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Goals 
 Focus: Design of system architecture to ... 

o maintain safety,  

o handle the effects of faults in hardware and software 
components 

 Learning objectives 
o Know the typical architecture level solutions for error 

detection in case of fail-stop behavior 

o Propose solutions for fault tolerance in case of  
• Permanent hardware faults 

• Transient hardware faults 

• Software faults 

o Understand the time and resource overhead of the 
different architecture patterns 
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Objectives of architecture design 

Fail-safe operation 

Fail-stop behaviour Fail-operational behaviour 

Safe operation  
even in case of faults 

• Stopping (switch-off) 
   is a safe state 
• In case of a detected error 
   the system has to be  
   stopped 
• Error detection is required 

• Stopping (switch-off) 
   is not a safe state 
• Service is needed even 
   in case of a detected error 

• Full service or 
• Degraded (but safe) service 

• Fault tolerance is required 
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Typical architectures  
for fail-stop operation 
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1. Single channel architecture with built-in self-check 

 Single processing flow with error detection 

 Scheduled hardware self-tests 

o After switch-on: Detailed self-test 

o In run-time: Periodic on-line tests 

 Online software error detection 

o Typically application dependent techniques 

o Checking the control flow, data acceptance 
rules, timeliness properties 

 Disadvantages 

o Fault coverage of the self-tests is limited 

o Fault handling (e.g., switch-off) shall be 
performed by the checked channel 
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Implementation of on-line error detection 

 Application dependent (ad-hoc) techniques 

o Acceptance checking   (e.g.: too low, too high value) 

o Timing related checking (e.g.: too early, too late) 

o Cross-checking   (e.g.: using inverse function) 

o Structure checking  (e.g.: broken data structure) 

 Application independent (platform) mechanisms 

o Hardware supported on-line checking 

• CPU level: Invalid instruction, user/supervisor modes etc. 

• MPU level: Protection of memory ranges 

o OS level checking 

• Invalid parameters of system calls 

• OS level protection of resources (locking, authorization etc.) 
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Example: Testing memory cells (hw) 

States of a correct cell to be 
checked: 

 

 

 

 Observed in case of stuck-at 
0/1 faults: 

 

 

 Observed if w1 transition 
fault: 

States of two correct (adjacent) cells 
to be checked: 

 

 

 

 

 

 

Testing by „marching” algorithms 
(w/r) 
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Example: Checking software execution 

 Checking the correctness of control flow 

o Reference for correct behavior: Program control flow graph 

 

a:   for (i=0; i<MAX; i++) { 

b:        if (i==a) { 

c:     n=n-i; 

        } else { 

d:     m=m-i; 

        } 

e:        printf(“%d\n”,n); 

      } 

f:   printf(“Ready.”) 

Source code: Control flow graph: 

b 

c 

d 

e 

a 

f 
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Example: Checking software execution 

 Checking the correctness of control flow 

o Reference for correct behavior: Program control flow graph 

o Instrumentation: Signatures to be checked in runtime 

a:   S(a); for (i=0; i<MAX; i++) { 

b:        S(b); if (i==a) { 

c:     S(c); n=n-i; 

        } else { 

d:     S(d); m=m-i; 

        } 

e:        S(e); printf(“%d\n”,n); 

      } 

f:   S(f); printf(“Ready.”) 

Instrumented source code: Control flow graph: 

b 

c 

d 

e 

a 

f 
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Example: SAFEDMI development 
EVC: 
European 
Vital 
Computer 
(on board)  

Driver 

Maintenance center 

DMI 
EVC  

Characteristics: 
 Safety-critical functions 

o Information visualization 
o Processing driver commands 
o Data transfer to EVC 

 Safe wireless communication 
o System configuration 
o Diagnostics 
o Software update 
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Example: SAFEDMI architectural concept 

 Single-channel electronic structure based on reactive fail-safety 
(error detection and error handling) 

 Generic (off-the-shelf) hardware components are used 

 Most of the safety mechanisms implemented in software 

 

LCD DISPLAY 

 

 

SAFE DMI 

EXCLUSION LOGIC 
LCD  
lamp 

Vcc 

……… 

Keyboard 

 

Speaker 

ERTMS TRAINBORNE 

SYSTEMS 

commercial field bus 

wireless  
interface 
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Example: SAFEDMI hardware architecture 

Components: 
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Example: SAFEDMI operating modes 

 Operating modes: 
o Startup, Normal, Configuration, Safe state 

 Error processing: Suspect state 
o Intermediate state to distinguish transient and permanent faults 

o The fault is permanent if it occurs again when restart is tried  safe state 
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Example: SAFEDMI error detection techniques 

