Architecture of Safety Critical
Systems

Design and Integration of Embedded Systems

Istvan Majzik

Department of
Measurement and
Information Systems

Budapest University of Technology and Economics © BME-MIT

Department of Measurement and Information Systems

Goals

" Focus: Design of system architecture to ...
o maintain safety,

o handle the effects of faults in hardware and software
components

" Learning objectives

o Know the typical architecture level solutions for error
detection in case of fail-stop behavior

o Propose solutions for fault tolerance in case of
* Permanent hardware faults

* Transient hardware faults
e Software faults

o Understand the time and resource overhead of the
different architecture patterns

© BME-MIT 3

Objectives of architecture design

Safe operation
FaiI-safe operation even in case of faults

Fail-stop behaviour

e Stopping (switch-off)
is a safe state

* |n case of a detected error
the system has to be
stopped

e Error detection is required

© BME-MIT

o} = |

Fail-operational behaviour

e Stopping (switch-off)
is not a safe state
e Service is needed even

in case of a detected error
e Full service or
e Degraded (but safe) service

e Fault tolerance is required

17

Typical architectures
for fail-stop operation

© BME-MIT 18

1. Single channel architecture with built-in self-check

Single processing flow with error detection

Scheduled hardware self-tests
o After switch-on: Detailed self-test

o In run-time: Periodic on-line tests

Online software error detection

o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

Disadvantages

o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the checked channel

© BME-MIT

19

Implementation of on-line error detection

= Application dependent (ad-hoc) techniques

o Acceptance checking (e.g.: too low, too high value)
o Timing related checking (e.g.: too early, too late)

o Cross-checking (e.g.: using inverse function)
o Structure checking (e.g.: broken data structure)

= Application independent (platform) mechanisms

o Hardware supported on-line checking
* CPU level: Invalid instruction, user/supervisor modes etc.
 MPU level: Protection of memory ranges

o OS level checking

* Invalid parameters of system calls
* OS level protection of resources (locking, authorization etc.)

© BME-MIT 20

Example: Testing memory cells (hw)

States of a correct cell to be
checked:

= Observed in case of stuck-at
0/1 faults:

= Observed if wl transition

fault: wo,w1 W
% o2

wO

© BME-MIT

States of two correct (adjacent) cells

to be checked:

(r‘,rj)/(]
(wniswuj)/_

r'/1 rijo

(w,'sw,)
W, W,) —

r/o rif

(Woi9w1j)/_

—
.

Wliswlj)/_

Testing by ,,marching” algorithms

(w/r) 1

1

21

Example: Checking software execution

" Checking the correctness of control flow

o Reference for correct behavior: Program control flow graph

Source code: Control flow graph:
a: for (i=0; i<MAX; i++) { a
b: if (i==a) { N
C: n=n-i;

}else { e

T \/

e: printf(“%d\n”,n);
}

(

o
\

f: printf(“Ready.”)

© BME-MIT 22

Example: Checking software execution

" Checking the correctness of control flow
o Reference for correct behavior: Program control flow graph
o Instrumentation: Signatures to be checked in runtime

Instrumented source code: Control flow graph:

a: S(a); for (i=0; i<MAX; i++) { aﬁ \.

b: S(b); if (i==a) {
S(c); n=n-i;

}else { e

d: S(d); m=m-i;
} \ /

e: S(e); printf(“%d\n”,n);

}
f: S(f); printf(“Ready.”)

(

o
\

© BME-MIT 23

Example: SAFEDMI development

= ST loicioicicl

© BME-MIT

DEEHEEEE

EVC:
European
Vital
Computer
(on board)

Characteristics:

= Safety-critical functions
o Information visualization
o Processing driver commands
o Data transfer to EVC

= Safe wireless communication
o System configuration
o Diagnostics
o Software update

24

Example: SAFEDMI architectural concept

= Single-channel electronic structure based on reactive fail-safety
(error detection and error handling)

= Generic (off-the-shelf) hardware components are used

= Most of the safety mechanisms implemented in software

ERTMS TRAINBORNE
SYSTEMS

A

commercial field bus vee
A

I 1 1
v EXCLUSION LOGIC LCD
— X
SAFE DMI .| LCD DisPLAY
A A
l:' ‘ wireless ﬁ ﬁ
interface
Speaker y : Keyboard

