
© BME-MITBudapest University of Technology and Economics

Department of Measurement and Information Systems

Safety-Critical Systems

Design and Integration of Embedded Systems

István Majzik

Department of 
Measurement and   
Information Systems     



© BME-MIT 2

Goal of this study block

 Based on previous topics:

o Requirements specification

o Architecture design

o Testing and analysis

 Focus on the design of safety-critical systems

 Specific steps and techniques

1. Requirements in critical systems: Safety, dependability

2. Architecture design in critical systems

3. Hazard analysis: Evaluation of design decisions

4. Quantitative analysis of safety and dependability

5. Model-based design



© BME-MIT 3

Introduction
 Safety-critical systems

o Informally: Malfunction may cause injury of people

 Safety-critical computer-based systems
o E/E/PE: Electrical, electronic, programmable 

electronic systems

o Provide control, protection, or monitoring

o EUC: Equipment under control

 Basis of development: Standards
o IEC 61508: Generic standard (for electrical, 

electronic or programmable electronic systems)

o DO178B/C: Software in airborne systems and 
equipment

o EN 50129/8: Railway control systems / software

o ISO 26262: Automotive systems

o Other sector-specific standards: Medical, process 
control, nuclear, etc.

X-by-wire,
engine control, 
railway interlocking, 
signaling, …



© BME-MIT 6

Safety Requirements



© BME-MIT 7

Terminology in the requirements

Safety

Harm

Risk

Hazard

Functional
safety

Physical injury or damage 
to the health of people
(to property, environment)

Situation (state, event) which 
may result in harm under 
specific circumstances

Combination of the 
• probability of occurrence 

(or frequency) of hazard
• and the severity of the 

consequences (harm)



© BME-MIT 8

Risk categories



© BME-MIT 9

Terminology in the requirements

Safety

Harm

Risk

Hazard

Functional
safety

Physical injury or damage to 
the health of people
(to property, environment)

Situation (state, event) which 
may result in harm under 
specific circumstances

Combination of the 
probability of occurrence of 
hazard and the severity of the 
consequences (harm)

Freedom from unacceptable risk
(Ideal case: Freedom from harm)

Safety depends on the correct 
functioning of the system



© BME-MIT 11

Example: Level crossing with barrier and control light

Safety

Harm

Risk

Hazard

Functional
safety

Collision of a 
car and a train

Car is on the rail
when the train is
approaching

Installation of a 
barrier and 
control light;
Closing the level crossing
when the train is approaching

Frequency: Probable
Consequence: Catastrophic

Goal: Freedom
from unacceptable 
risk

Bekapcsoló pont Bekapcsoló pont

Közelítési szakasz Közelítési szakasz

Kikapcsoló pont



© BME-MIT 12

What we have to specify?
 Safety function requirements

o Function which is intended to achieve or maintain a safe 
state for the EUC
• What the system shall do in order to avoid or control the hazard

o It is part of the functional requirements specification

 Safety integrity requirements

o Probability that the safety-related system performs the 
required safety functions (i.e., without failure)

o Probabilistic approach to safety
• Example 1: Buildings are designed to survive earthquake that 

occurs with probability  >0.1  in 50 years

• Example 2: Dams of rivers are designed to withhold the highest 
water measured in the last 100 years



© BME-MIT 13

Safety function requirements
Role of safety functions in hazard control:
 Hazard mitigation

o Eliminate or decrease the cause of a hazard

 Hazard containment
o Protect or reduce the consequence of a hazard



© BME-MIT 14

Safety integrity requirements
Specification of integrity depends on mode of operation

 Low demand mode:
o Occasional, rare operation (e.g., a protection system operating 

only in case of a failure of an EUC)

o Specified: The allowed average probability of failure to perform 
the desired function on demand

o PFD: Probability of Failure on Demand

 High demand mode: 
o Continuous operation (e.g., a system provides continuous 

control to an EUC)

o Specified: Average rate of failure to perform the desired 
function (rate: failure per hour)

o PFH: Probability of Failure per Hour

 THR: Tolerable Hazard Rate



© BME-MIT 15

Safety integrity levels (SIL)

 Low demand mode:

 High demand mode: 
SIL Average probability of failure per 

hour per safety function

1 10-6  PFH < 10-5

2 10-7  PFH < 10-6

3 10-8  PFH < 10-7

4 10-9  PFH < 10-8

SIL Average probability of failure to 
perform the function on demand

1 10-2  PFD < 10-1

2 10-3  PFD < 10-2

3 10-4  PFD < 10-3

4 10-5  PFD < 10-4

(PFH or THR)

Operation without failures in
more than 11.000 years???