 Startup: Detection of permanent hardware faults 
o CPU testing with the help of an external watchdog circuit 

o Memory testing with marching algorithms 

o EPROM integrity checking with error detection codes 

o Device (peripherals) testing with the help of the driver 

 Normal/Configuration: Periodic and online checking 
o Scheduled self-tests for hardware 

o Data integrity in communication and configuration functions: 
Data acceptance / credibility checks, error detection codes 

o Control related functions (e.g., changing operating modes):  
Control flow monitoring, time-out checking, acknowledgements 

o Data related functions (e.g., constructing bitmap for the display):  
Duplicated computation and comparison of the results 
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2. Two-channels architecture with comparison 

 Two or more processing 
channels 
o Shared input 

o Comparison of outputs 

o Stopping in case of deviation 

 High error detection 
coverage 
o The comparator is a critical 

component (but simple) 

 Disadvantages: 
o Common mode faults 

remain undetected 

o Long detection latency 

= 

stop n 
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Example: Safety Microcontrollers 
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Example: SCADA system 

 Supervisory Control and Data Acquisition system 

A+     

I/O   

HMI 
  

A -   

Sensors and actuators 
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Example: SCADA system architecture 

 Two channels 

 Display: Periodically 
switching between 
bitmaps provided by the 
two channels: 
Comparison by the 
operator (stable or not) 

 Synchronization: 
Detection of internal 
errors before the effects 
reach the outputs 

Syncron

Communication 

protocol

Input

Database

Control

GUI

Channel 1 Channel 2

Communication 

protocol

Control

Database

Input
Syncron

Pict BPict A

I/O
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Example: SCADA deployment options 

 Two channels on the same server 
o Statically linked software modules 
o Independent execution in memory, disk and time 
o Diverse data representation 

• Binary data (signals): Two representations (original/negated) 
• Diverse indexing in the technology database 

 Two channels on two servers 
o Synchronization on dedicated network 

 Increasing availability 
by redundancy: 
o Two „2-out-of-2” scheme: 

Switch-over when primary  
pair detects a permanent  
fault 

  

A+           

I/O 

A   - B+           

I/O 

B   - 
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Example: SCADA error detection techniques 

For random hardware faults during operation: 

 Comparison of channels: Operator and I/O circuits 
o Heartbeat: Blinking RGB-BGR symbols indicate the regular update of the 

bitmap on the screen 

 Watchdog process 
o Checking the operation of the processes (heartbeats) 

 Regular comparison of the content of the technology database  
o Detecting latent errors 

For unintended control by the operator: 

 Three-phased control of outputs: 
o Preparation of output (but without effect; locking their activation) 

o Reading back the prepared output using independent software modules 

o Acknowledgement by the operator (using diverse GUI operations) 



© BME-MIT 35 

Example: SCADA three phases of control 

  

Channel 1   

I/O   

locking   
locking   

Channel 2   

1 

2 

3 
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3. Two-channels architecture with safety checking 

 Independent second 
channel 
o Safety bag: only safety 

checking 

o Diverse implementation 

o Checking the output of 
the primary channel  

 Advantages 
o Explicit safety rules 

o Independence of the 
checker channel  

stop n 
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Example: Elektra interlocking system 

Two channels: 

 Logic channel:  
CHILL (CCITT High 
Level Language) 
procedural 
programming 
language 

 Safety channel:  
PAMELA (Pattern 
Matching Expert 
System Language) 
rule-based 
programing  
language  
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Summary: Objectives of architecture design 

Fail-safe operation 

Fail-stop behaviour Fail-operational behaviour 

Safe operation  
even in case of faults 

• Stopping (switch-off) 
   is a safe state 
• In case of a detected error 
   the system has to be  
   stopped 
• Error detection is required 

• Stopping (switch-off) 
   is not a safe state 
• Service is needed even 
   in case of a detected error 

• Full service or 
• Degraded (but safe) service 

• Fault tolerance is required 
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Summary: Solutions for fail-stop behavior 

1. Single channel with built-in self-test 
o Hardware: Power-on self-test (POST) and built-in 

self-test (BIST) 

o Software: Online self-checking 

 

2. Two-channels architecture with comparator 
o Replicated processing channels with shared 

input (problem: common failures) 

o Comparison of the channels’ output 

 

3. Two-channels architecture with safety 
checking 
o Independent, diverse checker channel 

o Checking the output of the primary channel  

 


stopn

=
stopn
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Typical architectures  
for fault-tolerant systems 
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Objectives of architecture design 