© BME-MIT 25

Example: SAFEDMI hardware architecture

Components:

Cabin
Identifier

Log
Device Thermometer
bus “

e e = = —— = == e) e T e e e e e e e e 1 e e e ey,
_— = T =

= _ ==
ﬁ Watch LCD lamps Graphic Audio
dog Controller Controller Controller
LCD LCD Video Flash
Speaker .
lamps matrix Pages audio
Device to Device to
communicate with communicate with
EVC BD

© BME-MIT 26

Example: SAFEDMI operating modes

= Operating modes:

o Startup, Normal, Configuration, Safe state

= Error processing: Suspect state
o Intermediate state to distinguish transient and permanent faults
o The faultis permanent if it occurs again when restart is tried — safe state

Power-on

© BME-MIT 27

Example: SAFEDMI error detection techniques

= Startup: Detection of permanent hardware faults
o CPU testing with the help of an external watchdog circuit
o Memory testing with marching algorithms
o EPROM integrity checking with error detection codes
o Device (peripherals) testing with the help of the driver

= Normal/Configuration: Periodic and online checking
o Scheduled self-tests for hardware

o Data integrity in communication and configuration functions:
Data acceptance / credibility checks, error detection codes

o Control related functions (e.g., changing operating modes):
Control flow monitoring, time-out checking, acknowledgements

o Data related functions (e.g., constructing bitmap for the display):
Duplicated computation and comparison of the results

© BME-MIT 28

2. Two-channels architecture with comparison

= Two or more processing
channels

o Shared input
o Comparison of outputs
o Stopping in case of deviation
" High error detection
coverage

o The comparator is a critical
component (but simple)

= Disadvantages:

o Common mode faults
remain undetected g S

o Long detection latency

o o -

© BME-MIT 29

Example: Safety Microcontrollers

CPU self test Memory-protection ECC for Flash / RAM Safe island hardware diagnostics (red)

controller requires units in CPU and interconnect evaluated Blended hardware diagnostics (blue)

little S/W overhead DMA inside the Cortex R4F Non-safely critical functions (black)
Logical / physical Memory Power, Clock, and Safety Memory BIST on all
design optimized to Flash w/ ECC RAMs allows fast
reduce probability OSCPLL |PBSTABIST memory test at
of common cause RAM w/ ECC startup
failure Flash POR M

EEPROM w/ ECC — S
Memory Protection
On-chip clock and

el Memory Interface voltage monitoring

cyce-by-cycl CFU e

il Detection Embedded Trace

T —
module with

Partty on off | Enhanced System Bus and Vectored Internupt Module
peripheral, DMA and Enhanced System Bus and Vectored Interrupt Module external error pin
interrupt controller
RAMs
1/0 loop back, ADC
self test, ...
Parity or CRC in
serial and network
communication Dual ADC cores with
peripherals shared channels

© BME-MIT 30

Example: SCADA system

= Supervisory Control and Data Acquisition system

A+ A -

I/0

!

Sensors and actuators

© BME-MIT 31

Example: SCADA system architecture

B T }

:'I Channel 1 ; \‘E :'/ Channel 2 \E

= Two channels T | | |
= Display: Periodically | [peus B pite ki
= |

switching between

! |
! Syncrcn!

Database

» Database

bitmaps provided by the : T
two channels: Iy [y BEELY

i Control

Comparison by the
operator (stable or not) piviari pvivarie

4 i ! A
= Synchronization: '
Detection of internal

L DD PPN S (R I PP SRS SIS S S

errors before the effects
reach the outputs

I/0

© BME-MIT 32

Example: SCADA deployment options

= Two channels on the same server
o Statically linked software modules
o Independent execution in memory, disk and time

o Diverse data representation
* Binary data (signals): Two representations (original/negated)
* Diverse indexing in the technology database

= Two channels on two servers
o Synchronization on dedicated network

" Increasing availability

by redundancy:) ;MH ;MM

o Two ,,2-out-of-2” scheme:

Switch-over when primary I I I

] A+ A- B+ B-
pair detects a permanent
fault

1/O I/0

© BME-MIT 33

Example: SCADA error detection techniques

For random hardware faults during operation:

= Comparison of channels: Operator and 1/O circuits

o Heartbeat: Blinking RGB-BGR symbols indicate the regular update of the
bitmap on the screen