15 years lifetime: 
1 failure in case of 

750 devices



© BME-MIT 16

Determining SIL: Overview

 Hazard identification and risk analysis -> Target SIL

Frequency of

hazardous event

Consequence of 

hazardous event

EUC

Risk

System 

safety 

integrity 

level

Software 

safety 

integrity 

level

4

3

2

1

0

4

3

2

1

0

THR SIL



© BME-MIT 17

Example: Safety requirements
 Machine with a rotating blade and a solid cover

o Cleaning of the blade: Lifting up the cover

 Risk analysis: Injury of the operator is possible
when cleaning the blade while it is rotating
o Hazard: If the cover is lifted more than 50 mm and 

the motor of the bladed does not stop in 3 sec

o There are 20 machines; during the lifetime 
500 cleaning is needed for each machine; 
it is tolerable only once that the motor is not stopped

 Safety function: Protection mechanism
o Safety function requirement: When the cover is lifted to 25 mm, 

the motor shall be stopped in 2.5 sec

 Safety integrity requirement: 
o The probability of failure of the protection mechanism (as a safety 

function) shall be less than 10-4 (one failure in 10.000 operation)



© BME-MIT 18

Satisfying safety integrity requirements

“Safety case” is needed
 Documented demonstration that the product complies with the 

specified safety requirements

How to demonstrate safety integrity - depends on failures
 Random (hardware) failures: 

o Occur accidentally at a random time due to degradation mechanisms

o Random failure integrity: Calculations on the basis of component fault rates 
 depends on selection of components and the system architecture

 Systematic (software) failures: 
o Occur in a deterministic way due to design / manufacturing / operating flaws

o Systematic failure integrity: Rigor in the development

• Development life cycle: Well-defined phases

• Techniques and measures: Verification, testing, measuring, …

• Documentation: Development and operation related

• Independence of persons: Developer, verifier, assessor, …



© BME-MIT 19

Summary: Structure of requirements



© BME-MIT 21

Dependability requirements



© BME-MIT 22

Characterizing the system services

 Requirement: Useful, functioning services
o Characterized by: Reliability, availability, integrity, ...

o These depend on the faults occurring during the use of the 
services of the system

o Basic question: How to avoid or handle the faults affecting the 
services?

 Composite characteristic: Dependability

o Definition: Ability to provide service in which reliance 
can justifiably be placed

• Reliance: the service satisfies the needs
• Justifiably: based on analysis, evaluation, measurements



© BME-MIT 23

Attributes of dependability

Attribute Definition

Availability Probability of correct service (considering 
failures, repairs and maintenance)

E.g., availability of a web service shall be 95%

Reliability Probability of continuous correct service 
(until the first failure)

E.g., after departure, the flight control system 
shall function correctly until the arrival

Safety Freedom from unacceptable risk of harm

Integrity Avoidance of erroneous changes or 
alterations (e.g., in data)

Maintainability Possibility of repairs and improvements



© BME-MIT 24

Dependability metrics: Mean values
 Basis: Partitioning the states of the system s(t)

o Correct (U, up) and incorrect (D, down) state partitions

 Mean values:
o Mean Time to First Failure: MTFF = E{u1}
o Mean Up Time: MUT = MTTF = E{ui}

(Mean Time To Failure)

oMean Down Time: MDT = MTTR = E{di}
(Mean Time To Repair)

o Mean Time Between Failures: MTBF = MUT + MDT

t

s(t) trajectory

u1 d1  u2    d2  u3  d3      u4  d4  u5       d5 ...