Fail-safe operation 

Fail-stop behaviour Fail-operational behaviour 

• Stopping (switch-off) 
   is a safe state 
• In case of a detected error 
   the system has to be  
   stopped 
• Error detection is required 

• Stopping (switch-off) 
   is not a safe state 
• Service is needed even 
   in case of a detected error 

• full service 
• degraded (but safe) service 

• Fault tolerance is required 
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Fault tolerant systems 
 Fault tolerance: Providing (safe) service in case of faults 

o Intervening into the fault  error  failure chain 

• Detecting the error and assessing the damage 

• Involving extra resources to perform corrections / recovery 

• Providing correct service without failure 

• (Providing degraded service in case of insufficient resources) 

 Extra resources: Redundancy 

o Hardware 

o Software 

o Information 

o Time 

resources (sometimes together) 
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Categories of redundancy 

  Forms of redundancy: 
o Hardware redundancy 

• Extra hardware components (inherent in the system  
or planned for fault tolerance) 

o Software redundancy 
• Extra software modules 

o Information redundancy 
• Extra information (e.g., error correcting codes) 

o Time redundancy 
• Repeated execution (to handle transient faults) 

 Types of redundancy 
o Cold: The redundant component is inactive in fault-free case 

o Warm: The redundant component is active but has reduced load 

o Hot: The redundant component is active in fault-free case 
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Example: Error detecting and correcting codes 

 Error detecting codes (EDC): Only detection of errors 

o Parity bit: Increasing the Hamming-distance, 1 bit error can be detected 

o Checksum: Using in case of files, messages 

 Error correcting codes (ECC): Identifying and correcting errors 

o Higher Hamming distance: Errors can be corrected 

• E.g.: (7, 4) bit Hamming code: 1 bit error corrected, 1 or 2 bit errors detected 

o Information blocks: More difficult codes are used 

• E.g.: (255, 223) byte Reed-Solomon code: 16 byte errors can be corrected 

 Limited error correction capability 

o Information storage: In long time, more errors can accumulate than the number of 

errors that can be corrected by the applied codes 

o Basic idea: Periodic reading, correcting and writing back the information 

Encode 
Transfer, 
storage 

Decode 

4 data bits,  

3 redundant 

bits 
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Overview: How to use the redundancy? 

 Hardware design faults:                 (< 1%) 

o Hardware redundancy with design diversity 

 Hardware permanent operational faults:    (~ 20%) 

o Hardware redundancy (e.g.: redundant processor) 

 Hardware transient operational faults:   (~70-80%) 

o Time redundancy (e.g.: instruction retry) 

o Information redundancy (e.g.: error correcting codes) 

o Software redundancy (e.g.: recovery from saved state) 

 Software design faults:              (~ 10%) 

o Software redundancy with design diversity 
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1. Fault tolerance for hardware permanent faults 

Replication: 

 Duplication with diagnostics: 

o Error detection by comparison  

o With diagnostic unit:  
Fault tolerance by switch-over 

 TMR: Triple Modular Redundancy 

o Masking the failure 
by majority voting 

o Voter is a critical component  
(but simple) 

 NMR: N-modular redundancy 

o Masking the failure by majority voting 

o Mission critical systems: Goal is to survive the mission time 

Primary   

Input     Output   

Secondary   

  

Switch-  
over   

Diagnostic 
unit   

Module 1   

Input   

Module 2   

Module 3   

voting 

 Output   

  

Majority 

With diversity in case of considering design faults 
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Implementation of the replication 

 Equipment/server level: 

o Servers: High availability server clusters 

• E.g., Linux HA Clustering, Windows Server Failover Clustering 

o Software support: Failover and failback 

 Board level: 

o Run-time reconfiguration: “Hot-swap” 

• E.g., CompactPCI, HDD, power supply 

o Software support: monitoring, reconfiguration 

 Component level: 

o Replication of components: TMR 

o Self-checking circuits (processing encoded information) 
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RAID: 
Redundant 
Array of 
Independent 
Disks 

Example: 
RAID disk 
configura- 

tions 

RAID-1: Mirroring (duplicated disks) 

RAID-2: Bit-level ECC (error correcting codes) 

RAID-3: Bit-level parity (assumption: faulty disk can be identified) 

RAID-4: Block-level parity (to improve performance) 

RAID-5: Block-level parity (to avoid bottleneck of the parity disk) 
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2. Fault tolerance for transient hardware faults 