= Watchdog process

o Checking the operation of the processes (heartbeats)

= Regular comparison of the content of the technology database
o Detecting latent errors

For unintended control by the operator:

= Three-phased control of outputs:
o Preparation of output (but without effect; locking their activation)
o Reading back the prepared output using independent software modules
o Acknowledgement by the operator (using diverse GUI operations)

© BME-MIT 34

Example: SCADA three phases of control

Channel 1 Channel 2 @
|

I/O Q

© BME-MIT 35

3. Two-channels architecture with safety checking

= |ndependent second
channel

o Safety bag: only safety
checking

o Diverse implementation

o Checking the output of
the primary channel

= Advantages
o Explicit safety rules

o Independence of the
checker channel

© BME-MIT 36

Example: Elektra interlocking system

HMI

Central
Controller

Field Element
Controller

Peripheral elements

Two channels:

Logic channel:
CHILL (CCITT High
Level Language)
procedural
programming
language

Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based
programing
language

37

Summary: Objectives of architecture design

Safe operation
FaiI-safe operation even in case of faults

Fail-stop behaviour

e Stopping (switch-off)
is a safe state

* |n case of a detected error
the system has to be
stopped

e Error detection is required

© BME-MIT

\

Fail-operational behaviour

e Stopping (switch-off)
is not a safe state
e Service is needed even

in case of a detected error
e Full service or
e Degraded (but safe) service

e Fault tolerance is required

38

Summary: Solutions for fail-stop behavior

1. Single channel with built-in self-test

o Hardware: Power-on self-test (POST) and built-in
self-test (BIST)

o Software: Online self-checking

2. Two-channels architecture with comparator

o Replicated processing channels with shared
input (problem: common failures)

o Comparison of the channels’ output

3. Two-channels architecture with safety
checking
o Independent, diverse checker channel
o Checking the output of the primary channel

© BME-MIT 39

Typical architectures
for fault-tolerant systems

© BME-MIT a1

Objectives of architecture design

Fail-safe operation

—

Fail-stop behaviour

e Stopping (switch-off)
is a safe state

* |n case of a detected error
the system has to be
stopped

e Error detection is required

© BME-MIT

Fail-operational behaviour

e Stopping (switch-off)
is not a safe state
e Service is needed even

in case of a detected error
e full service
e degraded (but safe) service

e Fault tolerance is required

42

Fault tolerant systems

= Fault tolerance: Providing (safe) service in case of faults

o Intervening into the fault — error — failure chain

* Detecting the error and assessing the damage

* Involving extra resources to perform corrections / recovery

* Providing correct service without failure

* (Providing degraded service in case of insufficient resources)

= Extra resources: Redundancy

o Hardware
o Software
o Information

o Time

\

> resources (sometimes together)

© BME-MIT 45

Categories of redundancy

= Forms of redundancy:

o Hardware redundancy

e Extra hardware components (inherent in the system
or planned for fault tolerance)

o Software redundancy
e Extra software modules

o Information redundancy
e Extra information (e.g., error correcting codes)

o Time redundancy
* Repeated execution (to handle transient faults)

= Types of redundancy
o Cold: The redundant component is inactive in fault-free case
o Warm: The redundant component is active but has reduced load
o Hot: The redundant component is active in fault-free case

© BME-MIT 46

Example: Error detecting and correcting codes

Transfer,
storage

= Error detecting codes (EDC): Only detection of errors

H* Encode [—

— Decode *H

o Parity bit: Increasing the Hamming-distance, 1 bit error can be detected

o Checksum: Using in case of files, messages

= Error correcting codes (ECC): Identifying and correcting errors 4 data bits.

o Higher Hamming distance: Errors can be corrected 3 redundant
bits

* E.g.: (7, 4) bit Homming code: 1 bit error corrected, 1 or 2 bit errors detected
o Information blocks: More difficult codes are used
* E.g.: (255, 223) byte Reed-Solomon code: 16 byte errors can be corrected
= Limited error correction capability

o Information storage: In long time, more errors can accumulate than the number of
errors that can be corrected by the applied codes

o Basic idea: Periodic reading, correcting and writing back the information

© BME-MIT 47

Overview: How to use the redundancy?

