
 © BME-MIT Budapest University of Technology and Economics

Department of Measurement and Information Systems

Architecture of Safety Critical

Systems

Design and Integration of Embedded Systems

István Majzik

Department of
Measurement and
Information Systems

© BME-MIT 3

Goals
 Focus: Design of system architecture to ...

o maintain safety,

o handle the effects of faults in hardware and software
components

 Learning objectives
o Know the typical architecture level solutions for error

detection in case of fail-stop behavior

o Propose solutions for fault tolerance in case of
• Permanent hardware faults

• Transient hardware faults

• Software faults

o Understand the time and resource overhead of the
different architecture patterns

© BME-MIT 17

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

Safe operation
even in case of faults

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Error detection is required

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• Full service or
• Degraded (but safe) service

• Fault tolerance is required

© BME-MIT 18

Typical architectures
for fail-stop operation

© BME-MIT 19

1. Single channel architecture with built-in self-check

 Single processing flow with error detection

 Scheduled hardware self-tests

o After switch-on: Detailed self-test

o In run-time: Periodic on-line tests

 Online software error detection

o Typically application dependent techniques

o Checking the control flow, data acceptance
rules, timeliness properties

 Disadvantages

o Fault coverage of the self-tests is limited

o Fault handling (e.g., switch-off) shall be
performed by the checked channel

© BME-MIT 20

Implementation of on-line error detection

 Application dependent (ad-hoc) techniques

o Acceptance checking (e.g.: too low, too high value)

o Timing related checking (e.g.: too early, too late)

o Cross-checking (e.g.: using inverse function)

o Structure checking (e.g.: broken data structure)

 Application independent (platform) mechanisms

o Hardware supported on-line checking

• CPU level: Invalid instruction, user/supervisor modes etc.

• MPU level: Protection of memory ranges

o OS level checking

• Invalid parameters of system calls

• OS level protection of resources (locking, authorization etc.)

© BME-MIT 21

Example: Testing memory cells (hw)

States of a correct cell to be
checked:

 Observed in case of stuck-at
0/1 faults:

 Observed if w1 transition
fault:

States of two correct (adjacent) cells
to be checked:

Testing by „marching” algorithms
(w/r)

© BME-MIT 22

Example: Checking software execution

 Checking the correctness of control flow

o Reference for correct behavior: Program control flow graph

a: for (i=0; i<MAX; i++) {

b: if (i==a) {

c: n=n-i;

 } else {

d: m=m-i;

 }

e: printf(“%d\n”,n);

 }

f: printf(“Ready.”)

Source code: Control flow graph:

b

c

d

e

a

f

© BME-MIT 23

Example: Checking software execution

 Checking the correctness of control flow

o Reference for correct behavior: Program control flow graph

o Instrumentation: Signatures to be checked in runtime

a: S(a); for (i=0; i<MAX; i++) {

b: S(b); if (i==a) {

c: S(c); n=n-i;

 } else {

d: S(d); m=m-i;

 }

e: S(e); printf(“%d\n”,n);

 }

f: S(f); printf(“Ready.”)

Instrumented source code: Control flow graph:

b

c

d

e

a

f

© BME-MIT 24

Example: SAFEDMI development
EVC:
European
Vital
Computer
(on board)

Driver

Maintenance center

DMI
EVC

Characteristics:
 Safety-critical functions

o Information visualization
o Processing driver commands
o Data transfer to EVC

 Safe wireless communication
o System configuration
o Diagnostics
o Software update

© BME-MIT 25

Example: SAFEDMI architectural concept

 Single-channel electronic structure based on reactive fail-safety
(error detection and error handling)

 Generic (off-the-shelf) hardware components are used

 Most of the safety mechanisms implemented in software

LCD DISPLAY

SAFE DMI

EXCLUSION LOGIC
LCD
lamp

Vcc

………

Keyboard

Speaker

ERTMS TRAINBORNE

SYSTEMS

commercial field bus

wireless
interface

© BME-MIT 26

Example: SAFEDMI hardware architecture

Components:

LCD

matrix

CPU

ROM RAM

Audio

Controller

Graphic

Controller

Keyboard

Controller

Keyboard

Speaker
Video

Pages

Thermometer

Cabin

Identifier

bus

Bus

Controller

Log

Device

Device to

communicate with

EVC

Device to

communicate with

BD

LCD

lamps

Flash

audio

LCD lamps

Controller

Watch

dog

LCD

matrix

CPU

ROM RAM

Audio

Controller

Graphic

Controller

Keyboard
Controller

Keyboard

Speaker
Video

Pages

Thermometer

Cabin

Identifier

Cabin

Identifier

bus

Bus

Controller

Log

Device

Device to

communicate with

EVC

Device to

communicate with

BD

LCD

lamps

Flash

audio

LCD lamps

Controller

Watch

dog

© BME-MIT 27

Example: SAFEDMI operating modes

 Operating modes:
o Startup, Normal, Configuration, Safe state

 Error processing: Suspect state
o Intermediate state to distinguish transient and permanent faults

o The fault is permanent if it occurs again when restart is tried  safe state

© BME-MIT 28

Example: SAFEDMI error detection techniques

 Startup: Detection of permanent hardware faults
o CPU testing with the help of an external watchdog circuit

o Memory testing with marching algorithms

o EPROM integrity checking with error detection codes

o Device (peripherals) testing with the help of the driver

 Normal/Configuration: Periodic and online checking
o Scheduled self-tests for hardware

o Data integrity in communication and configuration functions:
Data acceptance / credibility checks, error detection codes

o Control related functions (e.g., changing operating modes):
Control flow monitoring, time-out checking, acknowledgements

o Data related functions (e.g., constructing bitmap for the display):
Duplicated computation and comparison of the results

© BME-MIT 29

2. Two-channels architecture with comparison

 Two or more processing
channels
o Shared input

o Comparison of outputs

o Stopping in case of deviation

 High error detection
coverage
o The comparator is a critical

component (but simple)

 Disadvantages:
o Common mode faults

remain undetected

o Long detection latency

=

stop n

© BME-MIT 30

Example: Safety Microcontrollers

© BME-MIT 31

Example: SCADA system

 Supervisory Control and Data Acquisition system

A+

I/O

HMI

A -

Sensors and actuators

© BME-MIT 32

Example: SCADA system architecture

 Two channels

 Display: Periodically
switching between
bitmaps provided by the
two channels:
Comparison by the
operator (stable or not)

 Synchronization:
Detection of internal
errors before the effects
reach the outputs

Syncron

Communication

protocol

Input

Database

Control

GUI

Channel 1 Channel 2

Communication

protocol

Control

Database

Input
Syncron

Pict BPict A

I/O

© BME-MIT 33

Example: SCADA deployment options

 Two channels on the same server
o Statically linked software modules
o Independent execution in memory, disk and time
o Diverse data representation

• Binary data (signals): Two representations (original/negated)
• Diverse indexing in the technology database

 Two channels on two servers
o Synchronization on dedicated network

 Increasing availability
by redundancy:
o Two „2-out-of-2” scheme:

Switch-over when primary
pair detects a permanent
fault

A+

I/O

A - B+

I/O

B -

© BME-MIT 34

Example: SCADA error detection techniques

For random hardware faults during operation:

 Comparison of channels: Operator and I/O circuits
o Heartbeat: Blinking RGB-BGR symbols indicate the regular update of the

bitmap on the screen

 Watchdog process
o Checking the operation of the processes (heartbeats)

 Regular comparison of the content of the technology database
o Detecting latent errors

For unintended control by the operator:

 Three-phased control of outputs:
o Preparation of output (but without effect; locking their activation)

o Reading back the prepared output using independent software modules

o Acknowledgement by the operator (using diverse GUI operations)

© BME-MIT 35

Example: SCADA three phases of control

Channel 1

I/O

locking
locking

Channel 2

1

2

3

1

© BME-MIT 36

3. Two-channels architecture with safety checking

 Independent second
channel
o Safety bag: only safety

checking

o Diverse implementation

o Checking the output of
the primary channel

 Advantages
o Explicit safety rules

o Independence of the
checker channel 

stop n

© BME-MIT 37

Example: Elektra interlocking system

Two channels:

 Logic channel:
CHILL (CCITT High
Level Language)
procedural
programming
language

 Safety channel:
PAMELA (Pattern
Matching Expert
System Language)
rule-based
programing
language

© BME-MIT 38

Summary: Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

Safe operation
even in case of faults

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Error detection is required

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• Full service or
• Degraded (but safe) service