U

D



© BME-MIT 25

Dependability metrics: Probability functions

 Availability:

 Asymptotic availability:

 Reliability:

t

A

a(t)

r(t)

1.0

0

 ( ) ( )a t P s t U 

 ( ) ( ') , 'r t P s t U t t   

lim  ( )
t

A a t




MTTF
A

MTTF MTTR




In case of a system 
that is regularly 

repaired



© BME-MIT 27

Component attribute: Fault rate

 Fault rate (fault occurrence rate):
(t)t gives the probability that the component will fail 

in the interval t at time point t given that it has been correct until t

 Reliability of a component can be derived using (t):

 For electronic components:

0

( )

( )

t

t dt

r t e




t

(t)

H ere ( ) tr t e 

 
0

1
1 ( )MTFF E u r t dt





  

Initial faults 
(occur after 
production)

Aging
period

Operating period (typically years)

 ( ) ( ) | ( )  while  0t t P s t t D s t U t       

( )t



© BME-MIT 29

Example: Development of a DMI

EVC:
European Vital
Computer
(on board of 
the train) 

Driver

Maintenance center

Driver-Machine 
Interface

EVC 

Characteristics:
 Safety-critical functions

o Visualization of information
o Processing driver commands
o Data transfer from/to EVC

 Safe wireless communication
o System configuration
o Diagnostics
o Software update



© BME-MIT 30

Example: DMI requirements

 Safety:

o Tolerable Hazard Rate: 10-7 <= THR < 10-6 1/hours
hazardous failures per hours

o Safety Integrity Level: SIL 2

 Reliability:

oMean Time To Failure:  MTTF > 5 000 hours
(5000 hours: ~ 7 months)

 Availability:

o A = MTTF / (MTTF+MTTR), A > 0.9952

• In faulty state: less than 42 hours per 1 year

• Satisfied: if MTTF = 5000 hours then MTTR < 24 hours



© BME-MIT 31

Threats to dependability: Faults

Fault tolerance

during the

operation

Verification

during the

development

Development process Product in operation

• Design faults
• Implementation faults

• Hardware faults
• Configuration faults
• Operator faults



© BME-MIT 32

The characteristics of faults

Fault

In space In time

Internal External

Physical
(hardware)

Design
(typ. software)

Physical
(environment)

Data
(input)

Intermittent
(transient)

Permanent

Software fault: 

 Permanent, internal design fault (systematic)
 Activation of the fault depends on the operational profile (inputs)



© BME-MIT 33

How faults lead to failures?

Fault  Error  Failure chain examples:

Component
or system

Error: State leading to 
the failure

Fault: 
Adjudged or
hypothesized 

cause of an error

Failure: 
The delivered

service deviates 
from correct service

Fault Error Failure

Bit flip in the memory 
due to a cosmic particle

Reading the faulty 
memory cell will result in 
incorrect control value

The robot arm 
collides with the wall

The programmer 
increases a variable 
instead of decreasing

The faulty statement is 
executed and thus the 
value of a state variable 
will be incorrect

The final result of the 
computation will be 
incorrect

 



© BME-MIT 34

Means to improve dependability

 Fault prevention:

o Physical faults: Good components, protection, ...

o Design faults: Good design methodology

 Fault removal:

o Design phase: Verification and corrections

o Production phase: Testing, diagnostics, and repair

 Fault tolerance: Avoiding service failures

o Operation phase: Fault handling, reconfiguration

 Fault forecasting: Estimating faults and their effects

o Operation phase: Measurements and prediction



© BME-MIT 35

Summary

 Safety requirements

o Basic concepts: Hazard, risk, safety

o Safety function and safety integrity requirements

o Safety integrity levels

 Dependability requirements

o Attributes of dependability

o Quantitative definitions: reliability and availability

o Threats: The fault  error  failure chain

o Means to improve dependability: fault prevention, 
fault removal, fault tolerance, fault forecasting



© BME-MIT 36

Overview of the development 
of safety-critical systems



© BME-MIT 37

Recap: Demonstrating safety integrity

 Random (hardware) failures: 
o Occur accidentally at a random time due to degradation 

mechanisms

o Random failure integrity: Statistical calculations on the basis of 
component fault rates

 Systematic (software) failures: 
o Occur in a deterministic way due to design / manufacturing / 

operating flaws

o No accepted general method to calculate safety integrity

o Systematic failure integrity: Rigor in the development

• Development lifecycle: Well-defined, verified phases

• Techniques and measures: Design, verification, …

• Documentation: Development and operation related

• Independence of persons: Developer, verifier, assessor, …



© BME-MIT 38

1. Development lifecycle

Goals of the overall safety lifecycle model:

 Provide well-defined technical framework for the 
activities necessary for ensuring functional safety

o E.g., verification in each phase before proceeding

 Cover all lifecycle activities

o Initial concept

o Hazard analysis and risk assessment

o Specification, design, implementation

o Operation and maintenance

o (Final decommissioning and/or disposal)