= Hardware design faults: (< 1%)
o Hardware redundancy with design diversity

= Hardware permanent operational faults: (~ 20%)
o Hardware redundancy (e.g.: redundant processor)

= Hardware transient operational faults: (~70-80%)
o Time redundancy (e.g.: instruction retry)
o Information redundancy (e.g.: error correcting codes)
o Software redundancy (e.g.: recovery from saved state)

= Software design faults: (~ 10%)

o Software redundancy with design diversity

© BME-MIT 48

1. Fault tolerance for hardware permanent faults

With diversity in case of considering design faults

Replication:
= Duplication with diagnostics:

Diagnostic
unit

o Error detection by comparison L Primary

Input
—_—

o With diagnostic unit:

Secondary

Fault tolerance by switch-over

= TMR: Triple Modular Redundancy

o Masking the failure

. . . > Module 1
by majority voting Input
—_—
o Voter is a critical component »| Module 2
(but simple)
»l Module 3

q Majority ESELLS

 voting

= NMR: N-modular redundancy
o Masking the failure by majority voting

o Mission critical systems: Goal is to survive the mission time

© BME-MIT

49

Implementation of the replication

= Equipment/server level:

o Servers: High availability server clusters

e E.g., Linux HA Clustering, Windows Server Failover Clustering
o Software support: Failover and failback
" Board level:

o Run-time reconfiguration: “Hot-swap”
* E.g., CompactPCl, HDD, power supply

o Software support: monitoring, reconfiguration
= Component level:

o Replication of components: TMR
o Self-checking circuits (processing encoded information)

© BME-MIT 50

S S—
S S EEEEEEE

RA|D dlSk RAID-1: Mirroring (duplicated disks)

configura | RN | = [[

th ns RAID-2: Bit-level ECC (error correcting codes)

w. (HEEHEE

Redundant
Array of

. E Z] F =] F
Disks —— —

RAID-4: Block-level parity (to improve performance)

S
S N SR
_jt-q
S, | S—
S . S

RAID-5: Block-level parity (to avoid bottleneck of the parity disk)

RAID-3: Bit-level parity (assumption: faulty disk can be identified)

© BME-MIT 51

2. Fault tolerance for transient hardware faults

= Approach: Fault tolerance implemented by software

o Detecting the error
o Setting a fault-free state by handling the fault effects

o Continuing the execution from that state
(assuming that transient faults will not occur again)

" Four phases of operation:
1) Error detection
2) Damage assessment

3) Recovery
4) Fault treatment and continuing service

© BME-MIT 53

Phase 1: Error detection

= Application independent mechanisms:
o E.g., detecting illegal instructions at CPU level
o E.g., detecting violation of memory access restrictions

= Application dependent techniques:
o Acceptance checking
o Timing related checking
o Cross-checking
o Structure checking
o Diagnostic checking

© BME-MIT 54

Phase 2: Damage assessment

= Motivation: Errors can propagate among the components
between the occurrence and detection of errors

Interactions

Fault% / / . Error detection
|
\

= Limiting error propagation: Checking interactions

v

o Input acceptance checking (to detect external errors)
o Output credibility checking (to provide ,fail-silent” operation)
= Estimation of components affected by a detected error

o On the basis of logged resource accesses and communication
o Analysis of interactions (that happened before error detection)

© BME-MIT 55

Phase 3: Recovery

" Forward recovery:
o Setting an error-free state by selective correction
o Dependent on the detected error and estimated damage
o Used in case of anticipated faults

= Backward recovery:
o Restoring a prior error-free state (that was saved earlier)
o Independent of the detected error and estimated damage
o State shall be saved and restored for each component

= Compensation:

o The error can be handled by using inherent redundant
information

© BME-MIT 56

Types of recovery

= State space of the system: Error detection

V2 A

Faultoccurrence% 4 _
7 | Error detection

s(t)

v1 state variable

© BME-MIT 57

Types of recovery

= State space of the system: Forward recovery

V2 A

s(t)

_____ > Forward recovery

v1 state variable

© BME-MIT 58

Types of recovery

= State space of the system: Backward recovery

V2 A

Backward recovery

[Saved state

v1 state variable

© BME-MIT 59

Types of recovery

= State space of the system: Compensation

V2 A

------ + Compensation

v1 state variable

© BME-MIT 60

Types of recovery

= State space of the system: Types of recovery

V2 A

Backward

Forward

------ > Compensation
[1 Saved state

v1 state variable

© BME-MIT 61

Backward recovery

= Backward recovery based on saved state
o Checkpoint: The saved state
o Checkpoint operations:

» Save: copying the state periodically into stable storage
* Recovery: restoring the state from the stable storage
* Discard: deleting saved state after having more recent one(s)

o Analogy: “autosave”

= Backward recovery based on operation logs
o Limited scope: Errors due to unintended operations

o Recovery is performed by the withdrawal of operations
(by executing inverse operation, revoking the effects etc.)

o Analogy: "undo”

© BME-MIT 62

Scenarios of backward recovery

Saved state 1 Saved state 2
(1 | >
Fault Detection
Q !
(1 Iv — >
\ ¥ /
L‘LI !
D >
v
\ \ / ‘Q¢
‘ — —— o = " /
é .
Di — »
77
\ v. \ - - . ‘/
~ . — -

© BME-MIT

63

Checkpoint intervals

al bl cl a2 | b2 c2
Il N o [i i >
< >
< >
< >
< < >
V\ \ . \ “A <
\ . \ - -’ *

Aspects of optimizing checkpoint intervals:

= Stable storage is slow (— overhead) and has limited capacity
= Computation is lost after the last checkpoint

" Long error detection latency increases the chance of damaged
checkpoints

© BME-MIT

64

Phase 4: Fault treatment and continuing service

" For transient faults:
o Handled by the forward or backward recovery

" For permanent faults:
o Recovery is unsuccessful (the error is detected again)
o The faulty component shall be localized and handled

Approach:
o Diagnostic checks to localize the fault

o Reconfiguration
* Replacing the faulty component using redundancy
* Degraded operation: Continuing only the critical services

o Repair or replacement

© BME-MIT 65

4. Fault tolerance for software faults

" Repeated execution is not effective for design faults!

= Redundancy with design diversity is required:
Variants: Redundant software modules with
o diverse algorithms and data structures,
o different programming languages and development tools,
o separated development teams
in order to reduce the probability of common faults

= Execution of variants:
o N-version programming
o N-self-checking programming
o Recovery blocks

© BME-MIT 66

N-version programming

= Active redundancy:
Each variant is executed (in parallel or serially)

o The same inputs are used

o Majority voting is performed on the output
* Acceptable range of difference shall be specified
* The voter is a critical component (but simple)

—'| Variant 1 |—
Output

>| Variant 2 DTE >

Error
—'| Variant 3 |— signal
>

© BME-MIT 67

Input

N-self-checking programming

= Active dynamic redundancy
o N self-checking components: Variant + checker

o In case of detected fault: Switching from the primary
component to the redundant one

—'| Variant 1 |—

Input ‘ Checker 1 |~

Arbiter
—’| Variant 2 |— >
Error
‘ Checker 2 I— 5|gnaI=

© BME-MIT 68

Output

Recovery blocks

= Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking on the output of the variants
o In case of a detected error another variant is executed

‘ Input

Execution of
a variant

y Acceptance n
checking

© BME-MIT 70

Recovery blocks

= Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking on the output of the variants
o In case of a detected error another variant is executed

‘ Input

Execution of
a variant

\ 4

Y Acceptance n N[Isthere an y
checking extra variant?

Error signal

© BME-MIT 71

Recovery blocks

= Passive redundancy: Activation only in case of faults
o The primary variant is executed first
o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed
l Input

I Saving state I

»i
<

Execution of Restoring
a variant state
y Acceptance n nf Isthere an y
checking extra variant?

Error signal

© BME-MIT 72

Comparison of the techniques

Property/Type

N-version
programming

Recovery
blocks

Error detection

Majority voting,
relative

Acceptance checking,

absolute

Execution of
variants

Parallel (typically)

Serial only

Execution time

Slowest variant
(or time-out)

Depending on the
number of faults

Activation of Always Only in case of fault
redundancy (active) (passive)
Number of [(N-1)/2] N-1

tolerated faults

© BME-MIT

73

Summary

'
[SYSTEM FAILURE |

Budapest University of Technology and Economics © BME-MIT
Department of Measurement and Information Systems

