y are Boolean expressions on clocks, variables and location names

© BME-MIT

37

Composite operators for all paths

AG @: For all paths, AF @: For all paths,
for all states ¢ is true for a state eventually @
becomes true

© BME-MIT 38

Composite operators for at least one path

EG ¢ EF ¢

©

EG @: There is at least one path, EF @: There is at least one path,
where for all states ¢ is true where eventually ¢ becomes
true

= |sthere arelation between AG and EF?
= |sthere arelation between AF and EG?

© BME-MIT 39

Conditional reachability

" AG(p=>AFvy) = ¢o->vy
For all paths, for all states: if ¢ is true then it implies that on all
paths eventually a state occurs in which v becomes true

= Reachability with a timing condition: ¢ --> (v and x <= t)
where x is a clock variable that is reset when @ becomes true

© BME-MIT 40

Examples: formalizing properties using temporal logic

Let us consider an air-conditioner
= States are characterized using the following local properties:

{Switched-off, Switched-on, Faulty, Cooling, Heating,
Ventilating}

To formalize requirements:

The local properties can be used in the requirements
In a state several local properties may hold

The reachability properties are defined considering behaviour
from the initial state of the system

The behaviour of the air-conditioner may not be known when
the properties are formalized

© BME-MIT 41

Examples: formalizing properties using temporal logic

States of the air-conditioner are characterized using propositions:
{Switched-off, Switched-on, Faulty, Cooling, Heating, Ventilating}

Examples for formalized properties:

= The air-conditioner shall not perform cooling and heating at the
same time:

AG (—(Cooling A Heating))
= The ventilating mode shall eventually be turned on:
AF (Ventilating)

= The air-conditioner can be operated (being switched on) in such a
way that it does not perform cooling:

EG (Switched-on A (— Cooling))

= |f the air-conditioner is faulty then it shall eventually be switched
off:

AG(Faulty => AF (Switched-off)) or Faulty --> Switched-off

© BME-MIT 42

Model checking

[Timed automata model } [Temporal logic properties }
System model Formalized properties

correct Automated faulty
model checker

Counter-
example

OK

© BME-MIT 43

The UPPAAL model checker

" Properties can be formalized using temporal logic
o Verification of the properties is automated
= Verification is performed by an exhaustive exploration
of the state space of the model
o Breadth-first, or depth-first search can be configured

= Diagnostic trace can be generated

o Counter-example (for safety properties) or
witness (for liveness properties)

o Shortest, fastest, or some (any) diagnostic trace can be
configured

o The diagnostic trace can be loaded into the simulator to
investigate and debug the behaviour

© BME-MIT 44

The UPPAAL model checker

g FTapps/Uppaal/demo/train-gate.xml - UPPAAL

File Edit Mew Tools Options Help

=101 %]

IDa@aaa[s@-o

Editu:url Simulator erifier I

Cveryiew

E<» Gate.Occ

E<> Train(0).Craoz=

E<> Train(l).Croszs o

E<> Train(0).Cross and Train(l).Stop O

E<> Train(0).Cross and (forall (i : id_t) 1 !'= 0 imply Train(i).S5top) o
ALI

Query

Inserkt
Rermove

Comments

E== Train(0).Cross

Carnment

Train 0 can reach crossing.

.

Skatus

Established direct connection ko local server,

rAcademic) UPPASL version 4.0.7 (rew, 4140), Movember 2003 -- server,
Disconnected,

Established direct connection to local server,

rAacademic) UPPASL version 4,007 (rew, 4140), November 2003 -- server,
E-= Train(0).Cross