 Approach: Fault tolerance implemented by software 

o Detecting the error 

o Setting a fault-free state by handling the fault effects 

o Continuing the execution from that state  
(assuming that transient faults will not occur again) 

 Four phases of operation: 

 1)  Error detection 

 2)  Damage assessment 

 3)  Recovery 

 4)  Fault treatment and continuing service 
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Phase 1: Error detection 

 Application independent mechanisms: 

o E.g., detecting illegal instructions at CPU level 

o E.g., detecting violation of memory access restrictions 

 Application dependent techniques: 

o Acceptance checking 

o Timing related checking 

o Cross-checking 

o Structure checking 

o Diagnostic checking 

o … 
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Phase 2: Damage assessment 

 Motivation: Errors can propagate among the components 
between the occurrence and detection of errors 

 

 

 

 Limiting error propagation: Checking interactions 

o Input acceptance checking (to detect external errors) 

o Output credibility checking (to provide „fail-silent” operation) 

 Estimation of components affected by a detected error 

o On the basis of logged resource accesses and communication 

o Analysis of interactions (that happened before error detection) 

! 
Fault Error detection 

Interactions 

t 
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Phase 3: Recovery 

 Forward recovery: 

o Setting an error-free state by selective correction 

o Dependent on the detected error and estimated damage 

o Used in case of anticipated faults 

 Backward recovery: 

o Restoring a prior error-free state (that was saved earlier) 

o Independent of the detected error and estimated damage 

o State shall be saved and restored for each component 

 Compensation:  

o The error can be handled by using inherent redundant 
information 
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Types of recovery 

 State space of the system: Error detection 

v2 

v1 state variable 

s(t) 

!    Error detection 
Fault occurrence 
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Types of recovery 

 State space of the system: Forward recovery 

v2 

v1 state variable 

s(t) 

! 

Forward recovery 

e1 

e2 

e3 



© BME-MIT 59 

Types of recovery 

 State space of the system: Backward recovery 

v2 

v1 state variable 

s(t) 

! 

Backward recovery 

Saved state 
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Types of recovery 

 State space of the system: Compensation 

v2 

v1 state variable 

s(t) 

! 

Compensation 
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Types of recovery 

 State space of the system: Types of recovery 

v2 

v1 state variable 

s(t) 

! 

Backward 

Forward 

Saved state 

e1 

e2 

e3 

Compensation 
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Backward recovery 

 Backward recovery based on saved state 

o Checkpoint: The saved state 

o Checkpoint operations: 

• Save: copying the state periodically into stable storage  

• Recovery: restoring the state from the stable storage 

• Discard: deleting saved state after having more recent one(s) 

o Analogy: “autosave” 

 Backward recovery based on operation logs 

o Limited scope: Errors due to unintended operations 

o Recovery is performed by the withdrawal of operations  
(by executing inverse operation, revoking the effects etc.) 

o Analogy: ”undo” 
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Scenarios of backward recovery 

t 

! 

t 

! 

t 

! 

t 

Saved state 1 Saved state 2 

Fault Detection 
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Checkpoint intervals 

Aspects of optimizing checkpoint intervals: 

 Stable storage is slow ( overhead) and has limited capacity 

 Computation is lost after the last checkpoint 

 Long error detection latency increases the chance of damaged 
checkpoints 

t 

a1 b1 c1 a2 b2 c2 ! … 
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Phase 4: Fault treatment and continuing service 

 For transient faults: 
o Handled by the forward or backward recovery 

 For permanent faults: 
o Recovery is unsuccessful (the error is detected again) 

o The faulty component shall be localized and handled 

Approach: 
o Diagnostic checks to localize the fault 

o Reconfiguration 
• Replacing the faulty component using redundancy 

• Degraded operation: Continuing only the critical services 

o Repair or replacement 
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4. Fault tolerance for software faults 

 Repeated execution is not effective for design faults! 