• Fault tolerance is required

© BME-MIT 39

Summary: Solutions for fail-stop behavior

1. Single channel with built-in self-test
o Hardware: Power-on self-test (POST) and built-in

self-test (BIST)

o Software: Online self-checking

2. Two-channels architecture with comparator
o Replicated processing channels with shared

input (problem: common failures)

o Comparison of the channels’ output

3. Two-channels architecture with safety
checking
o Independent, diverse checker channel

o Checking the output of the primary channel



stopn

=
stopn

© BME-MIT 41

Typical architectures
for fault-tolerant systems

© BME-MIT 42

Objectives of architecture design

Fail-safe operation

Fail-stop behaviour Fail-operational behaviour

• Stopping (switch-off)
 is a safe state
• In case of a detected error
 the system has to be
 stopped
• Error detection is required

• Stopping (switch-off)
 is not a safe state
• Service is needed even
 in case of a detected error

• full service
• degraded (but safe) service

• Fault tolerance is required

© BME-MIT 45

Fault tolerant systems
 Fault tolerance: Providing (safe) service in case of faults

o Intervening into the fault  error  failure chain

• Detecting the error and assessing the damage

• Involving extra resources to perform corrections / recovery

• Providing correct service without failure

• (Providing degraded service in case of insufficient resources)

 Extra resources: Redundancy

o Hardware

o Software

o Information

o Time

resources (sometimes together)

© BME-MIT 46

Categories of redundancy

 Forms of redundancy:
o Hardware redundancy

• Extra hardware components (inherent in the system
or planned for fault tolerance)

o Software redundancy
• Extra software modules

o Information redundancy
• Extra information (e.g., error correcting codes)

o Time redundancy
• Repeated execution (to handle transient faults)

 Types of redundancy
o Cold: The redundant component is inactive in fault-free case

o Warm: The redundant component is active but has reduced load

o Hot: The redundant component is active in fault-free case

© BME-MIT 47

Example: Error detecting and correcting codes

 Error detecting codes (EDC): Only detection of errors

o Parity bit: Increasing the Hamming-distance, 1 bit error can be detected

o Checksum: Using in case of files, messages

 Error correcting codes (ECC): Identifying and correcting errors

o Higher Hamming distance: Errors can be corrected

• E.g.: (7, 4) bit Hamming code: 1 bit error corrected, 1 or 2 bit errors detected

o Information blocks: More difficult codes are used

• E.g.: (255, 223) byte Reed-Solomon code: 16 byte errors can be corrected

 Limited error correction capability

o Information storage: In long time, more errors can accumulate than the number of

errors that can be corrected by the applied codes

o Basic idea: Periodic reading, correcting and writing back the information

Encode
Transfer,
storage

Decode

4 data bits,

3 redundant

bits

© BME-MIT 48

Overview: How to use the redundancy?

 Hardware design faults: (< 1%)

o Hardware redundancy with design diversity

 Hardware permanent operational faults: (~ 20%)

o Hardware redundancy (e.g.: redundant processor)

 Hardware transient operational faults: (~70-80%)

o Time redundancy (e.g.: instruction retry)

o Information redundancy (e.g.: error correcting codes)

o Software redundancy (e.g.: recovery from saved state)

 Software design faults: (~ 10%)

o Software redundancy with design diversity

© BME-MIT 49

1. Fault tolerance for hardware permanent faults

Replication:

 Duplication with diagnostics:

o Error detection by comparison

o With diagnostic unit:
Fault tolerance by switch-over

 TMR: Triple Modular Redundancy

o Masking the failure
by majority voting

o Voter is a critical component
(but simple)

 NMR: N-modular redundancy

o Masking the failure by majority voting

o Mission critical systems: Goal is to survive the mission time

Primary

Input Output

Secondary

Switch-
over

Diagnostic
unit

Module 1

Input

Module 2

Module 3

voting

 Output

Majority

With diversity in case of considering design faults

© BME-MIT 50

Implementation of the replication

 Equipment/server level:

o Servers: High availability server clusters

• E.g., Linux HA Clustering, Windows Server Failover Clustering

o Software support: Failover and failback

 Board level:

o Run-time reconfiguration: “Hot-swap”

• E.g., CompactPCI, HDD, power supply

o Software support: monitoring, reconfiguration

 Component level:

o Replication of components: TMR

o Self-checking circuits (processing encoded information)

© BME-MIT 51

RAID:
Redundant
Array of
Independent
Disks

Example:
RAID disk
configura-

tions

RAID-1: Mirroring (duplicated disks)