Property is satisfied,

© BME-MIT

EGCGYETEM 1 TEZ

45

Counter-example in the simulator

Tapps,/Uppaal/demo/train-gate.xml - UPPAAL 101 x|
File Edit Wiew Tools Options Help
Da @« ad||@->mo
Editor Simulatar | verifier |
| Drrag ouk Drag out |: |
- ate list[(] = 0 Train{0} Train{1}
Enabled Transitions .
Gate list[1] =1 yo=3 — -
Gate.list[Z] =0 Safe leavel0]! Cross Sefe leavel1]! Cross
appr[3]: Train(3) --= Gat Gake list[3] =0 ye=5 =5
appr[4]: Train(4) -- = Gate Gate list[4] =0)
appr[S]: Train(S) -- = @ate Gate.list[3] =0 15"["']! ;=|DI[1 !
leave[0]: Train{d) --= Gake Gake list[6] =0 W=7 =7
Gatelen =2 w=0 w=0
LI Train(0).x in [0,5]
Trainf1).x in [0,5] Appr 5"3"[1 - Appr 5"3'11 -
=20 = <=20 o=
Mesxt | Resst | Train(2).x == 10 ! B e
Train(3).x == 10
Simulation Trace Train(4).x == 10 '.3'3'[0':']?
Safe, Safe, Safe, Safe, Safe, Safe, F Train(S).x == 10 -
(Safe, Safe, Safe, Safe, Safe, Safe, Free) Train(0).x - Train(2),x <= -10 Stop Stop
sppr{0]: Train(0} --> Gate Train{1}. - Traind0). in [-5,0] LI

(appr, Safe, safe, Safe, Safe, 3afe, o)
Train()

(Cross, Safe, 3afe, Safe, 3afe, Safe, Qo)
appr[1]: Train(1) --= Gate

(Cross, Appr, 3afe, Safe, 3afe, Safe, -)
stop(tail)]: Gate --= Traind1)

i Stop, Safe, S

Kl |+
Trace Fila: |
Prew [Replay
Cpen Save Aubo
|
| | | |) | |
Sl Fast

P)

Train(2).x = Train(3).x

Train{D) Train{1) Train{2) Train{3 Train{d) Train{d) Gate

Train{3).x = Traini4),x

Train(4).: = Train{g). x L | 1 T

Train(S).x = Train(2).:x [ate]

[Safe] [Safe]

[Safe]

[Safe] [Safe] [Free]

appr[d]

[fpr]

Kl | 2

appr[1]

[0cc)

(#por)

)

spop[taily]

Stop

o]y
.]

© BME-MIT

46

A case study

© BME-MIT 47

An engineering task

= Let us consider a concurrent (multi-process) system

"= At most one process is allowed to access a shared
resource at a time: mutual exclusion is required

o Example: Use of communication channel as resource

o Access to resource: “Critical sections” in the programs;
at most one process is allowed to be in critical section

o The platform (OS, framework) does not give support:
no semaphore, no monitor, etc.

o Only shared variables can be used (atomic reading/writing)
" How to do it?

o Classical solutions (Peterson, Lamport, Fischer etc.)
o Custom algorithm

© BME-MIT 48

A solution for the mutual exclusion problem

= 2 processes, 3 shared variables (H. Hyman, 1966)
o blockedO: The first process (PO) wants to enter the critical section
o blockedl: The second process (P1) wants to enter the critical section

o turn: Which process will enter (PO in case of O, P1 in case of 1)
while (true) { PO while (true) { P1
blockedO = true; blockedl = true;
while (turn!=0) { e ————— J while (turn!=1) {
while (bIocked1==tr‘t\1e) { S while (blockedO==true) {
skip; N Mo skip;
} . SO)
turn=0; N X turn=1;
} N}
// Critical section here N // Critical section here
blocked0 = false; * blocked1 = false;
// Do other things // Do other things
} }

Is this algorithm correct?