© BME-MIT 39

Example software lifecycle (V-model)

Requirement
analysis

System
specification

Architecture
design

Module
design

Module
implementation

Module
verification

System
integration

System
verification

System
validation

Operation,
maintenance

Module test
design

Integration test
design

System test
design

System valid. 
design



© BME-MIT 41

2. Techniques and measures
 Goals of the required techniques: 

o Preventing the introduction of systematic faults 

o Controlling the residual faults

 SIL determines the set of techniques to be applied as
o M:   Mandatory

o HR:  Highly recommended (rationale behind not using it 
should be detailed and agreed with the assessor)

o R:    Recommended

o ---:  No recommendation for or against being used

o NR: Not recommended

 Combinations of techniques are allowed
o E.g., alternative or equivalent techniques

 Hierarchy of techniques is provided



© BME-MIT 42

Example: Testing techniques (EN 50128)
 Testing in the software design and implementation phase:

 D3: Functional / black box testing: 



© BME-MIT 43

Example: Testing techniques (EN 50128)
 D6: Performance testing:



© BME-MIT 44

Example: Software architecture design (IEC 61508)

 IEC 61508:
Functional 
safety in 
electrical / 
electronic / 
programmable 
electronic 
safety-related 
systems

 Here: 
Techniques that 
are NR (not 
recommended) 



© BME-MIT 49

3. Precise documentation
 Types of documentation

o Comprehensive (covers overall lifecycle)
• E.g., Software Verification Plan

o Specific for a given lifecycle phase
• E.g., Software Source Code Verification Report

 Document Cross Reference Table
o Specifies documentation for each lifecycle phase

o Determines relations among documents

 Traceability of documents is required
o Relationship between documents is specified 

(e.g., “based on”, “includes”)

o Consistent terminology, references, abbreviations



© BME-MIT 50

Example: Document structure (EN50128)

30 documents in 
a systematic 
structure
 Specification
 Design
 Verification

Software Planning Phase

Software Development Plan

Software Quality Assurance Plan

Software Configuration Management Plan

Software Verification Plan

Software Integration Test Plan

Software/hardware Integration Test Plan

Software Validation Plan

Software Maintenance Plan

System Development Phase

System Requirements Specification

System Safety Requirements Specification

System Architecture Description

System Safety Plan

Software Maintenance Phase

Software Maintenance Records

Software Change Records

Software Assessment Phase

Software Assessment Report

Software Requirements Spec. Phase

Software Requirements Specification

Software Requirements Test Specification

Software Requirements Verification Report

Software Validation Phase

Software Validation Report

Software/hardware Integration Phase

Software/hardware Integration Test Report

Software Architecture & Design Phase

Software Architecture Specification

Software Design Specification

Software Architecture and Design Verification Report

Software Integration Phase

Software Integration Test Report

Software Module Design Phase

Software Module Design Specification

Software Module Test Specification

Software Module Verification Report

Software Module Testing Phase

Software Module Test Report

Coding Phase

Software Source Code & Supporting Documentation 

Software Source Code Verification Report



© BME-MIT 52

4. Organization and independence of roles
 Safety management

o Quality assurance personnel

o Safety Organization (responsible persons))

 Competence shall be demonstrated
o Training, experience and qualifications

 Independence of roles:
o DES: Designer (analyst, architect, coder, unit tester)

o VER: Verifier (incl. integration and system tester)

o VAL: Validator

o ASS: Assessor

o MAN: Project manager

o QUA: Quality assurance personnel



© BME-MIT 53

Example: Responsibilities (EN 50128)

DES, VER, VAL

DES VER, VAL

DES

MGR

VER, VAL

MGR

DES VER VAL

ASS

ASS

ASS

ASS

SIL 0:

SIL 1 or 2:

SIL 3 or 4:

or:

Same organization Roles of the same person

DES: Designer
VER: Verifier
VAL: Validator
ASS: Assessor
MAN: Project manager

SIL 0:

SIL 1 or 2:

SIL 3 or 4:



© BME-MIT 54

Summary

 Basic notions of safety-critical systems

o Hazard, risk, safety

o Safety integrity, THR, SIL

 Dependability

o Attributes

o Fault -> Error -> Failure chain

o Means for improving dependability

 Development processes and standards

o Lifecycle, measures and techniques

o Documentation, organizational structure