 Redundancy with design diversity is required: 
Variants: Redundant software modules with 

o diverse algorithms and data structures, 

o different programming languages and development tools, 

o separated development teams 

in order to reduce the probability of common faults 

 Execution of variants: 

o N-version programming 

o N-self-checking programming 

o Recovery blocks 
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N-version programming 

 Active redundancy:  
Each variant is executed (in parallel or serially) 

o The same inputs are used 

o Majority voting is performed on the output 

• Acceptable range of difference shall be specified 

• The voter is a critical component (but simple) 

Variant 1 

Variant 2 

Variant 3 

Voter 
Output 

Error 
signal 

Input 
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N-self-checking programming 

 Active dynamic redundancy 

o N self-checking components: Variant + checker 

o In case of detected fault: Switching from the primary 
component to the redundant one 

Variant 1 

Checker 1 

Arbiter 
Output 

Error 
signal 

Input 

Variant 2 

Checker 2 
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Recovery blocks 
 Passive redundancy: Activation only in case of faults 

o The primary variant is executed first 

o Acceptance checking on the output of the variants 

o In case of a detected error another variant is executed 

Execution of 
a variant 

Acceptance 
checking 

y n 

Output 

Input 
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Recovery blocks 

Execution of 
a variant 

Acceptance 
checking 

Is there an  
extra variant? 

y n n y 

Output Error signal 

Input 

 Passive redundancy: Activation only in case of faults 
o The primary variant is executed first 

o Acceptance checking on the output of the variants 

o In case of a detected error another variant is executed 
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Recovery blocks 

Saving state 

Restoring 
state 

Execution of 
a variant 

Acceptance 
checking 

Is there an  
extra variant? 

y n n y 

Output Error signal 

Input 

 Passive redundancy: Activation only in case of faults 
o The primary variant is executed first 

o Acceptance checking on the output of the variants 

o In case of a detected error another variant is executed 
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Comparison of the techniques 

Property/Type N-version  
programming 

Recovery  
blocks 

Error detection Majority voting, 
relative 

Acceptance checking, 
absolute 

Execution of 
variants 

Parallel (typically) Serial only 

Execution time Slowest variant 
(or time-out) 

Depending on the 
number of faults 

Activation of 
redundancy 

Always  
(active) 

Only in case of fault 
(passive) 

Number of 
tolerated faults 

[(N-1)/2] N-1 
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Summary: Techniques of fault tolerance 
1. Hardware design faults 

o Diverse redundant components 

2. Hardware permanent operational faults 
o Replicated components: TMR, NMR 

3. Hardware transient operational faults 
o Fault tolerance implemented by software 

1. Error detection 

2. Damage assessment 

3. Recovery: Forward or backward recovery (or compensation) 

4. Fault treatment 

o Information redundancy: Error correcting codes 

o Time redundancy: Repeated execution (retry, reload, restart) 

4. Software design faults 
o Variants as diverse redundant components (NVP, RB) 
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Software architecture design in standards 

 IEC 61508: 
Functional  
safety in  
electrical /  
electronic /  
programmable  
electronic  
safety-related  
systems 

 Measures for  
software  
architecture  
design 
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Summary: Time needed for redundancy 

 Pure time redundancy: Retry 

o Low-level hardware: processor micro-instruction 

o Higher level: Function, task repeated execution 

o Effective in case of transient faults 

 Time overhead: Side effect of other redundancy 

o Hard real-time systems: design aspect to guarantee 
the execution time of fault handling / tolerance 

o Preferred solutions: 

• Permanent hardware faults: masking, warm redundancy 

• Transient hardware faults: forward error recovery 

• Software (design) faults: N-version programming 
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Redundancy in space (resources) and time 
  „Space” redundancy (%)   

Time redundancy (s)   
0.001   0.1   10   1000 

TMR 

  

100   

10   

N-version 
programming 

  

Error correcting 
codes 

Retry   Reload   Restart   

Backward 
recovery 

  

Recovery 
blocks 

Backward 
recovery in 
distributed 

Forward 
recovery 

systems 
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Costs of redundancy and faults 

Costs of operation 

Costs of redundancy 
Sum of costs 

Level of 
redundancy 

 Costs 

optimum 
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Testing fault tolerance 
 Inducing faults: Fault injection 

o Hardware:  
• Generating “real” faults: 

stuck-at bus signals, power failures,  
particle radiation, temperature shock 

• Hardware dependent, slow 

o Software: 
• Generating fault effects (changing the system state):  

setting registers, memory bits 

• More flexible, faster 

• Questionable whether real faults lead to these effects 

o Hybrid 

 Monitoring the effects (in operation) 
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Summary: Safety architectures 
 Fail-stop solutions 

o Single channel with built-in self-checks 
o Dual channel with comparison 
o Dual channel with independent checker 

 Fail-operation (fault-tolerance) solutions 
o Hardware design faults: Diverse redundant hardware 

components 
o Hardware permanent operational faults: Replicated 

hardware components 
o Hardware transient operational faults:  

• Software implemented redundancy: Error detection and recovery 
• Information redundancy: Error correcting codes 
• Time redundancy: Retrying execution 

o Software design faults: Diverse redundant sw components 