Summary: Techniques of fault tolerance

1. Hardware design faults
o Diverse redundant components

2. Hardware permanent operational faults
o Replicated components: TMR, NMR

3. Hardware transient operational faults

o Fault tolerance implemented by software
1. Error detection
2. Damage assessment
3. Recovery: Forward or backward recovery (or compensation)
4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution (retry, reload, restart)

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

© BME-MIT 75

Software architecture design in standards

Table A.2 — Software design and development:

[| I E C 6 1 508 : software architecture design (see 7.4.3)

. Technique/Measure* Ref SIL1 SiL2 SIL3 SlLa
Functional —
1 Fault detection and diagnosis C.3.1 R HR HR
Safety | N 2 Error detecting and correcting codes C.3.2 R R R HR
I . I 3a Failure assertion programming C.3.3 R R R HR
e eCtrlca / 3b Safety bag techniques C.3.4 aea R R R
1 3c Diverse programmin C.3.5 R R R HR
electronic / programming
3d Recovery block C.3.6 R R R
programmablg[s sackwara recovery car | A R | n
. 3f Forward recovery c.3.8 R R R
electronic .
3g Re-try fault recovery mechanisms c.3.9 R R R HR
Safety- r‘e | ated 3h Memorising executed cases C.3.10 R R HR
4 Gracetul degradation C.3.11 R R HR HR
SVSte m S 5 Artiticial intelligence - fault correction C.3.12 == NR NR NR
6 Dynamic reconfiguration C.3.138 NR NR NR
| e T
M ea S u res fo r 7a Structured methods including for exampie, JSD, c.21 HR HR HR HR
f MASCOT, SADT and Yourdon.
SO twa re 7b Semi-formal methods Table R R HR HR
h . B.7
a rC IteCtu re 7c Formal methods including for exampte, CCS, CSP, KOL, c.24 R R HR
d . LOTOS, OBJ, temporal logic, VDM and Z
ESIgn 8 Computer-aided specification tools B.2.4 R R HR HR
NOTE - The measures in this table concerning fault tolerance {control of failures) should be considered with the
requirements for architecture and conirol of failures for the hardware of the programmable electronics in
IEC 61508-2.
* Appropriate techniques/measures shall be selected according to the saiety integrity level. Alternate or
equivalent techniques/measures are indicated by a letter following the number. Only one of the alternate or
equivalent techniques/measures has to be satisfied.

Summary: Time needed for redundancy

= Pure time redundancy: Retry
o Low-level hardware: processor micro-instruction
o Higher level: Function, task repeated execution
o Effective in case of transient faults

= Time overhead: Side effect of other redundancy

o Hard real-time systems: design aspect to guarantee
the execution time of fault handling / tolerance

o Preferred solutions:
* Permanent hardware faults: masking, warm redundancy

* Transient hardware faults: forward error recovery
» Software (design) faults: N-version programming

© BME-MIT 78

Redundancy in space (resources) and time

,Space” redundancy (%)

A

10077

10T

N-version
programming

L]

]

Recovery
blocks

Forward
recovery

recovery

Backward]

1

[Error correcting

codes

~

-’

Backward
recovery in
distributed

systems

(Retry) (Reload] (Restart)
| | | |
! ! ! i >
0.001 0.1 10 1000
Time redundancy (s)
© BME-MIT

79

Costs of redundancy and faults

Costs |

~._Sum of costs ./
b g Costs of redundancy

-
Sm~ e — -

Woperation

v

Level of

optimum redundancy

© BME-MIT 80

Testing fault tolerance

" |nducing faults: Fault injection

o Hardware:

e Generating “real” faults:
stuck-at bus signals, power failures,
particle radiation, temperature shock

* Hardware dependent, slow

o Software:

* Generating fault effects (changing the system state):
setting registers, memory bits

* More flexible, faster
e Questionable whether real faults lead to these effects

o Hybrid
* Monitoring the effects (in operation)

© BME-MIT 81

Summary: Safety architectures

" Fail-stop solutions
o Single channel with built-in self-checks
o Dual channel with comparison
o Dual channel with independent checker

" Fail-operation (fault-tolerance) solutions

o Hardware design faults: Diverse redundant hardware
components

o Hardware permanent operational faults: Replicated
hardware components
o Hardware transient operational faults:
* Software implemented redundancy: Error detection and recovery
* Information redundancy: Error correcting codes
* Time redundancy: Retrying execution

o Software design faults: Diverse redundant sw components

© BME-MIT 83