© BME-MIT

Properties to be verified

= Mutual exclusion:

o At most one process can be in the critical section
(it shall never happen that two processes are there)

= |t is possible to enter the critical section:
o PO is able to enter the critical section
o P1 is able to enter the critical section

= There is no starvation:
o PO will eventually enter the critical section on all paths
o P1 will eventually enter the critical section on all paths

" Freedom from deadlock:
o The two processes shall not stop executing

© BME-MIT 50

The model in UPPAAL (first version)

Declarations: Modeling techniques used:
bool blockedO; e Global declaration of shared variables
bool blocked1; e Limiting the range of variables

int[0,1] turn=0;
system PO, P1;

The PO automata:

blocked0:=false it while (true) {
[2 ©) blockedO = true; PO

blocked0:=true while (turn!=0) {
while (blocked1l==true) {
skip;

My turn

Check_turn ! turn:=0

T

h

turn=0;

by

blocked 1==false // Critical section
blocked0 = false;

// Do other things

blocked1==true }

G5

Wait_blocked

Check_blocked

© BME-MIT 52

The model in UPPAAL (second version)

Modeling techniques used:

Declarations:

int[0,1] blocked[2]; J G‘Iopz-ﬂ declaration of sha.red variables
int[0,1] turn; e Limiting the range 'of varlz?\bles |
PO = P(0); e The processes are instantiated using the

same template
e |nstantiation with parameters (here: pid)
e Using arrays for variables (here: blocked)

P1=P(1);
system PO,P1;

The P template with pid parameter:

Init while (true) { PO
g -0 blocked0 = true;
blocked[pid]-=false ekedinid while (turn!:O) {
=t
ocked|pid):=true while (blocked1==true) {
skip;
1,{\ Check_turn tum := pid My turn ¥
= turn=0;
tum==pid turm 1= pid } . .
// Critical section
blocked[1-pid]==false blockedO = false;
// Do other things
blocked[1-pid]==true }

Wait_blocked

© BME-MIT 53

Formalizing properties in UPPAAL

= Mutual exclusion:

o Only one process may enter the critical section at the same time:
A[] not (PO.cs and P1.cs)

= Freedom from deadlock:

o The two processes shall not stop executing: A[] not deadlock

" |tis possible to enter the critical section:
o PO is able to enter the critical section: E<>(P0.cs)
o P1is able to enter the critical section: E<>(P1.cs)
* There is no starvation:

o PO will eventually enter the critical section on all paths: A<>(P0.cs)
o PO will eventually enter the critical section on all paths: A<>(P1.cs)

© BME-MIT 54

Verifying the properties in UPPAAL

"= There is no deadlock
" [tis possible to enter the critical section

o Each process is able to enter the critical section

" The mutual exclusion property is not satisfied!

o The model checker produces a diagnostic trace (counter-example):
There is a specific interleaved behavior in which both processes are
in the critical section at the same time

o The counter-example can be investigated in the simulator

= Starvation cannot be checked without modelling time-
dependent behavior
o Trivial counter-examples may include “waiting forever” in any state
o Modifying the model: Urgent states (if valid)
o Here: there is still a cyclic behavior that results in starvation

© BME-MIT 55

Correction of the mutual exclusion

New algorithm by Peterson

= For process PO
(for P1 it is similar):

Hyman: Peterson:
while (true) { while (true) {
blockedO = true; blockedO = true;
while (turn!=0) { turn=1;
while (blocked1l==true) { while (blockedl==true &&
skip; turn!=0) {
} skip;
turn=0; >
by
/| Critical section /] Critical section
blockedO = false; blocked0 = false;
// Do other things /| Do other things
} b

© BME-MIT 56

Summary: Properties of model checking

= Advantages:
o It offers a complete exploration of the state space of the model

o Itis possible to check huge state spaces (using compact representation)
* 1029, or even 10'% states can be checked automatically (in specific cases)

o There are fully automated tools, there is no need to perform manual
adjustment, mathematical operations, or heuristics

o Diagnostic trace is generated, which supports debugging and correction

= Problems:
o Scalability is limited (state space must fit into memory)
o Effective for control-oriented models
* Complex data structures result in huge state space
o Itis not easy to generalize the results
* If a protocol is correct for 2 processes, is it correct for N processes as well?

o The formalization of properties is difficult
* There are different ,temporal logic languages”

© BME-MIT 58