RAID-2: Bit-level ECC (error correcting codes)

RAID-3: Bit-level parity (assumption: faulty disk can be identified)

RAID-4: Block-level parity (to improve performance)

RAID-5: Block-level parity (to avoid bottleneck of the parity disk)

© BME-MIT 53

2. Fault tolerance for transient hardware faults

 Approach: Fault tolerance implemented by software

o Detecting the error

o Setting a fault-free state by handling the fault effects

o Continuing the execution from that state
(assuming that transient faults will not occur again)

 Four phases of operation:

 1) Error detection

 2) Damage assessment

 3) Recovery

 4) Fault treatment and continuing service

© BME-MIT 54

Phase 1: Error detection

 Application independent mechanisms:

o E.g., detecting illegal instructions at CPU level

o E.g., detecting violation of memory access restrictions

 Application dependent techniques:

o Acceptance checking

o Timing related checking

o Cross-checking

o Structure checking

o Diagnostic checking

o …

© BME-MIT 55

Phase 2: Damage assessment

 Motivation: Errors can propagate among the components
between the occurrence and detection of errors

 Limiting error propagation: Checking interactions

o Input acceptance checking (to detect external errors)

o Output credibility checking (to provide „fail-silent” operation)

 Estimation of components affected by a detected error

o On the basis of logged resource accesses and communication

o Analysis of interactions (that happened before error detection)

!
Fault Error detection

Interactions

t

© BME-MIT 56

Phase 3: Recovery

 Forward recovery:

o Setting an error-free state by selective correction

o Dependent on the detected error and estimated damage

o Used in case of anticipated faults

 Backward recovery:

o Restoring a prior error-free state (that was saved earlier)

o Independent of the detected error and estimated damage

o State shall be saved and restored for each component

 Compensation:

o The error can be handled by using inherent redundant
information

© BME-MIT 57

Types of recovery

 State space of the system: Error detection

v2

v1 state variable

s(t)

! Error detection
Fault occurrence

© BME-MIT 58

Types of recovery

 State space of the system: Forward recovery

v2

v1 state variable

s(t)

!

Forward recovery

e1

e2

e3

© BME-MIT 59

Types of recovery

 State space of the system: Backward recovery

v2

v1 state variable

s(t)

!

Backward recovery

Saved state

© BME-MIT 60

Types of recovery

 State space of the system: Compensation

v2

v1 state variable

s(t)

!

Compensation

© BME-MIT 61

Types of recovery

 State space of the system: Types of recovery

v2

v1 state variable

s(t)

!

Backward

Forward

Saved state

e1

e2

e3

Compensation

© BME-MIT 62

Backward recovery

 Backward recovery based on saved state

o Checkpoint: The saved state

o Checkpoint operations:

• Save: copying the state periodically into stable storage

• Recovery: restoring the state from the stable storage

• Discard: deleting saved state after having more recent one(s)

o Analogy: “autosave”

 Backward recovery based on operation logs

o Limited scope: Errors due to unintended operations

o Recovery is performed by the withdrawal of operations
(by executing inverse operation, revoking the effects etc.)

o Analogy: ”undo”

© BME-MIT 63

Scenarios of backward recovery

t

!

t

!

t

!

t

Saved state 1 Saved state 2

Fault Detection

© BME-MIT 64

Checkpoint intervals

Aspects of optimizing checkpoint intervals:

 Stable storage is slow ( overhead) and has limited capacity

 Computation is lost after the last checkpoint

 Long error detection latency increases the chance of damaged
checkpoints

t

a1 b1 c1 a2 b2 c2 ! …

© BME-MIT 65

Phase 4: Fault treatment and continuing service

 For transient faults:
o Handled by the forward or backward recovery

 For permanent faults:
o Recovery is unsuccessful (the error is detected again)

o The faulty component shall be localized and handled

Approach:
o Diagnostic checks to localize the fault

o Reconfiguration
• Replacing the faulty component using redundancy

• Degraded operation: Continuing only the critical services

o Repair or replacement

© BME-MIT 66

4. Fault tolerance for software faults

 Repeated execution is not effective for design faults!

 Redundancy with design diversity is required:
Variants: Redundant software modules with

o diverse algorithms and data structures,

o different programming languages and development tools,

o separated development teams

in order to reduce the probability of common faults

 Execution of variants:

o N-version programming

o N-self-checking programming

o Recovery blocks

© BME-MIT 67

N-version programming

 Active redundancy:
Each variant is executed (in parallel or serially)

o The same inputs are used

o Majority voting is performed on the output

• Acceptable range of difference shall be specified

• The voter is a critical component (but simple)

Variant 1

Variant 2

Variant 3

Voter
Output

Error
signal

Input

© BME-MIT 68

N-self-checking programming

 Active dynamic redundancy

o N self-checking components: Variant + checker

o In case of detected fault: Switching from the primary
component to the redundant one

Variant 1

Checker 1

Arbiter
Output

Error
signal

Input

Variant 2

Checker 2

© BME-MIT 70

Recovery blocks
 Passive redundancy: Activation only in case of faults

o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

Execution of
a variant

Acceptance
checking

y n

Output

Input

© BME-MIT 71

Recovery blocks

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

 Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

© BME-MIT 72

Recovery blocks

Saving state

Restoring
state

Execution of
a variant

Acceptance
checking

Is there an
extra variant?

y n n y

Output Error signal

Input

 Passive redundancy: Activation only in case of faults
o The primary variant is executed first

o Acceptance checking on the output of the variants

o In case of a detected error another variant is executed

© BME-MIT 73

Comparison of the techniques

Property/Type N-version
programming

Recovery
blocks

Error detection Majority voting,
relative

Acceptance checking,
absolute

Execution of
variants

Parallel (typically) Serial only

Execution time Slowest variant
(or time-out)

Depending on the
number of faults

Activation of
redundancy

Always
(active)

Only in case of fault
(passive)

Number of
tolerated faults

[(N-1)/2] N-1

 © BME-MIT Budapest University of Technology and Economics

Department of Measurement and Information Systems

Summary

© BME-MIT 75

Summary: Techniques of fault tolerance
1. Hardware design faults

o Diverse redundant components

2. Hardware permanent operational faults
o Replicated components: TMR, NMR

3. Hardware transient operational faults
o Fault tolerance implemented by software

1. Error detection

2. Damage assessment

3. Recovery: Forward or backward recovery (or compensation)

4. Fault treatment

o Information redundancy: Error correcting codes

o Time redundancy: Repeated execution (retry, reload, restart)

4. Software design faults
o Variants as diverse redundant components (NVP, RB)

© BME-MIT 77

Software architecture design in standards

 IEC 61508:
Functional
safety in
electrical /
electronic /
programmable
electronic
safety-related
systems

 Measures for
software
architecture
design

© BME-MIT 78

Summary: Time needed for redundancy

 Pure time redundancy: Retry

o Low-level hardware: processor micro-instruction

o Higher level: Function, task repeated execution

o Effective in case of transient faults

 Time overhead: Side effect of other redundancy

o Hard real-time systems: design aspect to guarantee
the execution time of fault handling / tolerance

o Preferred solutions:

• Permanent hardware faults: masking, warm redundancy

• Transient hardware faults: forward error recovery

• Software (design) faults: N-version programming

© BME-MIT 79

Redundancy in space (resources) and time
 „Space” redundancy (%)

Time redundancy (s)
0.001 0.1 10 1000

TMR

100

10

N-version
programming

Error correcting
codes

Retry Reload Restart

Backward
recovery

Recovery
blocks

Backward
recovery in
distributed

Forward
recovery

systems

© BME-MIT 80

Costs of redundancy and faults

Costs of operation

Costs of redundancy
Sum of costs

Level of
redundancy

 Costs

optimum

© BME-MIT 81

Testing fault tolerance
 Inducing faults: Fault injection

o Hardware:
• Generating “real” faults:

stuck-at bus signals, power failures,
particle radiation, temperature shock

• Hardware dependent, slow

o Software:
• Generating fault effects (changing the system state):

setting registers, memory bits

• More flexible, faster

• Questionable whether real faults lead to these effects

o Hybrid

 Monitoring the effects (in operation)

© BME-MIT 83

Summary: Safety architectures
 Fail-stop solutions

o Single channel with built-in self-checks
o Dual channel with comparison
o Dual channel with independent checker

 Fail-operation (fault-tolerance) solutions
o Hardware design faults: Diverse redundant hardware

components
o Hardware permanent operational faults: Replicated

hardware components
o Hardware transient operational faults:

• Software implemented redundancy: Error detection and recovery
• Information redundancy: Error correcting codes
• Time redundancy: Retrying execution

o Software design faults: Diverse redundant sw components

